36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <stdio.h> |
47 |
|
#include "nonbonded/Electrostatic.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
< |
#include "types/DirectionalAtomType.hpp" |
50 |
> |
#include "types/FixedChargeAdapter.hpp" |
51 |
> |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
> |
#include "types/MultipoleAdapter.hpp" |
53 |
|
#include "io/Globals.hpp" |
54 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
+ |
#include "utils/PhysicalConstants.hpp" |
56 |
|
|
57 |
+ |
|
58 |
|
namespace OpenMD { |
59 |
|
|
60 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
70 |
|
Globals* simParams_ = info_->getSimParams(); |
71 |
|
|
72 |
|
summationMap_["HARD"] = esm_HARD; |
73 |
+ |
summationMap_["NONE"] = esm_HARD; |
74 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
75 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
76 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
123 |
|
sprintf( painCave.errMsg, |
124 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
125 |
|
"\t(Input file specified %s .)\n" |
126 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
126 |
> |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
127 |
|
"\t\"shifted_potential\", \"shifted_force\", or \n" |
128 |
|
"\t\"reaction_field\".\n", myMethod.c_str() ); |
129 |
|
painCave.isFatal = 1; |
193 |
|
|
194 |
|
// throw warning |
195 |
|
sprintf( painCave.errMsg, |
196 |
< |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
197 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
196 |
> |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
197 |
> |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
198 |
> |
"\tcutoff of %f (ang).\n", |
199 |
|
dampingAlpha_, cutoffRadius_); |
200 |
|
painCave.severity = OPENMD_INFO; |
201 |
|
painCave.isFatal = 0; |
218 |
|
addType(at); |
219 |
|
} |
220 |
|
|
213 |
– |
|
221 |
|
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
222 |
|
rcuti_ = 1.0 / cutoffRadius_; |
223 |
|
rcuti2_ = rcuti_ * rcuti_; |
256 |
|
preRF2_ = 2.0 * preRF_; |
257 |
|
} |
258 |
|
|
259 |
< |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
259 |
> |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
260 |
> |
// have charged atoms longer than the cutoffRadius away from each |
261 |
> |
// other. Splining may not be the best choice here. Direct calls |
262 |
> |
// to erfc might be preferrable. |
263 |
> |
|
264 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
265 |
|
RealType rval; |
266 |
|
vector<RealType> rvals; |
267 |
|
vector<RealType> yvals; |
284 |
|
electrostaticAtomData.is_Dipole = false; |
285 |
|
electrostaticAtomData.is_SplitDipole = false; |
286 |
|
electrostaticAtomData.is_Quadrupole = false; |
287 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
288 |
|
|
289 |
< |
if (atomType->isCharge()) { |
290 |
< |
GenericData* data = atomType->getPropertyByName("Charge"); |
291 |
< |
|
279 |
< |
if (data == NULL) { |
280 |
< |
sprintf( painCave.errMsg, "Electrostatic::addType could not find " |
281 |
< |
"Charge\n" |
282 |
< |
"\tparameters for atomType %s.\n", |
283 |
< |
atomType->getName().c_str()); |
284 |
< |
painCave.severity = OPENMD_ERROR; |
285 |
< |
painCave.isFatal = 1; |
286 |
< |
simError(); |
287 |
< |
} |
288 |
< |
|
289 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
290 |
< |
if (doubleData == NULL) { |
291 |
< |
sprintf( painCave.errMsg, |
292 |
< |
"Electrostatic::addType could not convert GenericData to " |
293 |
< |
"Charge for\n" |
294 |
< |
"\tatom type %s\n", atomType->getName().c_str()); |
295 |
< |
painCave.severity = OPENMD_ERROR; |
296 |
< |
painCave.isFatal = 1; |
297 |
< |
simError(); |
298 |
< |
} |
289 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
290 |
> |
|
291 |
> |
if (fca.isFixedCharge()) { |
292 |
|
electrostaticAtomData.is_Charge = true; |
293 |
< |
electrostaticAtomData.charge = doubleData->getData(); |
293 |
> |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
294 |
|
} |
295 |
|
|
296 |
< |
if (atomType->isDirectional()) { |
297 |
< |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
298 |
< |
|
306 |
< |
if (daType->isDipole()) { |
307 |
< |
GenericData* data = daType->getPropertyByName("Dipole"); |
308 |
< |
|
309 |
< |
if (data == NULL) { |
310 |
< |
sprintf( painCave.errMsg, |
311 |
< |
"Electrostatic::addType could not find Dipole\n" |
312 |
< |
"\tparameters for atomType %s.\n", |
313 |
< |
daType->getName().c_str()); |
314 |
< |
painCave.severity = OPENMD_ERROR; |
315 |
< |
painCave.isFatal = 1; |
316 |
< |
simError(); |
317 |
< |
} |
318 |
< |
|
319 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
320 |
< |
if (doubleData == NULL) { |
321 |
< |
sprintf( painCave.errMsg, |
322 |
< |
"Electrostatic::addType could not convert GenericData to " |
323 |
< |
"Dipole Moment\n" |
324 |
< |
"\tfor atom type %s\n", daType->getName().c_str()); |
325 |
< |
painCave.severity = OPENMD_ERROR; |
326 |
< |
painCave.isFatal = 1; |
327 |
< |
simError(); |
328 |
< |
} |
296 |
> |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
297 |
> |
if (ma.isMultipole()) { |
298 |
> |
if (ma.isDipole()) { |
299 |
|
electrostaticAtomData.is_Dipole = true; |
300 |
< |
electrostaticAtomData.dipole_moment = doubleData->getData(); |
300 |
> |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
301 |
|
} |
302 |
< |
|
333 |
< |
if (daType->isSplitDipole()) { |
334 |
< |
GenericData* data = daType->getPropertyByName("SplitDipoleDistance"); |
335 |
< |
|
336 |
< |
if (data == NULL) { |
337 |
< |
sprintf(painCave.errMsg, |
338 |
< |
"Electrostatic::addType could not find SplitDipoleDistance\n" |
339 |
< |
"\tparameter for atomType %s.\n", |
340 |
< |
daType->getName().c_str()); |
341 |
< |
painCave.severity = OPENMD_ERROR; |
342 |
< |
painCave.isFatal = 1; |
343 |
< |
simError(); |
344 |
< |
} |
345 |
< |
|
346 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
347 |
< |
if (doubleData == NULL) { |
348 |
< |
sprintf( painCave.errMsg, |
349 |
< |
"Electrostatic::addType could not convert GenericData to " |
350 |
< |
"SplitDipoleDistance for\n" |
351 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
352 |
< |
painCave.severity = OPENMD_ERROR; |
353 |
< |
painCave.isFatal = 1; |
354 |
< |
simError(); |
355 |
< |
} |
302 |
> |
if (ma.isSplitDipole()) { |
303 |
|
electrostaticAtomData.is_SplitDipole = true; |
304 |
< |
electrostaticAtomData.split_dipole_distance = doubleData->getData(); |
304 |
> |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
305 |
|
} |
306 |
< |
|
360 |
< |
if (daType->isQuadrupole()) { |
361 |
< |
GenericData* data = daType->getPropertyByName("QuadrupoleMoments"); |
362 |
< |
|
363 |
< |
if (data == NULL) { |
364 |
< |
sprintf( painCave.errMsg, |
365 |
< |
"Electrostatic::addType could not find QuadrupoleMoments\n" |
366 |
< |
"\tparameter for atomType %s.\n", |
367 |
< |
daType->getName().c_str()); |
368 |
< |
painCave.severity = OPENMD_ERROR; |
369 |
< |
painCave.isFatal = 1; |
370 |
< |
simError(); |
371 |
< |
} |
372 |
< |
|
306 |
> |
if (ma.isQuadrupole()) { |
307 |
|
// Quadrupoles in OpenMD are set as the diagonal elements |
308 |
|
// of the diagonalized traceless quadrupole moment tensor. |
309 |
|
// The column vectors of the unitary matrix that diagonalizes |
310 |
|
// the quadrupole moment tensor become the eFrame (or the |
311 |
|
// electrostatic version of the body-fixed frame. |
378 |
– |
|
379 |
– |
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
380 |
– |
if (v3dData == NULL) { |
381 |
– |
sprintf( painCave.errMsg, |
382 |
– |
"Electrostatic::addType could not convert GenericData to " |
383 |
– |
"Quadrupole Moments for\n" |
384 |
– |
"\tatom type %s\n", daType->getName().c_str()); |
385 |
– |
painCave.severity = OPENMD_ERROR; |
386 |
– |
painCave.isFatal = 1; |
387 |
– |
simError(); |
388 |
– |
} |
312 |
|
electrostaticAtomData.is_Quadrupole = true; |
313 |
< |
electrostaticAtomData.quadrupole_moments = v3dData->getData(); |
313 |
> |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
314 |
|
} |
315 |
|
} |
316 |
|
|
317 |
< |
AtomTypeProperties atp = atomType->getATP(); |
317 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
318 |
|
|
319 |
+ |
if (fqa.isFluctuatingCharge()) { |
320 |
+ |
electrostaticAtomData.is_Fluctuating = true; |
321 |
+ |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
322 |
+ |
electrostaticAtomData.hardness = fqa.getHardness(); |
323 |
+ |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
324 |
+ |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
325 |
+ |
} |
326 |
+ |
|
327 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
328 |
< |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) ); |
328 |
> |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
329 |
> |
atomType) ); |
330 |
|
if (ret.second == false) { |
331 |
|
sprintf( painCave.errMsg, |
332 |
|
"Electrostatic already had a previous entry with ident %d\n", |
333 |
< |
atp.ident); |
333 |
> |
atomType->getIdent() ); |
334 |
|
painCave.severity = OPENMD_INFO; |
335 |
|
painCave.isFatal = 0; |
336 |
|
simError(); |
337 |
|
} |
338 |
|
|
339 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
339 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
340 |
> |
|
341 |
> |
// Now, iterate over all known types and add to the mixing map: |
342 |
> |
|
343 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
344 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
345 |
> |
AtomType* atype2 = (*it).first; |
346 |
> |
ElectrostaticAtomData eaData2 = (*it).second; |
347 |
> |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
348 |
> |
|
349 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
350 |
> |
RealType b = eaData2.slaterZeta; |
351 |
> |
int m = electrostaticAtomData.slaterN; |
352 |
> |
int n = eaData2.slaterN; |
353 |
> |
|
354 |
> |
// Create the spline of the coulombic integral for s-type |
355 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
356 |
> |
// with cutoffGroups that have charged atoms longer than the |
357 |
> |
// cutoffRadius away from each other. |
358 |
> |
|
359 |
> |
RealType rval; |
360 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
361 |
> |
vector<RealType> rvals; |
362 |
> |
vector<RealType> J1vals; |
363 |
> |
vector<RealType> J2vals; |
364 |
> |
for (int i = 0; i < np_; i++) { |
365 |
> |
rval = RealType(i) * dr; |
366 |
> |
rvals.push_back(rval); |
367 |
> |
J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
368 |
> |
// may not be necessary if Slater coulomb integral is symmetric |
369 |
> |
J2vals.push_back(eaData2.hardness * sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
370 |
> |
} |
371 |
> |
|
372 |
> |
CubicSpline* J1 = new CubicSpline(); |
373 |
> |
J1->addPoints(rvals, J1vals); |
374 |
> |
CubicSpline* J2 = new CubicSpline(); |
375 |
> |
J2->addPoints(rvals, J2vals); |
376 |
> |
|
377 |
> |
pair<AtomType*, AtomType*> key1, key2; |
378 |
> |
key1 = make_pair(atomType, atype2); |
379 |
> |
key2 = make_pair(atype2, atomType); |
380 |
> |
|
381 |
> |
Jij[key1] = J1; |
382 |
> |
Jij[key2] = J2; |
383 |
> |
} |
384 |
> |
} |
385 |
> |
|
386 |
|
return; |
387 |
|
} |
388 |
|
|
432 |
|
RealType c1, c2, c3, c4; |
433 |
|
RealType erfcVal(1.0), derfcVal(0.0); |
434 |
|
RealType BigR; |
435 |
+ |
RealType two(2.0), three(3.0); |
436 |
|
|
437 |
|
Vector3d Q_i, Q_j; |
438 |
|
Vector3d ux_i, uy_i, uz_i; |
448 |
|
Vector3d indirect_dVdr(V3Zero); |
449 |
|
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
450 |
|
|
451 |
+ |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
452 |
|
pair<RealType, RealType> res; |
453 |
|
|
454 |
+ |
// splines for coulomb integrals |
455 |
+ |
CubicSpline* J1; |
456 |
+ |
CubicSpline* J2; |
457 |
+ |
|
458 |
|
if (!initialized_) initialize(); |
459 |
|
|
460 |
|
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
471 |
|
bool i_is_Dipole = data1.is_Dipole; |
472 |
|
bool i_is_SplitDipole = data1.is_SplitDipole; |
473 |
|
bool i_is_Quadrupole = data1.is_Quadrupole; |
474 |
+ |
bool i_is_Fluctuating = data1.is_Fluctuating; |
475 |
|
|
476 |
|
bool j_is_Charge = data2.is_Charge; |
477 |
|
bool j_is_Dipole = data2.is_Dipole; |
478 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
479 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
480 |
+ |
bool j_is_Fluctuating = data2.is_Fluctuating; |
481 |
|
|
482 |
|
if (i_is_Charge) { |
483 |
< |
q_i = data1.charge; |
483 |
> |
q_i = data1.fixedCharge; |
484 |
> |
|
485 |
> |
if (i_is_Fluctuating) { |
486 |
> |
q_i += *(idat.flucQ1); |
487 |
> |
} |
488 |
> |
|
489 |
|
if (idat.excluded) { |
490 |
|
*(idat.skippedCharge2) += q_i; |
491 |
|
} |
523 |
|
} |
524 |
|
|
525 |
|
if (j_is_Charge) { |
526 |
< |
q_j = data2.charge; |
526 |
> |
q_j = data2.fixedCharge; |
527 |
> |
|
528 |
> |
if (j_is_Fluctuating) |
529 |
> |
q_j += *(idat.flucQ2); |
530 |
> |
|
531 |
|
if (idat.excluded) { |
532 |
|
*(idat.skippedCharge1) += q_j; |
533 |
|
} |
565 |
|
duduz_j = V3Zero; |
566 |
|
} |
567 |
|
|
568 |
+ |
if (i_is_Fluctuating && j_is_Fluctuating) { |
569 |
+ |
J1 = Jij[idat.atypes]; |
570 |
+ |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
571 |
+ |
} |
572 |
+ |
|
573 |
|
epot = 0.0; |
574 |
|
dVdr = V3Zero; |
575 |
|
|
578 |
|
if (j_is_Charge) { |
579 |
|
if (screeningMethod_ == DAMPED) { |
580 |
|
// assemble the damping variables |
581 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
582 |
< |
erfcVal = res.first; |
583 |
< |
derfcVal = res.second; |
581 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
582 |
> |
//erfcVal = res.first; |
583 |
> |
//derfcVal = res.second; |
584 |
> |
|
585 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
586 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
587 |
> |
|
588 |
|
c1 = erfcVal * riji; |
589 |
|
c2 = (-derfcVal + c1) * riji; |
590 |
|
} else { |
592 |
|
c2 = c1 * riji; |
593 |
|
} |
594 |
|
|
595 |
< |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
595 |
> |
preVal = *(idat.electroMult) * pre11_; |
596 |
|
|
597 |
|
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
598 |
|
vterm = preVal * (c1 - c1c_); |
614 |
|
if (idat.excluded) { |
615 |
|
indirect_vpair += preVal * rfVal; |
616 |
|
indirect_Pot += *(idat.sw) * preVal * rfVal; |
617 |
< |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
617 |
> |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
618 |
|
} |
619 |
|
|
620 |
|
} else { |
621 |
|
|
622 |
|
vterm = preVal * riji * erfcVal; |
623 |
|
dudr = - *(idat.sw) * preVal * c2; |
624 |
+ |
|
625 |
+ |
} |
626 |
+ |
|
627 |
+ |
vpair += vterm * q_i * q_j; |
628 |
+ |
epot += *(idat.sw) * vterm * q_i * q_j; |
629 |
+ |
dVdr += dudr * rhat * q_i * q_j; |
630 |
|
|
631 |
+ |
if (i_is_Fluctuating) { |
632 |
+ |
if (idat.excluded) { |
633 |
+ |
// vFluc1 is the difference between the direct coulomb integral |
634 |
+ |
// and the normal 1/r-like interaction between point charges. |
635 |
+ |
coulInt = J1->getValueAt( *(idat.rij) ); |
636 |
+ |
vFluc1 = coulInt - (*(idat.sw) * vterm); |
637 |
+ |
} else { |
638 |
+ |
vFluc1 = 0.0; |
639 |
+ |
} |
640 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j; |
641 |
|
} |
642 |
|
|
643 |
< |
vpair += vterm; |
644 |
< |
epot += *(idat.sw) * vterm; |
645 |
< |
dVdr += dudr * rhat; |
643 |
> |
if (j_is_Fluctuating) { |
644 |
> |
if (idat.excluded) { |
645 |
> |
// vFluc2 is the difference between the direct coulomb integral |
646 |
> |
// and the normal 1/r-like interaction between point charges. |
647 |
> |
coulInt = J2->getValueAt( *(idat.rij) ); |
648 |
> |
vFluc2 = coulInt - (*(idat.sw) * vterm); |
649 |
> |
} else { |
650 |
> |
vFluc2 = 0.0; |
651 |
> |
} |
652 |
> |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i; |
653 |
> |
} |
654 |
> |
|
655 |
> |
|
656 |
|
} |
657 |
|
|
658 |
|
if (j_is_Dipole) { |
668 |
|
vpair += vterm; |
669 |
|
epot += *(idat.sw) * vterm; |
670 |
|
|
671 |
< |
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
671 |
> |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
672 |
|
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
673 |
|
|
674 |
|
// Even if we excluded this pair from direct interactions, |
697 |
|
|
698 |
|
if (screeningMethod_ == DAMPED) { |
699 |
|
// assemble the damping variables |
700 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
701 |
< |
erfcVal = res.first; |
702 |
< |
derfcVal = res.second; |
700 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
701 |
> |
//erfcVal = res.first; |
702 |
> |
//derfcVal = res.second; |
703 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
704 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
705 |
|
c1 = erfcVal * ri; |
706 |
|
c2 = (-derfcVal + c1) * ri; |
707 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
725 |
|
duduz_j += -preSw * pot_term * rhat; |
726 |
|
|
727 |
|
} |
728 |
+ |
if (i_is_Fluctuating) { |
729 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
730 |
+ |
} |
731 |
|
} |
732 |
|
|
733 |
|
if (j_is_Quadrupole) { |
739 |
|
|
740 |
|
if (screeningMethod_ == DAMPED) { |
741 |
|
// assemble the damping variables |
742 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
743 |
< |
erfcVal = res.first; |
744 |
< |
derfcVal = res.second; |
742 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
743 |
> |
//erfcVal = res.first; |
744 |
> |
//derfcVal = res.second; |
745 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
746 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
747 |
|
c1 = erfcVal * riji; |
748 |
|
c2 = (-derfcVal + c1) * riji; |
749 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
760 |
|
c2ri = c2 * riji; |
761 |
|
c3ri = c3 * riji; |
762 |
|
c4rij = c4 * *(idat.rij) ; |
763 |
< |
rhatdot2 = 2.0 * rhat * c3; |
763 |
> |
rhatdot2 = two * rhat * c3; |
764 |
|
rhatc4 = rhat * c4rij; |
765 |
|
|
766 |
|
// calculate the potential |
773 |
|
|
774 |
|
// calculate derivatives for the forces and torques |
775 |
|
|
776 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) + |
777 |
< |
qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) + |
778 |
< |
qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri)); |
776 |
> |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
777 |
> |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
778 |
> |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
779 |
|
|
780 |
|
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
781 |
|
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
782 |
|
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
783 |
+ |
if (i_is_Fluctuating) { |
784 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
785 |
+ |
} |
786 |
+ |
|
787 |
|
} |
788 |
|
} |
789 |
|
|
803 |
|
vpair += vterm; |
804 |
|
epot += *(idat.sw) * vterm; |
805 |
|
|
806 |
< |
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
806 |
> |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
807 |
|
|
808 |
|
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
809 |
|
|
834 |
|
|
835 |
|
if (screeningMethod_ == DAMPED) { |
836 |
|
// assemble the damping variables |
837 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
838 |
< |
erfcVal = res.first; |
839 |
< |
derfcVal = res.second; |
837 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
838 |
> |
//erfcVal = res.first; |
839 |
> |
//derfcVal = res.second; |
840 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
841 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
842 |
|
c1 = erfcVal * ri; |
843 |
|
c2 = (-derfcVal + c1) * ri; |
844 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
860 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
861 |
|
duduz_i += preSw * pot_term * rhat; |
862 |
|
} |
863 |
+ |
|
864 |
+ |
if (j_is_Fluctuating) { |
865 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
866 |
+ |
} |
867 |
+ |
|
868 |
|
} |
869 |
|
|
870 |
|
if (j_is_Dipole) { |
886 |
|
|
887 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
888 |
|
|
889 |
< |
dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
889 |
> |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
890 |
|
|
891 |
< |
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
892 |
< |
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
891 |
> |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
892 |
> |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
893 |
|
|
894 |
|
if (idat.excluded) { |
895 |
|
indirect_vpair += - pref * preRF2_ * ct_ij; |
920 |
|
} |
921 |
|
if (screeningMethod_ == DAMPED) { |
922 |
|
// assemble damping variables |
923 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
924 |
< |
erfcVal = res.first; |
925 |
< |
derfcVal = res.second; |
923 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
924 |
> |
//erfcVal = res.first; |
925 |
> |
//derfcVal = res.second; |
926 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
927 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
928 |
|
c1 = erfcVal * ri; |
929 |
|
c2 = (-derfcVal + c1) * ri; |
930 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
973 |
|
|
974 |
|
if (screeningMethod_ == DAMPED) { |
975 |
|
// assemble the damping variables |
976 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
977 |
< |
erfcVal = res.first; |
978 |
< |
derfcVal = res.second; |
976 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
977 |
> |
//erfcVal = res.first; |
978 |
> |
//derfcVal = res.second; |
979 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
980 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
981 |
|
c1 = erfcVal * riji; |
982 |
|
c2 = (-derfcVal + c1) * riji; |
983 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
994 |
|
c2ri = c2 * riji; |
995 |
|
c3ri = c3 * riji; |
996 |
|
c4rij = c4 * *(idat.rij) ; |
997 |
< |
rhatdot2 = 2.0 * rhat * c3; |
997 |
> |
rhatdot2 = two * rhat * c3; |
998 |
|
rhatc4 = rhat * c4rij; |
999 |
|
|
1000 |
|
// calculate the potential |
1008 |
|
|
1009 |
|
// calculate the derivatives for the forces and torques |
1010 |
|
|
1011 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) + |
1012 |
< |
qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) + |
1013 |
< |
qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri)); |
1011 |
> |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
1012 |
> |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
1013 |
> |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
1014 |
|
|
1015 |
|
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
1016 |
|
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
1017 |
|
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
1018 |
+ |
|
1019 |
+ |
if (j_is_Fluctuating) { |
1020 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1021 |
+ |
} |
1022 |
+ |
|
1023 |
|
} |
1024 |
|
} |
1025 |
|
|
1047 |
|
|
1048 |
|
// only accumulate the forces and torques resulting from the |
1049 |
|
// indirect reaction field terms. |
1050 |
+ |
|
1051 |
|
*(idat.vpair) += indirect_vpair; |
1052 |
|
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1053 |
|
*(idat.f1) += indirect_dVdr; |
1058 |
|
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1059 |
|
} |
1060 |
|
|
1003 |
– |
|
1061 |
|
return; |
1062 |
|
} |
1063 |
|
|
1064 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1065 |
< |
RealType mu1, preVal, chg1, self; |
1009 |
< |
|
1065 |
> |
RealType mu1, preVal, self; |
1066 |
|
if (!initialized_) initialize(); |
1067 |
|
|
1068 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1070 |
|
// logicals |
1071 |
|
bool i_is_Charge = data.is_Charge; |
1072 |
|
bool i_is_Dipole = data.is_Dipole; |
1073 |
+ |
bool i_is_Fluctuating = data.is_Fluctuating; |
1074 |
+ |
RealType chg1 = data.fixedCharge; |
1075 |
+ |
|
1076 |
+ |
if (i_is_Fluctuating) { |
1077 |
+ |
chg1 += *(sdat.flucQ); |
1078 |
+ |
// dVdFQ is really a force, so this is negative the derivative |
1079 |
+ |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1080 |
+ |
} |
1081 |
|
|
1082 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
1083 |
|
if (i_is_Dipole) { |
1094 |
|
} |
1095 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1096 |
|
if (i_is_Charge) { |
1033 |
– |
chg1 = data.charge; |
1097 |
|
if (screeningMethod_ == DAMPED) { |
1098 |
|
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1099 |
|
} else { |