ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC vs.
Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53   #include "io/Globals.hpp"
54 + #include "nonbonded/SlaterIntegrals.hpp"
55 + #include "utils/PhysicalConstants.hpp"
56  
57 +
58   namespace OpenMD {
59    
60    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 <                                  forceField_(NULL), info_(NULL), haveCutoffRadius_(false),
62 <                                  haveDampingAlpha_(false), haveDielectric_(false),
61 >                                  forceField_(NULL), info_(NULL),
62 >                                  haveCutoffRadius_(false),
63 >                                  haveDampingAlpha_(false),
64 >                                  haveDielectric_(false),
65                                    haveElectroSpline_(false)
66 < {}
66 >  {}
67    
68    void Electrostatic::initialize() {
69 <
69 >    
70      Globals* simParams_ = info_->getSimParams();
71  
72      summationMap_["HARD"]               = esm_HARD;
73 +    summationMap_["NONE"]               = esm_HARD;
74      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
76      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
# Line 114 | Line 123 | namespace OpenMD {
123          sprintf( painCave.errMsg,
124                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125                   "\t(Input file specified %s .)\n"
126 <                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
126 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127                   "\t\"shifted_potential\", \"shifted_force\", or \n"
128                   "\t\"reaction_field\".\n", myMethod.c_str() );
129          painCave.isFatal = 1;
# Line 184 | Line 193 | namespace OpenMD {
193          
194          // throw warning
195          sprintf( painCave.errMsg,
196 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
196 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
197 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
198 >                 "\tcutoff of %f (ang).\n",
199                   dampingAlpha_, cutoffRadius_);
200          painCave.severity = OPENMD_INFO;
201          painCave.isFatal = 0;
# Line 208 | Line 218 | namespace OpenMD {
218          addType(at);
219      }
220      
211
221      cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222      rcuti_ = 1.0 / cutoffRadius_;
223      rcuti2_ = rcuti_ * rcuti_;
# Line 247 | Line 256 | namespace OpenMD {
256        preRF2_ = 2.0 * preRF_;
257      }
258      
259 <    RealType dx = cutoffRadius_ / RealType(np_ - 1);
259 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
260 >    // have charged atoms longer than the cutoffRadius away from each
261 >    // other.  Splining may not be the best choice here.  Direct calls
262 >    // to erfc might be preferrable.
263 >
264 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265      RealType rval;
266      vector<RealType> rvals;
267      vector<RealType> yvals;
# Line 270 | Line 284 | namespace OpenMD {
284      electrostaticAtomData.is_Dipole = false;
285      electrostaticAtomData.is_SplitDipole = false;
286      electrostaticAtomData.is_Quadrupole = false;
287 +    electrostaticAtomData.is_Fluctuating = false;
288  
289 <    if (atomType->isCharge()) {
275 <      GenericData* data = atomType->getPropertyByName("Charge");
289 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
290  
291 <      if (data == NULL) {
278 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
279 <                 "Charge\n"
280 <                 "\tparameters for atomType %s.\n",
281 <                 atomType->getName().c_str());
282 <        painCave.severity = OPENMD_ERROR;
283 <        painCave.isFatal = 1;
284 <        simError();                  
285 <      }
286 <      
287 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
288 <      if (doubleData == NULL) {
289 <        sprintf( painCave.errMsg,
290 <                 "Electrostatic::addType could not convert GenericData to "
291 <                 "Charge for\n"
292 <                 "\tatom type %s\n", atomType->getName().c_str());
293 <        painCave.severity = OPENMD_ERROR;
294 <        painCave.isFatal = 1;
295 <        simError();          
296 <      }
291 >    if (fca.isFixedCharge()) {
292        electrostaticAtomData.is_Charge = true;
293 <      electrostaticAtomData.charge = doubleData->getData();          
293 >      electrostaticAtomData.fixedCharge = fca.getCharge();
294      }
295  
296 <    if (atomType->isDirectional()) {
297 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
298 <      
304 <      if (daType->isDipole()) {
305 <        GenericData* data = daType->getPropertyByName("Dipole");
306 <        
307 <        if (data == NULL) {
308 <          sprintf( painCave.errMsg,
309 <                   "Electrostatic::addType could not find Dipole\n"
310 <                   "\tparameters for atomType %s.\n",
311 <                   daType->getName().c_str());
312 <          painCave.severity = OPENMD_ERROR;
313 <          painCave.isFatal = 1;
314 <          simError();                  
315 <        }
316 <      
317 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
318 <        if (doubleData == NULL) {
319 <          sprintf( painCave.errMsg,
320 <                   "Electrostatic::addType could not convert GenericData to "
321 <                   "Dipole Moment\n"
322 <                   "\tfor atom type %s\n", daType->getName().c_str());
323 <          painCave.severity = OPENMD_ERROR;
324 <          painCave.isFatal = 1;
325 <          simError();          
326 <        }
296 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
297 >    if (ma.isMultipole()) {
298 >      if (ma.isDipole()) {
299          electrostaticAtomData.is_Dipole = true;
300 <        electrostaticAtomData.dipole_moment = doubleData->getData();
300 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
301        }
302 <
331 <      if (daType->isSplitDipole()) {
332 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
333 <        
334 <        if (data == NULL) {
335 <          sprintf(painCave.errMsg,
336 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
337 <                  "\tparameter for atomType %s.\n",
338 <                  daType->getName().c_str());
339 <          painCave.severity = OPENMD_ERROR;
340 <          painCave.isFatal = 1;
341 <          simError();                  
342 <        }
343 <      
344 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
345 <        if (doubleData == NULL) {
346 <          sprintf( painCave.errMsg,
347 <                   "Electrostatic::addType could not convert GenericData to "
348 <                   "SplitDipoleDistance for\n"
349 <                   "\tatom type %s\n", daType->getName().c_str());
350 <          painCave.severity = OPENMD_ERROR;
351 <          painCave.isFatal = 1;
352 <          simError();          
353 <        }
302 >      if (ma.isSplitDipole()) {
303          electrostaticAtomData.is_SplitDipole = true;
304 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
304 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305        }
306 <
358 <      if (daType->isQuadrupole()) {
359 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
360 <        
361 <        if (data == NULL) {
362 <          sprintf( painCave.errMsg,
363 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
364 <                   "\tparameter for atomType %s.\n",
365 <                   daType->getName().c_str());
366 <          painCave.severity = OPENMD_ERROR;
367 <          painCave.isFatal = 1;
368 <          simError();                  
369 <        }
370 <        
306 >      if (ma.isQuadrupole()) {
307          // Quadrupoles in OpenMD are set as the diagonal elements
308          // of the diagonalized traceless quadrupole moment tensor.
309          // The column vectors of the unitary matrix that diagonalizes
310          // the quadrupole moment tensor become the eFrame (or the
311          // electrostatic version of the body-fixed frame.
376
377        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
378        if (v3dData == NULL) {
379          sprintf( painCave.errMsg,
380                   "Electrostatic::addType could not convert GenericData to "
381                   "Quadrupole Moments for\n"
382                   "\tatom type %s\n", daType->getName().c_str());
383          painCave.severity = OPENMD_ERROR;
384          painCave.isFatal = 1;
385          simError();          
386        }
312          electrostaticAtomData.is_Quadrupole = true;
313 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
313 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
314        }
315      }
316      
317 <    AtomTypeProperties atp = atomType->getATP();    
317 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
318 >
319 >    if (fqa.isFluctuatingCharge()) {
320 >      electrostaticAtomData.is_Fluctuating = true;
321 >      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
322 >      electrostaticAtomData.hardness = fqa.getHardness();
323 >      electrostaticAtomData.slaterN = fqa.getSlaterN();
324 >      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
325 >    }
326  
327      pair<map<int,AtomType*>::iterator,bool> ret;    
328 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
328 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
329 >                                                        atomType) );
330      if (ret.second == false) {
331        sprintf( painCave.errMsg,
332                 "Electrostatic already had a previous entry with ident %d\n",
333 <               atp.ident);
333 >               atomType->getIdent() );
334        painCave.severity = OPENMD_INFO;
335        painCave.isFatal = 0;
336        simError();        
337      }
338      
339 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
339 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
340 >
341 >    // Now, iterate over all known types and add to the mixing map:
342 >    
343 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
344 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
345 >      AtomType* atype2 = (*it).first;
346 >      ElectrostaticAtomData eaData2 = (*it).second;
347 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
348 >        
349 >        RealType a = electrostaticAtomData.slaterZeta;
350 >        RealType b = eaData2.slaterZeta;
351 >        int m = electrostaticAtomData.slaterN;
352 >        int n = eaData2.slaterN;
353 >
354 >        // Create the spline of the coulombic integral for s-type
355 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
356 >        // with cutoffGroups that have charged atoms longer than the
357 >        // cutoffRadius away from each other.
358 >
359 >        RealType rval;
360 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
361 >        vector<RealType> rvals;
362 >        vector<RealType> J1vals;
363 >        vector<RealType> J2vals;
364 >        for (int i = 0; i < np_; i++) {
365 >          rval = RealType(i) * dr;
366 >          rvals.push_back(rval);
367 >          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
368 >          // may not be necessary if Slater coulomb integral is symmetric
369 >          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
370 >        }
371 >
372 >        CubicSpline* J1 = new CubicSpline();
373 >        J1->addPoints(rvals, J1vals);
374 >        CubicSpline* J2 = new CubicSpline();
375 >        J2->addPoints(rvals, J2vals);
376 >        
377 >        pair<AtomType*, AtomType*> key1, key2;
378 >        key1 = make_pair(atomType, atype2);
379 >        key2 = make_pair(atype2, atomType);
380 >        
381 >        Jij[key1] = J1;
382 >        Jij[key2] = J2;
383 >      }
384 >    }
385 >
386      return;
387    }
388    
# Line 444 | Line 424 | namespace OpenMD {
424      RealType ct_i, ct_j, ct_ij, a1;
425      RealType riji, ri, ri2, ri3, ri4;
426      RealType pref, vterm, epot, dudr;
427 +    RealType vpair(0.0);
428      RealType scale, sc2;
429      RealType pot_term, preVal, rfVal;
430      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
431      RealType preSw, preSwSc;
432      RealType c1, c2, c3, c4;
433 <    RealType erfcVal, derfcVal;
433 >    RealType erfcVal(1.0), derfcVal(0.0);
434      RealType BigR;
435 +    RealType two(2.0), three(3.0);
436  
437      Vector3d Q_i, Q_j;
438      Vector3d ux_i, uy_i, uz_i;
# Line 460 | Line 442 | namespace OpenMD {
442      Vector3d rhatdot2, rhatc4;
443      Vector3d dVdr;
444  
445 +    // variables for indirect (reaction field) interactions for excluded pairs:
446 +    RealType indirect_Pot(0.0);
447 +    RealType indirect_vpair(0.0);
448 +    Vector3d indirect_dVdr(V3Zero);
449 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
450 +
451 +    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452      pair<RealType, RealType> res;
453      
454 +    // splines for coulomb integrals
455 +    CubicSpline* J1;
456 +    CubicSpline* J2;
457 +    
458      if (!initialized_) initialize();
459      
460      ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
# Line 478 | Line 471 | namespace OpenMD {
471      bool i_is_Dipole = data1.is_Dipole;
472      bool i_is_SplitDipole = data1.is_SplitDipole;
473      bool i_is_Quadrupole = data1.is_Quadrupole;
474 +    bool i_is_Fluctuating = data1.is_Fluctuating;
475  
476      bool j_is_Charge = data2.is_Charge;
477      bool j_is_Dipole = data2.is_Dipole;
478      bool j_is_SplitDipole = data2.is_SplitDipole;
479      bool j_is_Quadrupole = data2.is_Quadrupole;
480 +    bool j_is_Fluctuating = data2.is_Fluctuating;
481      
482 <    if (i_is_Charge)
483 <      q_i = data1.charge;
482 >    if (i_is_Charge) {
483 >      q_i = data1.fixedCharge;
484  
485 +      if (i_is_Fluctuating) {
486 +        q_i += *(idat.flucQ1);
487 +      }
488 +      
489 +      if (idat.excluded) {
490 +        *(idat.skippedCharge2) += q_i;
491 +      }
492 +    }
493 +
494      if (i_is_Dipole) {
495        mu_i = data1.dipole_moment;
496        uz_i = idat.eFrame1->getColumn(2);
# Line 518 | Line 522 | namespace OpenMD {
522        duduz_i = V3Zero;
523      }
524  
525 <    if (j_is_Charge)
526 <      q_j = data2.charge;
525 >    if (j_is_Charge) {
526 >      q_j = data2.fixedCharge;
527  
528 +      if (j_is_Fluctuating)
529 +        q_j += *(idat.flucQ2);
530 +
531 +      if (idat.excluded) {
532 +        *(idat.skippedCharge1) += q_j;
533 +      }
534 +    }
535 +
536 +
537      if (j_is_Dipole) {
538        mu_j = data2.dipole_moment;
539        uz_j = idat.eFrame2->getColumn(2);
# Line 552 | Line 565 | namespace OpenMD {
565        duduz_j = V3Zero;
566      }
567      
568 +    if (i_is_Fluctuating && j_is_Fluctuating) {
569 +      J1 = Jij[idat.atypes];
570 +      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
571 +    }
572 +
573      epot = 0.0;
574      dVdr = V3Zero;
575      
# Line 560 | Line 578 | namespace OpenMD {
578        if (j_is_Charge) {
579          if (screeningMethod_ == DAMPED) {
580            // assemble the damping variables
581 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 <          erfcVal = res.first;
583 <          derfcVal = res.second;
581 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 >          //erfcVal = res.first;
583 >          //derfcVal = res.second;
584 >
585 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
586 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
587 >
588            c1 = erfcVal * riji;
589            c2 = (-derfcVal + c1) * riji;
590          } else {
# Line 570 | Line 592 | namespace OpenMD {
592            c2 = c1 * riji;
593          }
594  
595 <        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
595 >        preVal =  *(idat.electroMult) * pre11_;
596          
597          if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
598            vterm = preVal * (c1 - c1c_);
# Line 581 | Line 603 | namespace OpenMD {
603            dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
604  
605          } else if (summationMethod_ == esm_REACTION_FIELD) {
606 <          rfVal =  *(idat.electroMult) * preRF_ *  *(idat.rij)  *  *(idat.rij) ;
606 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
607 >
608            vterm = preVal * ( riji + rfVal );            
609            dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
610 +          
611 +          // if this is an excluded pair, there are still indirect
612 +          // interactions via the reaction field we must worry about:
613  
614 +          if (idat.excluded) {
615 +            indirect_vpair += preVal * rfVal;
616 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 +          }
619 +          
620          } else {
589          vterm = preVal * riji * erfcVal;            
621  
622 +          vterm = preVal * riji * erfcVal;          
623            dudr  = -  *(idat.sw)  * preVal * c2;
624 +          
625 +        }
626 +        
627 +        vpair += vterm * q_i * q_j;
628 +        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 +        dVdr += dudr * rhat * q_i * q_j;
630 +
631 +        if (i_is_Fluctuating) {
632 +          if (idat.excluded) {
633 +            // vFluc1 is the difference between the direct coulomb integral
634 +            // and the normal 1/r-like  interaction between point charges.
635 +            coulInt = J1->getValueAt( *(idat.rij) );
636 +            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 +          } else {
638 +            vFluc1 = 0.0;
639 +          }
640 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 +        }
642  
643 +        if (j_is_Fluctuating) {
644 +          if (idat.excluded) {
645 +            // vFluc2 is the difference between the direct coulomb integral
646 +            // and the normal 1/r-like  interaction between point charges.
647 +            coulInt = J2->getValueAt( *(idat.rij) );
648 +            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 +          } else {
650 +            vFluc2 = 0.0;
651 +          }
652 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653          }
654 +          
655  
595        *(idat.vpair) += vterm;
596        epot +=  *(idat.sw)  * vterm;
597
598        dVdr += dudr * rhat;      
656        }
657  
658        if (j_is_Dipole) {
# Line 608 | Line 665 | namespace OpenMD {
665            ri3 = ri2 * riji;
666      
667            vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 <          *(idat.vpair) += vterm;
668 >          vpair += vterm;
669            epot +=  *(idat.sw)  * vterm;
670  
671 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
671 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
672            duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
673  
674 +          // Even if we excluded this pair from direct interactions,
675 +          // we still have the reaction-field-mediated charge-dipole
676 +          // interaction:
677 +
678 +          if (idat.excluded) {
679 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
680 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
681 +            indirect_dVdr += preSw * preRF2_ * uz_j;
682 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
683 +          }
684 +                      
685          } else {
686            // determine the inverse r used if we have split dipoles
687            if (j_is_SplitDipole) {
# Line 629 | Line 697 | namespace OpenMD {
697  
698            if (screeningMethod_ == DAMPED) {
699              // assemble the damping variables
700 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 <            erfcVal = res.first;
702 <            derfcVal = res.second;
700 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 >            //erfcVal = res.first;
702 >            //derfcVal = res.second;
703 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705              c1 = erfcVal * ri;
706              c2 = (-derfcVal + c1) * ri;
707              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 646 | Line 716 | namespace OpenMD {
716            // calculate the potential
717            pot_term =  scale * c2;
718            vterm = -pref * ct_j * pot_term;
719 <          *(idat.vpair) += vterm;
719 >          vpair += vterm;
720            epot +=  *(idat.sw)  * vterm;
721              
722            // calculate derivatives for forces and torques
# Line 655 | Line 725 | namespace OpenMD {
725            duduz_j += -preSw * pot_term * rhat;
726  
727          }
728 +        if (i_is_Fluctuating) {
729 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730 +        }
731        }
732  
733        if (j_is_Quadrupole) {
# Line 666 | Line 739 | namespace OpenMD {
739            
740          if (screeningMethod_ == DAMPED) {
741            // assemble the damping variables
742 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 <          erfcVal = res.first;
744 <          derfcVal = res.second;
742 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 >          //erfcVal = res.first;
744 >          //derfcVal = res.second;
745 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747            c1 = erfcVal * riji;
748            c2 = (-derfcVal + c1) * riji;
749            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 685 | Line 760 | namespace OpenMD {
760          c2ri = c2 * riji;
761          c3ri = c3 * riji;
762          c4rij = c4 *  *(idat.rij) ;
763 <        rhatdot2 = 2.0 * rhat * c3;
763 >        rhatdot2 = two * rhat * c3;
764          rhatc4 = rhat * c4rij;
765  
766          // calculate the potential
# Line 693 | Line 768 | namespace OpenMD {
768                       qyy_j * (cy2*c3 - c2ri) +
769                       qzz_j * (cz2*c3 - c2ri) );
770          vterm = pref * pot_term;
771 <        *(idat.vpair) += vterm;
771 >        vpair += vterm;
772          epot +=  *(idat.sw)  * vterm;
773                  
774          // calculate derivatives for the forces and torques
775  
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
776 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779                            
780          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782          duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 +        if (i_is_Fluctuating) {
784 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
785 +        }
786 +
787        }
788      }
789      
# Line 721 | Line 800 | namespace OpenMD {
800            ri3 = ri2 * riji;
801  
802            vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
803 <          *(idat.vpair) += vterm;
803 >          vpair += vterm;
804            epot +=  *(idat.sw)  * vterm;
805            
806 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
806 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807            
808            duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
809 +
810 +          // Even if we excluded this pair from direct interactions,
811 +          // we still have the reaction-field-mediated charge-dipole
812 +          // interaction:
813 +
814 +          if (idat.excluded) {
815 +            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
816 +            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 +            indirect_dVdr += -preSw * preRF2_ * uz_i;
818 +            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 +          }
820              
821          } else {
822            
# Line 744 | Line 834 | namespace OpenMD {
834              
835            if (screeningMethod_ == DAMPED) {
836              // assemble the damping variables
837 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <            erfcVal = res.first;
839 <            derfcVal = res.second;
837 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 >            //erfcVal = res.first;
839 >            //derfcVal = res.second;
840 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842              c1 = erfcVal * ri;
843              c2 = (-derfcVal + c1) * ri;
844              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 761 | Line 853 | namespace OpenMD {
853            // calculate the potential
854            pot_term = c2 * scale;
855            vterm = pref * ct_i * pot_term;
856 <          *(idat.vpair) += vterm;
856 >          vpair += vterm;
857            epot +=  *(idat.sw)  * vterm;
858  
859            // calculate derivatives for the forces and torques
860            dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
861            duduz_i += preSw * pot_term * rhat;
862          }
863 +
864 +        if (j_is_Fluctuating) {
865 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
866 +        }
867 +
868        }
869  
870        if (j_is_Dipole) {
# Line 784 | Line 881 | namespace OpenMD {
881  
882            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883                             preRF2_ * ct_ij );
884 <          *(idat.vpair) += vterm;
884 >          vpair += vterm;
885            epot +=  *(idat.sw)  * vterm;
886              
887            a1 = 5.0 * ct_i * ct_j - ct_ij;
888              
889 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
889 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890  
891 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
892 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
891 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893  
894 +          if (idat.excluded) {
895 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899 +          }
900 +
901          } else {
902            
903            if (i_is_SplitDipole) {
# Line 816 | Line 920 | namespace OpenMD {
920            }
921            if (screeningMethod_ == DAMPED) {
922              // assemble damping variables
923 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924 <            erfcVal = res.first;
925 <            derfcVal = res.second;
923 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924 >            //erfcVal = res.first;
925 >            //derfcVal = res.second;
926 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928              c1 = erfcVal * ri;
929              c2 = (-derfcVal + c1) * ri;
930              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 843 | Line 949 | namespace OpenMD {
949            // calculate the potential
950            pot_term = (ct_ij * c2ri - ctidotj * c3);
951            vterm = pref * pot_term;
952 <          *(idat.vpair) += vterm;
952 >          vpair += vterm;
953            epot +=  *(idat.sw)  * vterm;
954  
955            // calculate derivatives for the forces and torques
# Line 867 | Line 973 | namespace OpenMD {
973  
974          if (screeningMethod_ == DAMPED) {
975            // assemble the damping variables
976 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 <          erfcVal = res.first;
978 <          derfcVal = res.second;
976 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 >          //erfcVal = res.first;
978 >          //derfcVal = res.second;
979 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981            c1 = erfcVal * riji;
982            c2 = (-derfcVal + c1) * riji;
983            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 886 | Line 994 | namespace OpenMD {
994          c2ri = c2 * riji;
995          c3ri = c3 * riji;
996          c4rij = c4 *  *(idat.rij) ;
997 <        rhatdot2 = 2.0 * rhat * c3;
997 >        rhatdot2 = two * rhat * c3;
998          rhatc4 = rhat * c4rij;
999  
1000          // calculate the potential
# Line 895 | Line 1003 | namespace OpenMD {
1003                       qzz_i * (cz2 * c3 - c2ri) );
1004          
1005          vterm = pref * pot_term;
1006 <        *(idat.vpair) += vterm;
1006 >        vpair += vterm;
1007          epot +=  *(idat.sw)  * vterm;
1008  
1009          // calculate the derivatives for the forces and torques
1010  
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1011 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014  
1015          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017          duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1018 +
1019 +        if (j_is_Fluctuating) {
1020 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 +        }
1022 +
1023        }
1024      }
1025  
913    (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
914    *(idat.f1) += dVdr;
1026  
1027 <    if (i_is_Dipole || i_is_Quadrupole)
1028 <      *(idat.t1) -= cross(uz_i, duduz_i);
1029 <    if (i_is_Quadrupole) {
1030 <      *(idat.t1) -= cross(ux_i, dudux_i);
1031 <      *(idat.t1) -= cross(uy_i, duduy_i);
1032 <    }
1033 <    
1034 <    if (j_is_Dipole || j_is_Quadrupole)
1035 <      *(idat.t2) -= cross(uz_j, duduz_j);
1036 <    if (j_is_Quadrupole) {
1037 <      *(idat.t2) -= cross(uz_j, dudux_j);
1038 <      *(idat.t2) -= cross(uz_j, duduy_j);
1039 <    }
1027 >    if (!idat.excluded) {
1028 >      *(idat.vpair) += vpair;
1029 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030 >      *(idat.f1) += dVdr;
1031 >      
1032 >      if (i_is_Dipole || i_is_Quadrupole)
1033 >        *(idat.t1) -= cross(uz_i, duduz_i);
1034 >      if (i_is_Quadrupole) {
1035 >        *(idat.t1) -= cross(ux_i, dudux_i);
1036 >        *(idat.t1) -= cross(uy_i, duduy_i);
1037 >      }
1038 >      
1039 >      if (j_is_Dipole || j_is_Quadrupole)
1040 >        *(idat.t2) -= cross(uz_j, duduz_j);
1041 >      if (j_is_Quadrupole) {
1042 >        *(idat.t2) -= cross(uz_j, dudux_j);
1043 >        *(idat.t2) -= cross(uz_j, duduy_j);
1044 >      }
1045  
1046 <    return;
931 <  }  
1046 >    } else {
1047  
1048 <  void Electrostatic::calcSkipCorrection(InteractionData &idat) {
1048 >      // only accumulate the forces and torques resulting from the
1049 >      // indirect reaction field terms.
1050  
1051 <    if (!initialized_) initialize();
1052 <    
1053 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
938 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
939 <    
940 <    // logicals
941 <
942 <    bool i_is_Charge = data1.is_Charge;
943 <    bool i_is_Dipole = data1.is_Dipole;
944 <
945 <    bool j_is_Charge = data2.is_Charge;
946 <    bool j_is_Dipole = data2.is_Dipole;
947 <
948 <    RealType q_i, q_j;
949 <    
950 <    // The skippedCharge computation is needed by the real-space cutoff methods
951 <    // (i.e. shifted force and shifted potential)
952 <
953 <    if (i_is_Charge) {
954 <      q_i = data1.charge;
955 <      *(idat.skippedCharge2) += q_i;
956 <    }
957 <
958 <    if (j_is_Charge) {
959 <      q_j = data2.charge;
960 <      *(idat.skippedCharge1) += q_j;
961 <    }
962 <
963 <    // the rest of this function should only be necessary for reaction field.
964 <
965 <    if (summationMethod_ == esm_REACTION_FIELD) {
966 <      RealType riji, ri2, ri3;
967 <      RealType mu_i, ct_i;
968 <      RealType mu_j, ct_j;
969 <      RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
970 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
971 <
972 <      // some variables we'll need independent of electrostatic type:
1051 >      *(idat.vpair) += indirect_vpair;
1052 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1053 >      *(idat.f1) += indirect_dVdr;
1054        
974      riji = 1.0 /  *(idat.rij) ;
975      rhat =  *(idat.d)  * riji;
976
977      if (i_is_Dipole) {
978        mu_i = data1.dipole_moment;
979        uz_i = idat.eFrame1->getColumn(2);      
980        ct_i = dot(uz_i, rhat);
981        duduz_i = V3Zero;
982      }
983            
984      if (j_is_Dipole) {
985        mu_j = data2.dipole_moment;
986        uz_j = idat.eFrame2->getColumn(2);      
987        ct_j = dot(uz_j, rhat);
988        duduz_j = V3Zero;
989      }
990    
991      if (i_is_Charge) {
992        if (j_is_Charge) {
993          preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
994          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij) ;
995          vterm = preVal * rfVal;
996          myPot +=  *(idat.sw)  * vterm;        
997          dudr  =  *(idat.sw)  * preVal * 2.0 * rfVal * riji;        
998          dVdr += dudr * rhat;
999        }
1000        
1001        if (j_is_Dipole) {
1002          ri2 = riji * riji;
1003          ri3 = ri2 * riji;        
1004          pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
1005          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
1006          myPot +=  *(idat.sw)  * vterm;        
1007          dVdr += - *(idat.sw)  * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1008          duduz_j += - *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1009        }
1010      }
1011      if (i_is_Dipole) {
1012        if (j_is_Charge) {
1013          ri2 = riji * riji;
1014          ri3 = ri2 * riji;        
1015          pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1016          vterm = - pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1017          myPot +=  *(idat.sw)  * vterm;        
1018          dVdr +=  *(idat.sw)  * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
1019          duduz_i +=  *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij));
1020        }
1021      }
1022      
1023      // accumulate the forces and torques resulting from the self term
1024      (*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot;
1025      *(idat.f1) += dVdr;
1026      
1055        if (i_is_Dipole)
1056 <        *(idat.t1) -= cross(uz_i, duduz_i);
1056 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1057        if (j_is_Dipole)
1058 <        *(idat.t2) -= cross(uz_j, duduz_j);
1058 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1059      }
1060 <  }
1060 >
1061 >    return;
1062 >  }  
1063      
1064    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1065 <    RealType mu1, preVal, chg1, self;
1036 <    
1065 >    RealType mu1, preVal, self;
1066      if (!initialized_) initialize();
1067  
1068      ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
# Line 1041 | Line 1070 | namespace OpenMD {
1070      // logicals
1071      bool i_is_Charge = data.is_Charge;
1072      bool i_is_Dipole = data.is_Dipole;
1073 +    bool i_is_Fluctuating = data.is_Fluctuating;
1074 +    RealType chg1 = data.fixedCharge;  
1075 +    
1076 +    if (i_is_Fluctuating) {
1077 +      chg1 += *(sdat.flucQ);
1078 +      // dVdFQ is really a force, so this is negative the derivative
1079 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1080 +    }
1081  
1082      if (summationMethod_ == esm_REACTION_FIELD) {
1083        if (i_is_Dipole) {
# Line 1057 | Line 1094 | namespace OpenMD {
1094        }
1095      } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1096        if (i_is_Charge) {        
1060        chg1 = data.charge;
1097          if (screeningMethod_ == DAMPED) {
1098            self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1099          } else {        

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines