48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
|
#include "types/FixedChargeAdapter.hpp" |
51 |
+ |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
|
#include "types/MultipoleAdapter.hpp" |
53 |
|
#include "io/Globals.hpp" |
54 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
+ |
#include "utils/PhysicalConstants.hpp" |
56 |
|
|
57 |
+ |
|
58 |
|
namespace OpenMD { |
59 |
|
|
60 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
289 |
|
|
290 |
|
if (fca.isFixedCharge()) { |
291 |
|
electrostaticAtomData.is_Charge = true; |
292 |
< |
electrostaticAtomData.charge = fca.getCharge(); |
292 |
> |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
293 |
|
} |
294 |
|
|
295 |
|
MultipoleAdapter ma = MultipoleAdapter(atomType); |
313 |
|
} |
314 |
|
} |
315 |
|
|
316 |
+ |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
317 |
|
|
318 |
+ |
if (fqa.isFluctuatingCharge()) { |
319 |
+ |
electrostaticAtomData.is_Fluctuating = true; |
320 |
+ |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
321 |
+ |
electrostaticAtomData.hardness = fqa.getHardness(); |
322 |
+ |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
323 |
+ |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
324 |
+ |
} else { |
325 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
326 |
+ |
} |
327 |
+ |
|
328 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
329 |
|
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
330 |
|
atomType) ); |
337 |
|
simError(); |
338 |
|
} |
339 |
|
|
340 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
340 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
341 |
> |
|
342 |
> |
// Now, iterate over all known types and add to the mixing map: |
343 |
> |
|
344 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
345 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
346 |
> |
AtomType* atype2 = (*it).first; |
347 |
> |
ElectrostaticAtomData eaData2 = (*it).second; |
348 |
> |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
349 |
> |
|
350 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
351 |
> |
RealType b = eaData2.slaterZeta; |
352 |
> |
int m = electrostaticAtomData.slaterN; |
353 |
> |
int n = eaData2.slaterN; |
354 |
> |
|
355 |
> |
// Create the spline of the coulombic integral for s-type |
356 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
357 |
> |
// with cutoffGroups that have charged atoms longer than the |
358 |
> |
// cutoffRadius away from each other. |
359 |
> |
|
360 |
> |
RealType rval; |
361 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
362 |
> |
vector<RealType> rvals; |
363 |
> |
vector<RealType> J1vals; |
364 |
> |
vector<RealType> J2vals; |
365 |
> |
for (int i = 0; i < np_; i++) { |
366 |
> |
rval = RealType(i) * dr; |
367 |
> |
rvals.push_back(rval); |
368 |
> |
J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
369 |
> |
// may not be necessary if Slater coulomb integral is symmetric |
370 |
> |
J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
371 |
> |
} |
372 |
> |
|
373 |
> |
CubicSpline* J1 = new CubicSpline(); |
374 |
> |
J1->addPoints(rvals, J1vals); |
375 |
> |
CubicSpline* J2 = new CubicSpline(); |
376 |
> |
J2->addPoints(rvals, J2vals); |
377 |
> |
|
378 |
> |
pair<AtomType*, AtomType*> key1, key2; |
379 |
> |
key1 = make_pair(atomType, atype2); |
380 |
> |
key2 = make_pair(atype2, atomType); |
381 |
> |
|
382 |
> |
Jij[key1] = J1; |
383 |
> |
Jij[key2] = J2; |
384 |
> |
} |
385 |
> |
} |
386 |
> |
|
387 |
|
return; |
388 |
|
} |
389 |
|
|
451 |
|
|
452 |
|
pair<RealType, RealType> res; |
453 |
|
|
454 |
+ |
// splines for coulomb integrals |
455 |
+ |
CubicSpline* J1; |
456 |
+ |
CubicSpline* J2; |
457 |
+ |
|
458 |
|
if (!initialized_) initialize(); |
459 |
|
|
460 |
|
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
471 |
|
bool i_is_Dipole = data1.is_Dipole; |
472 |
|
bool i_is_SplitDipole = data1.is_SplitDipole; |
473 |
|
bool i_is_Quadrupole = data1.is_Quadrupole; |
474 |
+ |
bool i_is_Fluctuating = data1.is_Fluctuating; |
475 |
|
|
476 |
|
bool j_is_Charge = data2.is_Charge; |
477 |
|
bool j_is_Dipole = data2.is_Dipole; |
478 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
479 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
480 |
+ |
bool j_is_Fluctuating = data2.is_Fluctuating; |
481 |
|
|
482 |
|
if (i_is_Charge) { |
483 |
< |
q_i = data1.charge; |
483 |
> |
q_i = data1.fixedCharge; |
484 |
> |
|
485 |
> |
if (i_is_Fluctuating) { |
486 |
> |
q_i += *(idat.flucQ1); |
487 |
> |
} |
488 |
> |
|
489 |
|
if (idat.excluded) { |
490 |
|
*(idat.skippedCharge2) += q_i; |
491 |
|
} |
523 |
|
} |
524 |
|
|
525 |
|
if (j_is_Charge) { |
526 |
< |
q_j = data2.charge; |
526 |
> |
q_j = data2.fixedCharge; |
527 |
> |
|
528 |
> |
if (i_is_Fluctuating) |
529 |
> |
q_j += *(idat.flucQ2); |
530 |
> |
|
531 |
|
if (idat.excluded) { |
532 |
|
*(idat.skippedCharge1) += q_j; |
533 |
|
} |
565 |
|
duduz_j = V3Zero; |
566 |
|
} |
567 |
|
|
568 |
+ |
if (i_is_Fluctuating && j_is_Fluctuating) { |
569 |
+ |
J1 = Jij[idat.atypes]; |
570 |
+ |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
571 |
+ |
} |
572 |
+ |
|
573 |
|
epot = 0.0; |
574 |
|
dVdr = V3Zero; |
575 |
|
|
621 |
|
|
622 |
|
vterm = preVal * riji * erfcVal; |
623 |
|
dudr = - *(idat.sw) * preVal * c2; |
624 |
+ |
|
625 |
+ |
} |
626 |
|
|
627 |
+ |
|
628 |
+ |
if (i_is_Fluctuating) { |
629 |
+ |
if (!idat.excluded) |
630 |
+ |
*(idat.dVdFQ1) += *(idat.sw) * vterm / q_i; |
631 |
+ |
else { |
632 |
+ |
res = J1->getValueAndDerivativeAt( *(idat.rij) ); |
633 |
+ |
*(idat.dVdFQ1) += pre11_ * res.first * q_j; |
634 |
+ |
} |
635 |
+ |
} |
636 |
+ |
if (j_is_Fluctuating) { |
637 |
+ |
if (!idat.excluded) |
638 |
+ |
*(idat.dVdFQ2) += *(idat.sw) * vterm / q_j; |
639 |
+ |
else { |
640 |
+ |
res = J2->getValueAndDerivativeAt( *(idat.rij) ); |
641 |
+ |
*(idat.dVdFQ2) += pre11_ * res.first * q_i; |
642 |
+ |
} |
643 |
|
} |
644 |
|
|
645 |
|
vpair += vterm; |
1063 |
|
} |
1064 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1065 |
|
if (i_is_Charge) { |
1066 |
< |
chg1 = data.charge; |
1066 |
> |
chg1 = data.fixedCharge; |
1067 |
|
if (screeningMethod_ == DAMPED) { |
1068 |
|
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1069 |
|
} else { |