48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
|
#include "types/FixedChargeAdapter.hpp" |
51 |
+ |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
|
#include "types/MultipoleAdapter.hpp" |
53 |
|
#include "io/Globals.hpp" |
54 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
+ |
#include "utils/PhysicalConstants.hpp" |
56 |
+ |
|
57 |
|
|
58 |
|
namespace OpenMD { |
59 |
|
|
289 |
|
|
290 |
|
if (fca.isFixedCharge()) { |
291 |
|
electrostaticAtomData.is_Charge = true; |
292 |
< |
electrostaticAtomData.charge = fca.getCharge(); |
292 |
> |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
293 |
|
} |
294 |
|
|
295 |
|
MultipoleAdapter ma = MultipoleAdapter(atomType); |
313 |
|
} |
314 |
|
} |
315 |
|
|
316 |
+ |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
317 |
|
|
318 |
+ |
if (fqa.isFluctuatingCharge()) { |
319 |
+ |
electrostaticAtomData.is_Fluctuating = true; |
320 |
+ |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
321 |
+ |
electrostaticAtomData.hardness = fqa.getHardness(); |
322 |
+ |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
323 |
+ |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
324 |
+ |
} |
325 |
+ |
|
326 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
327 |
|
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
328 |
|
atomType) ); |
335 |
|
simError(); |
336 |
|
} |
337 |
|
|
338 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
338 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
339 |
> |
|
340 |
> |
// Now, iterate over all known types and add to the mixing map: |
341 |
> |
|
342 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
343 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
344 |
> |
AtomType* atype2 = (*it).first; |
345 |
> |
ElectrostaticAtomData eaData2 = (*it).second; |
346 |
> |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
347 |
> |
|
348 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
349 |
> |
RealType b = eaData2.slaterZeta; |
350 |
> |
int m = electrostaticAtomData.slaterN; |
351 |
> |
int n = eaData2.slaterN; |
352 |
> |
|
353 |
> |
// Create the spline of the coulombic integral for s-type |
354 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
355 |
> |
// with cutoffGroups that have charged atoms longer than the |
356 |
> |
// cutoffRadius away from each other. |
357 |
> |
|
358 |
> |
RealType rval; |
359 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
360 |
> |
vector<RealType> rvals; |
361 |
> |
vector<RealType> J1vals; |
362 |
> |
vector<RealType> J2vals; |
363 |
> |
for (int i = 0; i < np_; i++) { |
364 |
> |
rval = RealType(i) * dr; |
365 |
> |
rvals.push_back(rval); |
366 |
> |
J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
367 |
> |
J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
368 |
> |
} |
369 |
> |
|
370 |
> |
CubicSpline* J1 = new CubicSpline(); |
371 |
> |
J1->addPoints(rvals, J1vals); |
372 |
> |
CubicSpline* J2 = new CubicSpline(); |
373 |
> |
J2->addPoints(rvals, J2vals); |
374 |
> |
|
375 |
> |
pair<AtomType*, AtomType*> key1, key2; |
376 |
> |
key1 = make_pair(atomType, atype2); |
377 |
> |
key2 = make_pair(atype2, atomType); |
378 |
> |
|
379 |
> |
Jij[key1] = J1; |
380 |
> |
Jij[key2] = J2; |
381 |
> |
} |
382 |
> |
} |
383 |
> |
|
384 |
|
return; |
385 |
|
} |
386 |
|
|
471 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
472 |
|
|
473 |
|
if (i_is_Charge) { |
474 |
< |
q_i = data1.charge; |
474 |
> |
q_i = data1.fixedCharge; |
475 |
|
if (idat.excluded) { |
476 |
|
*(idat.skippedCharge2) += q_i; |
477 |
|
} |
509 |
|
} |
510 |
|
|
511 |
|
if (j_is_Charge) { |
512 |
< |
q_j = data2.charge; |
512 |
> |
q_j = data2.fixedCharge; |
513 |
|
if (idat.excluded) { |
514 |
|
*(idat.skippedCharge1) += q_j; |
515 |
|
} |
1022 |
|
} |
1023 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1024 |
|
if (i_is_Charge) { |
1025 |
< |
chg1 = data.charge; |
1025 |
> |
chg1 = data.fixedCharge; |
1026 |
|
if (screeningMethod_ == DAMPED) { |
1027 |
|
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1028 |
|
} else { |