36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <stdio.h> |
47 |
|
#include "nonbonded/Electrostatic.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
< |
#include "types/DirectionalAtomType.hpp" |
50 |
> |
#include "types/FixedChargeAdapter.hpp" |
51 |
> |
#include "types/MultipoleAdapter.hpp" |
52 |
|
#include "io/Globals.hpp" |
53 |
|
|
54 |
|
namespace OpenMD { |
66 |
|
Globals* simParams_ = info_->getSimParams(); |
67 |
|
|
68 |
|
summationMap_["HARD"] = esm_HARD; |
69 |
+ |
summationMap_["NONE"] = esm_HARD; |
70 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
71 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
72 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
119 |
|
sprintf( painCave.errMsg, |
120 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
121 |
|
"\t(Input file specified %s .)\n" |
122 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
122 |
> |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
123 |
|
"\t\"shifted_potential\", \"shifted_force\", or \n" |
124 |
|
"\t\"reaction_field\".\n", myMethod.c_str() ); |
125 |
|
painCave.isFatal = 1; |
281 |
|
electrostaticAtomData.is_SplitDipole = false; |
282 |
|
electrostaticAtomData.is_Quadrupole = false; |
283 |
|
|
284 |
< |
if (atomType->isCharge()) { |
282 |
< |
GenericData* data = atomType->getPropertyByName("Charge"); |
284 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
285 |
|
|
286 |
< |
if (data == NULL) { |
285 |
< |
sprintf( painCave.errMsg, "Electrostatic::addType could not find " |
286 |
< |
"Charge\n" |
287 |
< |
"\tparameters for atomType %s.\n", |
288 |
< |
atomType->getName().c_str()); |
289 |
< |
painCave.severity = OPENMD_ERROR; |
290 |
< |
painCave.isFatal = 1; |
291 |
< |
simError(); |
292 |
< |
} |
293 |
< |
|
294 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
295 |
< |
if (doubleData == NULL) { |
296 |
< |
sprintf( painCave.errMsg, |
297 |
< |
"Electrostatic::addType could not convert GenericData to " |
298 |
< |
"Charge for\n" |
299 |
< |
"\tatom type %s\n", atomType->getName().c_str()); |
300 |
< |
painCave.severity = OPENMD_ERROR; |
301 |
< |
painCave.isFatal = 1; |
302 |
< |
simError(); |
303 |
< |
} |
286 |
> |
if (fca.isFixedCharge()) { |
287 |
|
electrostaticAtomData.is_Charge = true; |
288 |
< |
electrostaticAtomData.charge = doubleData->getData(); |
288 |
> |
electrostaticAtomData.charge = fca.getCharge(); |
289 |
|
} |
290 |
|
|
291 |
< |
if (atomType->isDirectional()) { |
292 |
< |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
293 |
< |
|
311 |
< |
if (daType->isDipole()) { |
312 |
< |
GenericData* data = daType->getPropertyByName("Dipole"); |
313 |
< |
|
314 |
< |
if (data == NULL) { |
315 |
< |
sprintf( painCave.errMsg, |
316 |
< |
"Electrostatic::addType could not find Dipole\n" |
317 |
< |
"\tparameters for atomType %s.\n", |
318 |
< |
daType->getName().c_str()); |
319 |
< |
painCave.severity = OPENMD_ERROR; |
320 |
< |
painCave.isFatal = 1; |
321 |
< |
simError(); |
322 |
< |
} |
323 |
< |
|
324 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
325 |
< |
if (doubleData == NULL) { |
326 |
< |
sprintf( painCave.errMsg, |
327 |
< |
"Electrostatic::addType could not convert GenericData to " |
328 |
< |
"Dipole Moment\n" |
329 |
< |
"\tfor atom type %s\n", daType->getName().c_str()); |
330 |
< |
painCave.severity = OPENMD_ERROR; |
331 |
< |
painCave.isFatal = 1; |
332 |
< |
simError(); |
333 |
< |
} |
291 |
> |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
292 |
> |
if (ma.isMultipole()) { |
293 |
> |
if (ma.isDipole()) { |
294 |
|
electrostaticAtomData.is_Dipole = true; |
295 |
< |
electrostaticAtomData.dipole_moment = doubleData->getData(); |
295 |
> |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
296 |
|
} |
297 |
< |
|
338 |
< |
if (daType->isSplitDipole()) { |
339 |
< |
GenericData* data = daType->getPropertyByName("SplitDipoleDistance"); |
340 |
< |
|
341 |
< |
if (data == NULL) { |
342 |
< |
sprintf(painCave.errMsg, |
343 |
< |
"Electrostatic::addType could not find SplitDipoleDistance\n" |
344 |
< |
"\tparameter for atomType %s.\n", |
345 |
< |
daType->getName().c_str()); |
346 |
< |
painCave.severity = OPENMD_ERROR; |
347 |
< |
painCave.isFatal = 1; |
348 |
< |
simError(); |
349 |
< |
} |
350 |
< |
|
351 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
352 |
< |
if (doubleData == NULL) { |
353 |
< |
sprintf( painCave.errMsg, |
354 |
< |
"Electrostatic::addType could not convert GenericData to " |
355 |
< |
"SplitDipoleDistance for\n" |
356 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
357 |
< |
painCave.severity = OPENMD_ERROR; |
358 |
< |
painCave.isFatal = 1; |
359 |
< |
simError(); |
360 |
< |
} |
297 |
> |
if (ma.isSplitDipole()) { |
298 |
|
electrostaticAtomData.is_SplitDipole = true; |
299 |
< |
electrostaticAtomData.split_dipole_distance = doubleData->getData(); |
299 |
> |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
300 |
|
} |
301 |
< |
|
365 |
< |
if (daType->isQuadrupole()) { |
366 |
< |
GenericData* data = daType->getPropertyByName("QuadrupoleMoments"); |
367 |
< |
|
368 |
< |
if (data == NULL) { |
369 |
< |
sprintf( painCave.errMsg, |
370 |
< |
"Electrostatic::addType could not find QuadrupoleMoments\n" |
371 |
< |
"\tparameter for atomType %s.\n", |
372 |
< |
daType->getName().c_str()); |
373 |
< |
painCave.severity = OPENMD_ERROR; |
374 |
< |
painCave.isFatal = 1; |
375 |
< |
simError(); |
376 |
< |
} |
377 |
< |
|
301 |
> |
if (ma.isQuadrupole()) { |
302 |
|
// Quadrupoles in OpenMD are set as the diagonal elements |
303 |
|
// of the diagonalized traceless quadrupole moment tensor. |
304 |
|
// The column vectors of the unitary matrix that diagonalizes |
305 |
|
// the quadrupole moment tensor become the eFrame (or the |
306 |
|
// electrostatic version of the body-fixed frame. |
383 |
– |
|
384 |
– |
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
385 |
– |
if (v3dData == NULL) { |
386 |
– |
sprintf( painCave.errMsg, |
387 |
– |
"Electrostatic::addType could not convert GenericData to " |
388 |
– |
"Quadrupole Moments for\n" |
389 |
– |
"\tatom type %s\n", daType->getName().c_str()); |
390 |
– |
painCave.severity = OPENMD_ERROR; |
391 |
– |
painCave.isFatal = 1; |
392 |
– |
simError(); |
393 |
– |
} |
307 |
|
electrostaticAtomData.is_Quadrupole = true; |
308 |
< |
electrostaticAtomData.quadrupole_moments = v3dData->getData(); |
308 |
> |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
309 |
|
} |
310 |
|
} |
311 |
|
|
399 |
– |
AtomTypeProperties atp = atomType->getATP(); |
312 |
|
|
313 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
314 |
< |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) ); |
314 |
> |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
315 |
> |
atomType) ); |
316 |
|
if (ret.second == false) { |
317 |
|
sprintf( painCave.errMsg, |
318 |
|
"Electrostatic already had a previous entry with ident %d\n", |
319 |
< |
atp.ident); |
319 |
> |
atomType->getIdent() ); |
320 |
|
painCave.severity = OPENMD_INFO; |
321 |
|
painCave.isFatal = 0; |
322 |
|
simError(); |
372 |
|
RealType c1, c2, c3, c4; |
373 |
|
RealType erfcVal(1.0), derfcVal(0.0); |
374 |
|
RealType BigR; |
375 |
+ |
RealType two(2.0), three(3.0); |
376 |
|
|
377 |
|
Vector3d Q_i, Q_j; |
378 |
|
Vector3d ux_i, uy_i, uz_i; |
497 |
|
if (j_is_Charge) { |
498 |
|
if (screeningMethod_ == DAMPED) { |
499 |
|
// assemble the damping variables |
500 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
501 |
< |
erfcVal = res.first; |
502 |
< |
derfcVal = res.second; |
500 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
501 |
> |
//erfcVal = res.first; |
502 |
> |
//derfcVal = res.second; |
503 |
> |
|
504 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
505 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
506 |
> |
|
507 |
|
c1 = erfcVal * riji; |
508 |
|
c2 = (-derfcVal + c1) * riji; |
509 |
|
} else { |
533 |
|
if (idat.excluded) { |
534 |
|
indirect_vpair += preVal * rfVal; |
535 |
|
indirect_Pot += *(idat.sw) * preVal * rfVal; |
536 |
< |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
536 |
> |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
537 |
|
} |
538 |
|
|
539 |
|
} else { |
561 |
|
vpair += vterm; |
562 |
|
epot += *(idat.sw) * vterm; |
563 |
|
|
564 |
< |
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
564 |
> |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
565 |
|
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
566 |
|
|
567 |
|
// Even if we excluded this pair from direct interactions, |
590 |
|
|
591 |
|
if (screeningMethod_ == DAMPED) { |
592 |
|
// assemble the damping variables |
593 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
594 |
< |
erfcVal = res.first; |
595 |
< |
derfcVal = res.second; |
593 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
594 |
> |
//erfcVal = res.first; |
595 |
> |
//derfcVal = res.second; |
596 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
597 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
598 |
|
c1 = erfcVal * ri; |
599 |
|
c2 = (-derfcVal + c1) * ri; |
600 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
629 |
|
|
630 |
|
if (screeningMethod_ == DAMPED) { |
631 |
|
// assemble the damping variables |
632 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
633 |
< |
erfcVal = res.first; |
634 |
< |
derfcVal = res.second; |
632 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
633 |
> |
//erfcVal = res.first; |
634 |
> |
//derfcVal = res.second; |
635 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
636 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
637 |
|
c1 = erfcVal * riji; |
638 |
|
c2 = (-derfcVal + c1) * riji; |
639 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
650 |
|
c2ri = c2 * riji; |
651 |
|
c3ri = c3 * riji; |
652 |
|
c4rij = c4 * *(idat.rij) ; |
653 |
< |
rhatdot2 = 2.0 * rhat * c3; |
653 |
> |
rhatdot2 = two * rhat * c3; |
654 |
|
rhatc4 = rhat * c4rij; |
655 |
|
|
656 |
|
// calculate the potential |
663 |
|
|
664 |
|
// calculate derivatives for the forces and torques |
665 |
|
|
666 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) + |
667 |
< |
qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) + |
668 |
< |
qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri)); |
666 |
> |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
667 |
> |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
668 |
> |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
669 |
|
|
670 |
|
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
671 |
|
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
689 |
|
vpair += vterm; |
690 |
|
epot += *(idat.sw) * vterm; |
691 |
|
|
692 |
< |
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
692 |
> |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
693 |
|
|
694 |
|
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
695 |
|
|
720 |
|
|
721 |
|
if (screeningMethod_ == DAMPED) { |
722 |
|
// assemble the damping variables |
723 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
724 |
< |
erfcVal = res.first; |
725 |
< |
derfcVal = res.second; |
723 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
724 |
> |
//erfcVal = res.first; |
725 |
> |
//derfcVal = res.second; |
726 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
727 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
728 |
|
c1 = erfcVal * ri; |
729 |
|
c2 = (-derfcVal + c1) * ri; |
730 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
767 |
|
|
768 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
769 |
|
|
770 |
< |
dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
770 |
> |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
771 |
|
|
772 |
< |
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
773 |
< |
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
772 |
> |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
773 |
> |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
774 |
|
|
775 |
|
if (idat.excluded) { |
776 |
|
indirect_vpair += - pref * preRF2_ * ct_ij; |
801 |
|
} |
802 |
|
if (screeningMethod_ == DAMPED) { |
803 |
|
// assemble damping variables |
804 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
805 |
< |
erfcVal = res.first; |
806 |
< |
derfcVal = res.second; |
804 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
805 |
> |
//erfcVal = res.first; |
806 |
> |
//derfcVal = res.second; |
807 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
808 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
809 |
|
c1 = erfcVal * ri; |
810 |
|
c2 = (-derfcVal + c1) * ri; |
811 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
854 |
|
|
855 |
|
if (screeningMethod_ == DAMPED) { |
856 |
|
// assemble the damping variables |
857 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
858 |
< |
erfcVal = res.first; |
859 |
< |
derfcVal = res.second; |
857 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
858 |
> |
//erfcVal = res.first; |
859 |
> |
//derfcVal = res.second; |
860 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
861 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
862 |
|
c1 = erfcVal * riji; |
863 |
|
c2 = (-derfcVal + c1) * riji; |
864 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
875 |
|
c2ri = c2 * riji; |
876 |
|
c3ri = c3 * riji; |
877 |
|
c4rij = c4 * *(idat.rij) ; |
878 |
< |
rhatdot2 = 2.0 * rhat * c3; |
878 |
> |
rhatdot2 = two * rhat * c3; |
879 |
|
rhatc4 = rhat * c4rij; |
880 |
|
|
881 |
|
// calculate the potential |
889 |
|
|
890 |
|
// calculate the derivatives for the forces and torques |
891 |
|
|
892 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) + |
893 |
< |
qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) + |
894 |
< |
qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri)); |
892 |
> |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
893 |
> |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
894 |
> |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
895 |
|
|
896 |
|
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
897 |
|
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
923 |
|
|
924 |
|
// only accumulate the forces and torques resulting from the |
925 |
|
// indirect reaction field terms. |
926 |
+ |
|
927 |
|
*(idat.vpair) += indirect_vpair; |
928 |
|
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
929 |
|
*(idat.f1) += indirect_dVdr; |