34 |
|
* work. Good starting points are: |
35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
< |
forceField_(NULL), info_(NULL) {} |
55 |
> |
forceField_(NULL), info_(NULL), |
56 |
> |
haveCutoffRadius_(false), |
57 |
> |
haveDampingAlpha_(false), |
58 |
> |
haveDielectric_(false), |
59 |
> |
haveElectroSpline_(false) |
60 |
> |
{} |
61 |
|
|
62 |
|
void Electrostatic::initialize() { |
63 |
< |
|
63 |
> |
|
64 |
|
Globals* simParams_ = info_->getSimParams(); |
65 |
|
|
66 |
|
summationMap_["HARD"] = esm_HARD; |
102 |
|
screeningMethod_ = UNDAMPED; |
103 |
|
dielectric_ = 1.0; |
104 |
|
one_third_ = 1.0 / 3.0; |
100 |
– |
haveCutoffRadius_ = false; |
101 |
– |
haveDampingAlpha_ = false; |
102 |
– |
haveDielectric_ = false; |
103 |
– |
haveElectroSpline_ = false; |
105 |
|
|
106 |
|
// check the summation method: |
107 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
446 |
|
RealType ct_i, ct_j, ct_ij, a1; |
447 |
|
RealType riji, ri, ri2, ri3, ri4; |
448 |
|
RealType pref, vterm, epot, dudr; |
449 |
+ |
RealType vpair(0.0); |
450 |
|
RealType scale, sc2; |
451 |
|
RealType pot_term, preVal, rfVal; |
452 |
|
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
453 |
|
RealType preSw, preSwSc; |
454 |
|
RealType c1, c2, c3, c4; |
455 |
< |
RealType erfcVal, derfcVal; |
455 |
> |
RealType erfcVal(1.0), derfcVal(0.0); |
456 |
|
RealType BigR; |
457 |
|
|
458 |
|
Vector3d Q_i, Q_j; |
462 |
|
Vector3d dudux_j, duduy_j, duduz_j; |
463 |
|
Vector3d rhatdot2, rhatc4; |
464 |
|
Vector3d dVdr; |
465 |
+ |
|
466 |
+ |
// variables for indirect (reaction field) interactions for excluded pairs: |
467 |
+ |
RealType indirect_Pot(0.0); |
468 |
+ |
RealType indirect_vpair(0.0); |
469 |
+ |
Vector3d indirect_dVdr(V3Zero); |
470 |
+ |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
471 |
|
|
472 |
|
pair<RealType, RealType> res; |
473 |
|
|
493 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
494 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
495 |
|
|
496 |
< |
if (i_is_Charge) |
496 |
> |
if (i_is_Charge) { |
497 |
|
q_i = data1.charge; |
498 |
+ |
if (idat.excluded) { |
499 |
+ |
*(idat.skippedCharge2) += q_i; |
500 |
+ |
} |
501 |
+ |
} |
502 |
|
|
503 |
|
if (i_is_Dipole) { |
504 |
|
mu_i = data1.dipole_moment; |
531 |
|
duduz_i = V3Zero; |
532 |
|
} |
533 |
|
|
534 |
< |
if (j_is_Charge) |
534 |
> |
if (j_is_Charge) { |
535 |
|
q_j = data2.charge; |
536 |
+ |
if (idat.excluded) { |
537 |
+ |
*(idat.skippedCharge1) += q_j; |
538 |
+ |
} |
539 |
+ |
} |
540 |
|
|
541 |
+ |
|
542 |
|
if (j_is_Dipole) { |
543 |
|
mu_j = data2.dipole_moment; |
544 |
|
uz_j = idat.eFrame2->getColumn(2); |
599 |
|
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
600 |
|
|
601 |
|
} else if (summationMethod_ == esm_REACTION_FIELD) { |
602 |
< |
rfVal = *(idat.electroMult) * preRF_ * *(idat.rij) * *(idat.rij) ; |
602 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
603 |
> |
|
604 |
|
vterm = preVal * ( riji + rfVal ); |
605 |
|
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
606 |
+ |
|
607 |
+ |
// if this is an excluded pair, there are still indirect |
608 |
+ |
// interactions via the reaction field we must worry about: |
609 |
|
|
610 |
+ |
if (idat.excluded) { |
611 |
+ |
indirect_vpair += preVal * rfVal; |
612 |
+ |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
613 |
+ |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
614 |
+ |
} |
615 |
+ |
|
616 |
|
} else { |
590 |
– |
vterm = preVal * riji * erfcVal; |
617 |
|
|
618 |
+ |
vterm = preVal * riji * erfcVal; |
619 |
|
dudr = - *(idat.sw) * preVal * c2; |
620 |
|
|
621 |
|
} |
595 |
– |
|
596 |
– |
*(idat.vpair) += vterm; |
597 |
– |
epot += *(idat.sw) * vterm; |
622 |
|
|
623 |
< |
dVdr += dudr * rhat; |
623 |
> |
vpair += vterm; |
624 |
> |
epot += *(idat.sw) * vterm; |
625 |
> |
dVdr += dudr * rhat; |
626 |
|
} |
627 |
|
|
628 |
|
if (j_is_Dipole) { |
635 |
|
ri3 = ri2 * riji; |
636 |
|
|
637 |
|
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
638 |
< |
*(idat.vpair) += vterm; |
638 |
> |
vpair += vterm; |
639 |
|
epot += *(idat.sw) * vterm; |
640 |
|
|
641 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
642 |
|
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
643 |
|
|
644 |
+ |
// Even if we excluded this pair from direct interactions, |
645 |
+ |
// we still have the reaction-field-mediated charge-dipole |
646 |
+ |
// interaction: |
647 |
+ |
|
648 |
+ |
if (idat.excluded) { |
649 |
+ |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
650 |
+ |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
651 |
+ |
indirect_dVdr += preSw * preRF2_ * uz_j; |
652 |
+ |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
653 |
+ |
} |
654 |
+ |
|
655 |
|
} else { |
656 |
|
// determine the inverse r used if we have split dipoles |
657 |
|
if (j_is_SplitDipole) { |
684 |
|
// calculate the potential |
685 |
|
pot_term = scale * c2; |
686 |
|
vterm = -pref * ct_j * pot_term; |
687 |
< |
*(idat.vpair) += vterm; |
687 |
> |
vpair += vterm; |
688 |
|
epot += *(idat.sw) * vterm; |
689 |
|
|
690 |
|
// calculate derivatives for forces and torques |
731 |
|
qyy_j * (cy2*c3 - c2ri) + |
732 |
|
qzz_j * (cz2*c3 - c2ri) ); |
733 |
|
vterm = pref * pot_term; |
734 |
< |
*(idat.vpair) += vterm; |
734 |
> |
vpair += vterm; |
735 |
|
epot += *(idat.sw) * vterm; |
736 |
|
|
737 |
|
// calculate derivatives for the forces and torques |
759 |
|
ri3 = ri2 * riji; |
760 |
|
|
761 |
|
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
762 |
< |
*(idat.vpair) += vterm; |
762 |
> |
vpair += vterm; |
763 |
|
epot += *(idat.sw) * vterm; |
764 |
|
|
765 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
766 |
|
|
767 |
|
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
768 |
+ |
|
769 |
+ |
// Even if we excluded this pair from direct interactions, |
770 |
+ |
// we still have the reaction-field-mediated charge-dipole |
771 |
+ |
// interaction: |
772 |
+ |
|
773 |
+ |
if (idat.excluded) { |
774 |
+ |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
775 |
+ |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
776 |
+ |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
777 |
+ |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
778 |
+ |
} |
779 |
|
|
780 |
|
} else { |
781 |
|
|
810 |
|
// calculate the potential |
811 |
|
pot_term = c2 * scale; |
812 |
|
vterm = pref * ct_i * pot_term; |
813 |
< |
*(idat.vpair) += vterm; |
813 |
> |
vpair += vterm; |
814 |
|
epot += *(idat.sw) * vterm; |
815 |
|
|
816 |
|
// calculate derivatives for the forces and torques |
833 |
|
|
834 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
835 |
|
preRF2_ * ct_ij ); |
836 |
< |
*(idat.vpair) += vterm; |
836 |
> |
vpair += vterm; |
837 |
|
epot += *(idat.sw) * vterm; |
838 |
|
|
839 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
843 |
|
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
844 |
|
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
845 |
|
|
846 |
+ |
if (idat.excluded) { |
847 |
+ |
indirect_vpair += - pref * preRF2_ * ct_ij; |
848 |
+ |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
849 |
+ |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
850 |
+ |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
851 |
+ |
} |
852 |
+ |
|
853 |
|
} else { |
854 |
|
|
855 |
|
if (i_is_SplitDipole) { |
899 |
|
// calculate the potential |
900 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
901 |
|
vterm = pref * pot_term; |
902 |
< |
*(idat.vpair) += vterm; |
902 |
> |
vpair += vterm; |
903 |
|
epot += *(idat.sw) * vterm; |
904 |
|
|
905 |
|
// calculate derivatives for the forces and torques |
951 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
952 |
|
|
953 |
|
vterm = pref * pot_term; |
954 |
< |
*(idat.vpair) += vterm; |
954 |
> |
vpair += vterm; |
955 |
|
epot += *(idat.sw) * vterm; |
956 |
|
|
957 |
|
// calculate the derivatives for the forces and torques |
966 |
|
} |
967 |
|
} |
968 |
|
|
914 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
915 |
– |
*(idat.f1) += dVdr; |
969 |
|
|
970 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
971 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
972 |
< |
if (i_is_Quadrupole) { |
973 |
< |
*(idat.t1) -= cross(ux_i, dudux_i); |
974 |
< |
*(idat.t1) -= cross(uy_i, duduy_i); |
975 |
< |
} |
976 |
< |
|
977 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
978 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
979 |
< |
if (j_is_Quadrupole) { |
980 |
< |
*(idat.t2) -= cross(uz_j, dudux_j); |
981 |
< |
*(idat.t2) -= cross(uz_j, duduy_j); |
970 |
> |
if (!idat.excluded) { |
971 |
> |
*(idat.vpair) += vpair; |
972 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
973 |
> |
*(idat.f1) += dVdr; |
974 |
> |
|
975 |
> |
if (i_is_Dipole || i_is_Quadrupole) |
976 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
977 |
> |
if (i_is_Quadrupole) { |
978 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
979 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
980 |
> |
} |
981 |
> |
|
982 |
> |
if (j_is_Dipole || j_is_Quadrupole) |
983 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
984 |
> |
if (j_is_Quadrupole) { |
985 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
986 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
987 |
> |
} |
988 |
> |
|
989 |
> |
} else { |
990 |
> |
|
991 |
> |
// only accumulate the forces and torques resulting from the |
992 |
> |
// indirect reaction field terms. |
993 |
> |
*(idat.vpair) += indirect_vpair; |
994 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
995 |
> |
*(idat.f1) += indirect_dVdr; |
996 |
> |
|
997 |
> |
if (i_is_Dipole) |
998 |
> |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
999 |
> |
if (j_is_Dipole) |
1000 |
> |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1001 |
|
} |
1002 |
|
|
1003 |
+ |
|
1004 |
|
return; |
1005 |
|
} |
1006 |
|
|
1020 |
|
bool j_is_Dipole = data2.is_Dipole; |
1021 |
|
|
1022 |
|
RealType q_i, q_j; |
950 |
– |
|
951 |
– |
// The skippedCharge computation is needed by the real-space cutoff methods |
952 |
– |
// (i.e. shifted force and shifted potential) |
1023 |
|
|
1024 |
+ |
// The skippedCharge computation is needed by the real-space |
1025 |
+ |
// cutoff methods (i.e. shifted force and shifted potential) |
1026 |
+ |
|
1027 |
|
if (i_is_Charge) { |
1028 |
|
q_i = data1.charge; |
1029 |
|
*(idat.skippedCharge2) += q_i; |
1030 |
|
} |
1031 |
< |
|
1031 |
> |
|
1032 |
|
if (j_is_Charge) { |
1033 |
|
q_j = data2.charge; |
1034 |
|
*(idat.skippedCharge1) += q_j; |
1109 |
|
RealType mu1, preVal, chg1, self; |
1110 |
|
|
1111 |
|
if (!initialized_) initialize(); |
1112 |
< |
|
1112 |
> |
|
1113 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1114 |
|
|
1115 |
|
// logicals |
1043 |
– |
|
1116 |
|
bool i_is_Charge = data.is_Charge; |
1117 |
|
bool i_is_Dipole = data.is_Dipole; |
1118 |
|
|
1120 |
|
if (i_is_Dipole) { |
1121 |
|
mu1 = data.dipole_moment; |
1122 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1123 |
< |
sdat.pot[2] -= 0.5 * preVal; |
1123 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1124 |
|
|
1125 |
|
// The self-correction term adds into the reaction field vector |
1126 |
|
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1137 |
|
} else { |
1138 |
|
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1139 |
|
} |
1140 |
< |
sdat.pot[ELECTROSTATIC_FAMILY] += self; |
1140 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1141 |
|
} |
1142 |
|
} |
1143 |
|
} |