ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1505 by gezelter, Sun Oct 3 22:18:59 2010 UTC vs.
Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53 > #include "io/Globals.hpp"
54 > #include "nonbonded/SlaterIntegrals.hpp"
55 > #include "utils/PhysicalConstants.hpp"
56  
57  
58   namespace OpenMD {
59    
60    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 <                                  forceField_(NULL) {}
61 >                                  forceField_(NULL), info_(NULL),
62 >                                  haveCutoffRadius_(false),
63 >                                  haveDampingAlpha_(false),
64 >                                  haveDielectric_(false),
65 >                                  haveElectroSpline_(false)
66 >  {}
67    
68    void Electrostatic::initialize() {
69 +    
70 +    Globals* simParams_ = info_->getSimParams();
71 +
72 +    summationMap_["HARD"]               = esm_HARD;
73 +    summationMap_["NONE"]               = esm_HARD;
74 +    summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75 +    summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
76 +    summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
77 +    summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
78 +    summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
79 +    summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
80 +    summationMap_["EWALD_SPME"]         = esm_EWALD_SPME;        
81 +    screeningMap_["DAMPED"]             = DAMPED;
82 +    screeningMap_["UNDAMPED"]           = UNDAMPED;
83 +
84      // these prefactors convert the multipole interactions into kcal / mol
85      // all were computed assuming distances are measured in angstroms
86      // Charge-Charge, assuming charges are measured in electrons
# Line 79 | Line 105 | namespace OpenMD {
105      
106      // variables to handle different summation methods for long-range
107      // electrostatics:
108 <    summationMethod_ = NONE;    
108 >    summationMethod_ = esm_HARD;    
109      screeningMethod_ = UNDAMPED;
110      dielectric_ = 1.0;
111      one_third_ = 1.0 / 3.0;
86    haveDefaultCutoff_ = false;
87    haveDampingAlpha_ = false;
88    haveDielectric_ = false;  
89    haveElectroSpline_ = false;
112    
113 +    // check the summation method:
114 +    if (simParams_->haveElectrostaticSummationMethod()) {
115 +      string myMethod = simParams_->getElectrostaticSummationMethod();
116 +      toUpper(myMethod);
117 +      map<string, ElectrostaticSummationMethod>::iterator i;
118 +      i = summationMap_.find(myMethod);
119 +      if ( i != summationMap_.end() ) {
120 +        summationMethod_ = (*i).second;
121 +      } else {
122 +        // throw error
123 +        sprintf( painCave.errMsg,
124 +                 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 +                 "\t(Input file specified %s .)\n"
126 +                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 +                 "\t\"shifted_potential\", \"shifted_force\", or \n"
128 +                 "\t\"reaction_field\".\n", myMethod.c_str() );
129 +        painCave.isFatal = 1;
130 +        simError();
131 +      }
132 +    } else {
133 +      // set ElectrostaticSummationMethod to the cutoffMethod:
134 +      if (simParams_->haveCutoffMethod()){
135 +        string myMethod = simParams_->getCutoffMethod();
136 +        toUpper(myMethod);
137 +        map<string, ElectrostaticSummationMethod>::iterator i;
138 +        i = summationMap_.find(myMethod);
139 +        if ( i != summationMap_.end() ) {
140 +          summationMethod_ = (*i).second;
141 +        }
142 +      }
143 +    }
144 +    
145 +    if (summationMethod_ == esm_REACTION_FIELD) {        
146 +      if (!simParams_->haveDielectric()) {
147 +        // throw warning
148 +        sprintf( painCave.errMsg,
149 +                 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150 +                 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151 +        painCave.isFatal = 0;
152 +        painCave.severity = OPENMD_INFO;
153 +        simError();
154 +      } else {
155 +        dielectric_ = simParams_->getDielectric();      
156 +      }
157 +      haveDielectric_ = true;
158 +    }
159 +    
160 +    if (simParams_->haveElectrostaticScreeningMethod()) {
161 +      string myScreen = simParams_->getElectrostaticScreeningMethod();
162 +      toUpper(myScreen);
163 +      map<string, ElectrostaticScreeningMethod>::iterator i;
164 +      i = screeningMap_.find(myScreen);
165 +      if ( i != screeningMap_.end()) {
166 +        screeningMethod_ = (*i).second;
167 +      } else {
168 +        sprintf( painCave.errMsg,
169 +                 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170 +                 "\t(Input file specified %s .)\n"
171 +                 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172 +                 "or \"damped\".\n", myScreen.c_str() );
173 +        painCave.isFatal = 1;
174 +        simError();
175 +      }
176 +    }
177 +
178 +    // check to make sure a cutoff value has been set:
179 +    if (!haveCutoffRadius_) {
180 +      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181 +               "Cutoff value!\n");
182 +      painCave.severity = OPENMD_ERROR;
183 +      painCave.isFatal = 1;
184 +      simError();
185 +    }
186 +          
187 +    if (screeningMethod_ == DAMPED) {      
188 +      if (!simParams_->haveDampingAlpha()) {
189 +        // first set a cutoff dependent alpha value
190 +        // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191 +        dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192 +        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193 +        
194 +        // throw warning
195 +        sprintf( painCave.errMsg,
196 +                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
197 +                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
198 +                 "\tcutoff of %f (ang).\n",
199 +                 dampingAlpha_, cutoffRadius_);
200 +        painCave.severity = OPENMD_INFO;
201 +        painCave.isFatal = 0;
202 +        simError();
203 +      } else {
204 +        dampingAlpha_ = simParams_->getDampingAlpha();
205 +      }
206 +      haveDampingAlpha_ = true;
207 +    }
208 +
209      // find all of the Electrostatic atom Types:
210      ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
211      ForceField::AtomTypeContainer::MapTypeIterator i;
212      AtomType* at;
213 <
213 >    
214      for (at = atomTypes->beginType(i); at != NULL;
215           at = atomTypes->nextType(i)) {
216        
# Line 100 | Line 218 | namespace OpenMD {
218          addType(at);
219      }
220      
221 <    // check to make sure a cutoff value has been set:
222 <    if (!haveDefaultCutoff_) {
105 <      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
106 <               "Cutoff value!\n");
107 <      painCave.severity = OPENMD_ERROR;
108 <      painCave.isFatal = 1;
109 <      simError();
110 <    }
111 <
112 <    defaultCutoff2_ = defaultCutoff_ * defaultCutoff_;
113 <    rcuti_ = 1.0 / defaultCutoff_;
221 >    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222 >    rcuti_ = 1.0 / cutoffRadius_;
223      rcuti2_ = rcuti_ * rcuti_;
224      rcuti3_ = rcuti2_ * rcuti_;
225      rcuti4_ = rcuti2_ * rcuti2_;
226  
227      if (screeningMethod_ == DAMPED) {
228 <      if (!haveDampingAlpha_) {
120 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no "
121 <                 "DampingAlpha value!\n");
122 <        painCave.severity = OPENMD_ERROR;
123 <        painCave.isFatal = 1;
124 <        simError();
125 <      }
126 <
228 >      
229        alpha2_ = dampingAlpha_ * dampingAlpha_;
230        alpha4_ = alpha2_ * alpha2_;
231        alpha6_ = alpha4_ * alpha2_;
232        alpha8_ = alpha4_ * alpha4_;
233        
234 <      constEXP_ = exp(-alpha2_ * defaultCutoff2_);
234 >      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235        invRootPi_ = 0.56418958354775628695;
236        alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237  
238 <      c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_;
238 >      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239        c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240        c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241        c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
# Line 148 | Line 250 | namespace OpenMD {
250        c6c_ = 9.0 * c5c_ * rcuti2_;
251      }
252    
253 <    if (summationMethod_ == REACTION_FIELD) {
254 <      if (haveDielectric_) {
255 <        preRF_ = (dielectric_ - 1.0) /
256 <            ((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_);
155 <        preRF2_ = 2.0 * preRF_;
156 <      } else {
157 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric"
158 <                 " value!\n");
159 <        painCave.severity = OPENMD_ERROR;
160 <        painCave.isFatal = 1;
161 <        simError();
162 <      }
253 >    if (summationMethod_ == esm_REACTION_FIELD) {
254 >      preRF_ = (dielectric_ - 1.0) /
255 >        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 >      preRF2_ = 2.0 * preRF_;
257      }
258 <                              
259 <    RealType dx = defaultCutoff_ / RealType(np_ - 1);
258 >    
259 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
260 >    // have charged atoms longer than the cutoffRadius away from each
261 >    // other.  Splining may not be the best choice here.  Direct calls
262 >    // to erfc might be preferrable.
263 >
264 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265      RealType rval;
266      vector<RealType> rvals;
267      vector<RealType> yvals;
# Line 185 | Line 284 | namespace OpenMD {
284      electrostaticAtomData.is_Dipole = false;
285      electrostaticAtomData.is_SplitDipole = false;
286      electrostaticAtomData.is_Quadrupole = false;
287 +    electrostaticAtomData.is_Fluctuating = false;
288  
289 <    if (atomType->isCharge()) {
190 <      GenericData* data = atomType->getPropertyByName("Charge");
289 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
290  
291 <      if (data == NULL) {
193 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
194 <                 "Charge\n"
195 <                 "\tparameters for atomType %s.\n",
196 <                 atomType->getName().c_str());
197 <        painCave.severity = OPENMD_ERROR;
198 <        painCave.isFatal = 1;
199 <        simError();                  
200 <      }
201 <      
202 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
203 <      if (doubleData == NULL) {
204 <        sprintf( painCave.errMsg,
205 <                 "Electrostatic::addType could not convert GenericData to "
206 <                 "Charge for\n"
207 <                 "\tatom type %s\n", atomType->getName().c_str());
208 <        painCave.severity = OPENMD_ERROR;
209 <        painCave.isFatal = 1;
210 <        simError();          
211 <      }
291 >    if (fca.isFixedCharge()) {
292        electrostaticAtomData.is_Charge = true;
293 <      electrostaticAtomData.charge = doubleData->getData();          
293 >      electrostaticAtomData.fixedCharge = fca.getCharge();
294      }
295  
296 <    if (atomType->isDirectional()) {
297 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
298 <      
219 <      if (daType->isDipole()) {
220 <        GenericData* data = daType->getPropertyByName("Dipole");
221 <        
222 <        if (data == NULL) {
223 <          sprintf( painCave.errMsg,
224 <                   "Electrostatic::addType could not find Dipole\n"
225 <                   "\tparameters for atomType %s.\n",
226 <                   daType->getName().c_str());
227 <          painCave.severity = OPENMD_ERROR;
228 <          painCave.isFatal = 1;
229 <          simError();                  
230 <        }
231 <      
232 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
233 <        if (doubleData == NULL) {
234 <          sprintf( painCave.errMsg,
235 <                   "Electrostatic::addType could not convert GenericData to "
236 <                   "Dipole Moment\n"
237 <                   "\tfor atom type %s\n", daType->getName().c_str());
238 <          painCave.severity = OPENMD_ERROR;
239 <          painCave.isFatal = 1;
240 <          simError();          
241 <        }
296 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
297 >    if (ma.isMultipole()) {
298 >      if (ma.isDipole()) {
299          electrostaticAtomData.is_Dipole = true;
300 <        electrostaticAtomData.dipole_moment = doubleData->getData();
300 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
301        }
302 <
246 <      if (daType->isSplitDipole()) {
247 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
248 <        
249 <        if (data == NULL) {
250 <          sprintf(painCave.errMsg,
251 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
252 <                  "\tparameter for atomType %s.\n",
253 <                  daType->getName().c_str());
254 <          painCave.severity = OPENMD_ERROR;
255 <          painCave.isFatal = 1;
256 <          simError();                  
257 <        }
258 <      
259 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
260 <        if (doubleData == NULL) {
261 <          sprintf( painCave.errMsg,
262 <                   "Electrostatic::addType could not convert GenericData to "
263 <                   "SplitDipoleDistance for\n"
264 <                   "\tatom type %s\n", daType->getName().c_str());
265 <          painCave.severity = OPENMD_ERROR;
266 <          painCave.isFatal = 1;
267 <          simError();          
268 <        }
302 >      if (ma.isSplitDipole()) {
303          electrostaticAtomData.is_SplitDipole = true;
304 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
304 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305        }
306 <
273 <      if (daType->isQuadrupole()) {
274 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
275 <        
276 <        if (data == NULL) {
277 <          sprintf( painCave.errMsg,
278 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
279 <                   "\tparameter for atomType %s.\n",
280 <                   daType->getName().c_str());
281 <          painCave.severity = OPENMD_ERROR;
282 <          painCave.isFatal = 1;
283 <          simError();                  
284 <        }
285 <        
306 >      if (ma.isQuadrupole()) {
307          // Quadrupoles in OpenMD are set as the diagonal elements
308          // of the diagonalized traceless quadrupole moment tensor.
309          // The column vectors of the unitary matrix that diagonalizes
310          // the quadrupole moment tensor become the eFrame (or the
311          // electrostatic version of the body-fixed frame.
291
292        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
293        if (v3dData == NULL) {
294          sprintf( painCave.errMsg,
295                   "Electrostatic::addType could not convert GenericData to "
296                   "Quadrupole Moments for\n"
297                   "\tatom type %s\n", daType->getName().c_str());
298          painCave.severity = OPENMD_ERROR;
299          painCave.isFatal = 1;
300          simError();          
301        }
312          electrostaticAtomData.is_Quadrupole = true;
313 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
313 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
314        }
315      }
316      
317 <    AtomTypeProperties atp = atomType->getATP();    
317 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
318  
319 +    if (fqa.isFluctuatingCharge()) {
320 +      electrostaticAtomData.is_Fluctuating = true;
321 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
322 +      electrostaticAtomData.hardness = fqa.getHardness();
323 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
324 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
325 +    }
326 +
327      pair<map<int,AtomType*>::iterator,bool> ret;    
328 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
328 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
329 >                                                        atomType) );
330      if (ret.second == false) {
331        sprintf( painCave.errMsg,
332                 "Electrostatic already had a previous entry with ident %d\n",
333 <               atp.ident);
333 >               atomType->getIdent() );
334        painCave.severity = OPENMD_INFO;
335        painCave.isFatal = 0;
336        simError();        
337      }
338      
339 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
339 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
340 >
341 >    // Now, iterate over all known types and add to the mixing map:
342 >    
343 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
344 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
345 >      AtomType* atype2 = (*it).first;
346 >      ElectrostaticAtomData eaData2 = (*it).second;
347 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
348 >        
349 >        RealType a = electrostaticAtomData.slaterZeta;
350 >        RealType b = eaData2.slaterZeta;
351 >        int m = electrostaticAtomData.slaterN;
352 >        int n = eaData2.slaterN;
353 >
354 >        // Create the spline of the coulombic integral for s-type
355 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
356 >        // with cutoffGroups that have charged atoms longer than the
357 >        // cutoffRadius away from each other.
358 >
359 >        RealType rval;
360 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
361 >        vector<RealType> rvals;
362 >        vector<RealType> J1vals;
363 >        vector<RealType> J2vals;
364 >        for (int i = 0; i < np_; i++) {
365 >          rval = RealType(i) * dr;
366 >          rvals.push_back(rval);
367 >          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
368 >          // may not be necessary if Slater coulomb integral is symmetric
369 >          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
370 >        }
371 >
372 >        CubicSpline* J1 = new CubicSpline();
373 >        J1->addPoints(rvals, J1vals);
374 >        CubicSpline* J2 = new CubicSpline();
375 >        J2->addPoints(rvals, J2vals);
376 >        
377 >        pair<AtomType*, AtomType*> key1, key2;
378 >        key1 = make_pair(atomType, atype2);
379 >        key2 = make_pair(atype2, atomType);
380 >        
381 >        Jij[key1] = J1;
382 >        Jij[key2] = J2;
383 >      }
384 >    }
385 >
386      return;
387    }
388    
389 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
390 <                                                    RealType theRSW ) {
391 <    defaultCutoff_ = theECR;
392 <    rrf_ = defaultCutoff_;
328 <    rt_ = theRSW;
329 <    haveDefaultCutoff_ = true;
389 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
390 >    cutoffRadius_ = rCut;
391 >    rrf_ = cutoffRadius_;
392 >    haveCutoffRadius_ = true;
393    }
394 +
395 +  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396 +    rt_ = rSwitch;
397 +  }
398    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
399      summationMethod_ = esm;
400    }
# Line 343 | Line 410 | namespace OpenMD {
410      haveDielectric_ = true;
411    }
412  
413 <  void Electrostatic::calcForce(InteractionData idat) {
413 >  void Electrostatic::calcForce(InteractionData &idat) {
414  
415      // utility variables.  Should clean these up and use the Vector3d and
416      // Mat3x3d to replace as many as we can in future versions:
# Line 357 | Line 424 | namespace OpenMD {
424      RealType ct_i, ct_j, ct_ij, a1;
425      RealType riji, ri, ri2, ri3, ri4;
426      RealType pref, vterm, epot, dudr;
427 +    RealType vpair(0.0);
428      RealType scale, sc2;
429      RealType pot_term, preVal, rfVal;
430      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
431      RealType preSw, preSwSc;
432      RealType c1, c2, c3, c4;
433 <    RealType erfcVal, derfcVal;
433 >    RealType erfcVal(1.0), derfcVal(0.0);
434      RealType BigR;
435 +    RealType two(2.0), three(3.0);
436  
437      Vector3d Q_i, Q_j;
438      Vector3d ux_i, uy_i, uz_i;
# Line 373 | Line 442 | namespace OpenMD {
442      Vector3d rhatdot2, rhatc4;
443      Vector3d dVdr;
444  
445 +    // variables for indirect (reaction field) interactions for excluded pairs:
446 +    RealType indirect_Pot(0.0);
447 +    RealType indirect_vpair(0.0);
448 +    Vector3d indirect_dVdr(V3Zero);
449 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
450 +
451 +    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452      pair<RealType, RealType> res;
453      
454 +    // splines for coulomb integrals
455 +    CubicSpline* J1;
456 +    CubicSpline* J2;
457 +    
458      if (!initialized_) initialize();
459      
460 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
461 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
460 >    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461 >    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462      
463      // some variables we'll need independent of electrostatic type:
464  
465 <    riji = 1.0 / idat.rij;
466 <    Vector3d rhat = idat.d  * riji;
465 >    riji = 1.0 /  *(idat.rij) ;
466 >    Vector3d rhat =  *(idat.d)   * riji;
467  
468      // logicals
469  
# Line 391 | Line 471 | namespace OpenMD {
471      bool i_is_Dipole = data1.is_Dipole;
472      bool i_is_SplitDipole = data1.is_SplitDipole;
473      bool i_is_Quadrupole = data1.is_Quadrupole;
474 +    bool i_is_Fluctuating = data1.is_Fluctuating;
475  
476      bool j_is_Charge = data2.is_Charge;
477      bool j_is_Dipole = data2.is_Dipole;
478      bool j_is_SplitDipole = data2.is_SplitDipole;
479      bool j_is_Quadrupole = data2.is_Quadrupole;
480 +    bool j_is_Fluctuating = data2.is_Fluctuating;
481      
482 <    if (i_is_Charge)
483 <      q_i = data1.charge;
482 >    if (i_is_Charge) {
483 >      q_i = data1.fixedCharge;
484  
485 +      if (i_is_Fluctuating) {
486 +        q_i += *(idat.flucQ1);
487 +      }
488 +      
489 +      if (idat.excluded) {
490 +        *(idat.skippedCharge2) += q_i;
491 +      }
492 +    }
493 +
494      if (i_is_Dipole) {
495        mu_i = data1.dipole_moment;
496 <      uz_i = idat.eFrame1.getColumn(2);
496 >      uz_i = idat.eFrame1->getColumn(2);
497        
498        ct_i = dot(uz_i, rhat);
499  
# Line 418 | Line 509 | namespace OpenMD {
509        qyy_i = Q_i.y();
510        qzz_i = Q_i.z();
511        
512 <      ux_i = idat.eFrame1.getColumn(0);
513 <      uy_i = idat.eFrame1.getColumn(1);
514 <      uz_i = idat.eFrame1.getColumn(2);
512 >      ux_i = idat.eFrame1->getColumn(0);
513 >      uy_i = idat.eFrame1->getColumn(1);
514 >      uz_i = idat.eFrame1->getColumn(2);
515  
516        cx_i = dot(ux_i, rhat);
517        cy_i = dot(uy_i, rhat);
# Line 431 | Line 522 | namespace OpenMD {
522        duduz_i = V3Zero;
523      }
524  
525 <    if (j_is_Charge)
526 <      q_j = data2.charge;
525 >    if (j_is_Charge) {
526 >      q_j = data2.fixedCharge;
527  
528 +      if (j_is_Fluctuating)
529 +        q_j += *(idat.flucQ2);
530 +
531 +      if (idat.excluded) {
532 +        *(idat.skippedCharge1) += q_j;
533 +      }
534 +    }
535 +
536 +
537      if (j_is_Dipole) {
538        mu_j = data2.dipole_moment;
539 <      uz_j = idat.eFrame2.getColumn(2);
539 >      uz_j = idat.eFrame2->getColumn(2);
540        
541        ct_j = dot(uz_j, rhat);
542  
# Line 452 | Line 552 | namespace OpenMD {
552        qyy_j = Q_j.y();
553        qzz_j = Q_j.z();
554        
555 <      ux_j = idat.eFrame2.getColumn(0);
556 <      uy_j = idat.eFrame2.getColumn(1);
557 <      uz_j = idat.eFrame2.getColumn(2);
555 >      ux_j = idat.eFrame2->getColumn(0);
556 >      uy_j = idat.eFrame2->getColumn(1);
557 >      uz_j = idat.eFrame2->getColumn(2);
558  
559        cx_j = dot(ux_j, rhat);
560        cy_j = dot(uy_j, rhat);
# Line 465 | Line 565 | namespace OpenMD {
565        duduz_j = V3Zero;
566      }
567      
568 +    if (i_is_Fluctuating && j_is_Fluctuating) {
569 +      J1 = Jij[idat.atypes];
570 +      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
571 +    }
572 +
573      epot = 0.0;
574      dVdr = V3Zero;
575      
# Line 473 | Line 578 | namespace OpenMD {
578        if (j_is_Charge) {
579          if (screeningMethod_ == DAMPED) {
580            // assemble the damping variables
581 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
582 <          erfcVal = res.first;
583 <          derfcVal = res.second;
581 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 >          //erfcVal = res.first;
583 >          //derfcVal = res.second;
584 >
585 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
586 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
587 >
588            c1 = erfcVal * riji;
589            c2 = (-derfcVal + c1) * riji;
590          } else {
# Line 483 | Line 592 | namespace OpenMD {
592            c2 = c1 * riji;
593          }
594  
595 <        preVal = idat.electroMult * pre11_ * q_i * q_j;
595 >        preVal =  *(idat.electroMult) * pre11_;
596          
597 <        if (summationMethod_ == SHIFTED_POTENTIAL) {
597 >        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
598            vterm = preVal * (c1 - c1c_);
599 <          dudr  = -idat.sw * preVal * c2;
599 >          dudr  = - *(idat.sw)  * preVal * c2;
600  
601 <        } else if (summationMethod_ == SHIFTED_FORCE)  {
602 <          vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) );
603 <          dudr  = idat.sw * preVal * (c2c_ - c2);
495 <
496 <        } else if (summationMethod_ == REACTION_FIELD) {
497 <          rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
498 <          vterm = preVal * ( riji + rfVal );            
499 <          dudr  = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
601 >        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
602 >          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
603 >          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
604  
605 +        } else if (summationMethod_ == esm_REACTION_FIELD) {
606 +          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
607 +
608 +          vterm = preVal * ( riji + rfVal );            
609 +          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
610 +          
611 +          // if this is an excluded pair, there are still indirect
612 +          // interactions via the reaction field we must worry about:
613 +
614 +          if (idat.excluded) {
615 +            indirect_vpair += preVal * rfVal;
616 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 +          }
619 +          
620          } else {
502          vterm = preVal * riji * erfcVal;            
621  
622 <          dudr  = - idat.sw * preVal * c2;
622 >          vterm = preVal * riji * erfcVal;          
623 >          dudr  = -  *(idat.sw)  * preVal * c2;
624 >          
625 >        }
626 >        
627 >        vpair += vterm * q_i * q_j;
628 >        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 >        dVdr += dudr * rhat * q_i * q_j;
630  
631 +        if (i_is_Fluctuating) {
632 +          if (idat.excluded) {
633 +            // vFluc1 is the difference between the direct coulomb integral
634 +            // and the normal 1/r-like  interaction between point charges.
635 +            coulInt = J1->getValueAt( *(idat.rij) );
636 +            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 +          } else {
638 +            vFluc1 = 0.0;
639 +          }
640 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641          }
507
508        idat.vpair += vterm;
509        epot += idat.sw * vterm;
642  
643 <        dVdr += dudr * rhat;      
643 >        if (j_is_Fluctuating) {
644 >          if (idat.excluded) {
645 >            // vFluc2 is the difference between the direct coulomb integral
646 >            // and the normal 1/r-like  interaction between point charges.
647 >            coulInt = J2->getValueAt( *(idat.rij) );
648 >            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 >          } else {
650 >            vFluc2 = 0.0;
651 >          }
652 >          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 >        }
654 >          
655 >
656        }
657  
658        if (j_is_Dipole) {
659          // pref is used by all the possible methods
660 <        pref = idat.electroMult * pre12_ * q_i * mu_j;
661 <        preSw = idat.sw * pref;
660 >        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
661 >        preSw =  *(idat.sw)  * pref;
662  
663 <        if (summationMethod_ == REACTION_FIELD) {
663 >        if (summationMethod_ == esm_REACTION_FIELD) {
664            ri2 = riji * riji;
665            ri3 = ri2 * riji;
666      
667 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
668 <          idat.vpair += vterm;
669 <          epot += idat.sw * vterm;
667 >          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 >          vpair += vterm;
669 >          epot +=  *(idat.sw)  * vterm;
670  
671 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
672 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);  
671 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
672 >          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
673  
674 +          // Even if we excluded this pair from direct interactions,
675 +          // we still have the reaction-field-mediated charge-dipole
676 +          // interaction:
677 +
678 +          if (idat.excluded) {
679 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
680 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
681 +            indirect_dVdr += preSw * preRF2_ * uz_j;
682 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
683 +          }
684 +                      
685          } else {
686            // determine the inverse r used if we have split dipoles
687            if (j_is_SplitDipole) {
688 <            BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
688 >            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689              ri = 1.0 / BigR;
690 <            scale = idat.rij * ri;
690 >            scale =  *(idat.rij)  * ri;
691            } else {
692              ri = riji;
693              scale = 1.0;
# Line 542 | Line 697 | namespace OpenMD {
697  
698            if (screeningMethod_ == DAMPED) {
699              // assemble the damping variables
700 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
701 <            erfcVal = res.first;
702 <            derfcVal = res.second;
700 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 >            //erfcVal = res.first;
702 >            //derfcVal = res.second;
703 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705              c1 = erfcVal * ri;
706              c2 = (-derfcVal + c1) * ri;
707              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 559 | Line 716 | namespace OpenMD {
716            // calculate the potential
717            pot_term =  scale * c2;
718            vterm = -pref * ct_j * pot_term;
719 <          idat.vpair += vterm;
720 <          epot += idat.sw * vterm;
719 >          vpair += vterm;
720 >          epot +=  *(idat.sw)  * vterm;
721              
722            // calculate derivatives for forces and torques
723  
# Line 568 | Line 725 | namespace OpenMD {
725            duduz_j += -preSw * pot_term * rhat;
726  
727          }
728 +        if (i_is_Fluctuating) {
729 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730 +        }
731        }
732  
733        if (j_is_Quadrupole) {
# Line 575 | Line 735 | namespace OpenMD {
735          cx2 = cx_j * cx_j;
736          cy2 = cy_j * cy_j;
737          cz2 = cz_j * cz_j;
738 <        pref =  idat.electroMult * pre14_ * q_i * one_third_;
738 >        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
739            
740          if (screeningMethod_ == DAMPED) {
741            // assemble the damping variables
742 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
743 <          erfcVal = res.first;
744 <          derfcVal = res.second;
742 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 >          //erfcVal = res.first;
744 >          //derfcVal = res.second;
745 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747            c1 = erfcVal * riji;
748            c2 = (-derfcVal + c1) * riji;
749            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 594 | Line 756 | namespace OpenMD {
756          }
757  
758          // precompute variables for convenience
759 <        preSw = idat.sw * pref;
759 >        preSw =  *(idat.sw)  * pref;
760          c2ri = c2 * riji;
761          c3ri = c3 * riji;
762 <        c4rij = c4 * idat.rij;
763 <        rhatdot2 = 2.0 * rhat * c3;
762 >        c4rij = c4 *  *(idat.rij) ;
763 >        rhatdot2 = two * rhat * c3;
764          rhatc4 = rhat * c4rij;
765  
766          // calculate the potential
# Line 606 | Line 768 | namespace OpenMD {
768                       qyy_j * (cy2*c3 - c2ri) +
769                       qzz_j * (cz2*c3 - c2ri) );
770          vterm = pref * pot_term;
771 <        idat.vpair += vterm;
772 <        epot += idat.sw * vterm;
771 >        vpair += vterm;
772 >        epot +=  *(idat.sw)  * vterm;
773                  
774          // calculate derivatives for the forces and torques
775  
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
776 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779                            
780          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782          duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 +        if (i_is_Fluctuating) {
784 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
785 +        }
786 +
787        }
788      }
789      
# Line 625 | Line 791 | namespace OpenMD {
791  
792        if (j_is_Charge) {
793          // variables used by all the methods
794 <        pref = idat.electroMult * pre12_ * q_j * mu_i;
795 <        preSw = idat.sw * pref;
794 >        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
795 >        preSw =  *(idat.sw)  * pref;
796  
797 <        if (summationMethod_ == REACTION_FIELD) {
797 >        if (summationMethod_ == esm_REACTION_FIELD) {
798  
799            ri2 = riji * riji;
800            ri3 = ri2 * riji;
801  
802 <          vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
803 <          idat.vpair += vterm;
804 <          epot += idat.sw * vterm;
802 >          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
803 >          vpair += vterm;
804 >          epot +=  *(idat.sw)  * vterm;
805            
806 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
806 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807            
808 <          duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
808 >          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
809 >
810 >          // Even if we excluded this pair from direct interactions,
811 >          // we still have the reaction-field-mediated charge-dipole
812 >          // interaction:
813 >
814 >          if (idat.excluded) {
815 >            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
816 >            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 >            indirect_dVdr += -preSw * preRF2_ * uz_i;
818 >            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 >          }
820              
821          } else {
822            
823            // determine inverse r if we are using split dipoles
824            if (i_is_SplitDipole) {
825 <            BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
825 >            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826              ri = 1.0 / BigR;
827 <            scale = idat.rij * ri;
827 >            scale =  *(idat.rij)  * ri;
828            } else {
829              ri = riji;
830              scale = 1.0;
# Line 657 | Line 834 | namespace OpenMD {
834              
835            if (screeningMethod_ == DAMPED) {
836              // assemble the damping variables
837 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
838 <            erfcVal = res.first;
839 <            derfcVal = res.second;
837 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 >            //erfcVal = res.first;
839 >            //derfcVal = res.second;
840 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842              c1 = erfcVal * ri;
843              c2 = (-derfcVal + c1) * ri;
844              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 674 | Line 853 | namespace OpenMD {
853            // calculate the potential
854            pot_term = c2 * scale;
855            vterm = pref * ct_i * pot_term;
856 <          idat.vpair += vterm;
857 <          epot += idat.sw * vterm;
856 >          vpair += vterm;
857 >          epot +=  *(idat.sw)  * vterm;
858  
859            // calculate derivatives for the forces and torques
860            dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
861            duduz_i += preSw * pot_term * rhat;
862          }
863 +
864 +        if (j_is_Fluctuating) {
865 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
866 +        }
867 +
868        }
869  
870        if (j_is_Dipole) {
871          // variables used by all methods
872          ct_ij = dot(uz_i, uz_j);
873  
874 <        pref = idat.electroMult * pre22_ * mu_i * mu_j;
875 <        preSw = idat.sw * pref;
874 >        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
875 >        preSw =  *(idat.sw)  * pref;
876  
877 <        if (summationMethod_ == REACTION_FIELD) {
877 >        if (summationMethod_ == esm_REACTION_FIELD) {
878            ri2 = riji * riji;
879            ri3 = ri2 * riji;
880            ri4 = ri2 * ri2;
881  
882            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883                             preRF2_ * ct_ij );
884 <          idat.vpair += vterm;
885 <          epot += idat.sw * vterm;
884 >          vpair += vterm;
885 >          epot +=  *(idat.sw)  * vterm;
886              
887            a1 = 5.0 * ct_i * ct_j - ct_ij;
888              
889 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
889 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890  
891 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
892 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
891 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893  
894 +          if (idat.excluded) {
895 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899 +          }
900 +
901          } else {
902            
903            if (i_is_SplitDipole) {
904              if (j_is_SplitDipole) {
905 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
905 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906              } else {
907 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
907 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908              }
909              ri = 1.0 / BigR;
910 <            scale = idat.rij * ri;
910 >            scale =  *(idat.rij)  * ri;
911            } else {
912              if (j_is_SplitDipole) {
913 <              BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
913 >              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914                ri = 1.0 / BigR;
915 <              scale = idat.rij * ri;
915 >              scale =  *(idat.rij)  * ri;
916              } else {
917                ri = riji;
918                scale = 1.0;
# Line 729 | Line 920 | namespace OpenMD {
920            }
921            if (screeningMethod_ == DAMPED) {
922              // assemble damping variables
923 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
924 <            erfcVal = res.first;
925 <            derfcVal = res.second;
923 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924 >            //erfcVal = res.first;
925 >            //derfcVal = res.second;
926 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928              c1 = erfcVal * ri;
929              c2 = (-derfcVal + c1) * ri;
930              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 751 | Line 944 | namespace OpenMD {
944            preSwSc = preSw * scale;
945            c2ri = c2 * ri;
946            c3ri = c3 * ri;
947 <          c4rij = c4 * idat.rij;
947 >          c4rij = c4 *  *(idat.rij) ;
948  
949            // calculate the potential
950            pot_term = (ct_ij * c2ri - ctidotj * c3);
951            vterm = pref * pot_term;
952 <          idat.vpair += vterm;
953 <          epot += idat.sw * vterm;
952 >          vpair += vterm;
953 >          epot +=  *(idat.sw)  * vterm;
954  
955            // calculate derivatives for the forces and torques
956            dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
# Line 776 | Line 969 | namespace OpenMD {
969          cy2 = cy_i * cy_i;
970          cz2 = cz_i * cz_i;
971  
972 <        pref = idat.electroMult * pre14_ * q_j * one_third_;
972 >        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
973  
974          if (screeningMethod_ == DAMPED) {
975            // assemble the damping variables
976 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
977 <          erfcVal = res.first;
978 <          derfcVal = res.second;
976 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 >          //erfcVal = res.first;
978 >          //derfcVal = res.second;
979 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981            c1 = erfcVal * riji;
982            c2 = (-derfcVal + c1) * riji;
983            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 795 | Line 990 | namespace OpenMD {
990          }
991            
992          // precompute some variables for convenience
993 <        preSw = idat.sw * pref;
993 >        preSw =  *(idat.sw)  * pref;
994          c2ri = c2 * riji;
995          c3ri = c3 * riji;
996 <        c4rij = c4 * idat.rij;
997 <        rhatdot2 = 2.0 * rhat * c3;
996 >        c4rij = c4 *  *(idat.rij) ;
997 >        rhatdot2 = two * rhat * c3;
998          rhatc4 = rhat * c4rij;
999  
1000          // calculate the potential
# Line 808 | Line 1003 | namespace OpenMD {
1003                       qzz_i * (cz2 * c3 - c2ri) );
1004          
1005          vterm = pref * pot_term;
1006 <        idat.vpair += vterm;
1007 <        epot += idat.sw * vterm;
1006 >        vpair += vterm;
1007 >        epot +=  *(idat.sw)  * vterm;
1008  
1009          // calculate the derivatives for the forces and torques
1010  
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1011 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014  
1015          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017          duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
823      }
824    }
1018  
1019 <    idat.pot += epot;
1020 <    idat.f1 += dVdr;
1019 >        if (j_is_Fluctuating) {
1020 >          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 >        }
1022  
1023 <    if (i_is_Dipole || i_is_Quadrupole)
830 <      idat.t1 -= cross(uz_i, duduz_i);
831 <    if (i_is_Quadrupole) {
832 <      idat.t1 -= cross(ux_i, dudux_i);
833 <      idat.t1 -= cross(uy_i, duduy_i);
1023 >      }
1024      }
1025  
836    if (j_is_Dipole || j_is_Quadrupole)
837      idat.t2 -= cross(uz_j, duduz_j);
838    if (j_is_Quadrupole) {
839      idat.t2 -= cross(uz_j, dudux_j);
840      idat.t2 -= cross(uz_j, duduy_j);
841    }
1026  
1027 <    return;
1028 <  }  
1027 >    if (!idat.excluded) {
1028 >      *(idat.vpair) += vpair;
1029 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030 >      *(idat.f1) += dVdr;
1031 >      
1032 >      if (i_is_Dipole || i_is_Quadrupole)
1033 >        *(idat.t1) -= cross(uz_i, duduz_i);
1034 >      if (i_is_Quadrupole) {
1035 >        *(idat.t1) -= cross(ux_i, dudux_i);
1036 >        *(idat.t1) -= cross(uy_i, duduy_i);
1037 >      }
1038 >      
1039 >      if (j_is_Dipole || j_is_Quadrupole)
1040 >        *(idat.t2) -= cross(uz_j, duduz_j);
1041 >      if (j_is_Quadrupole) {
1042 >        *(idat.t2) -= cross(uz_j, dudux_j);
1043 >        *(idat.t2) -= cross(uz_j, duduy_j);
1044 >      }
1045  
1046 <  void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
1046 >    } else {
1047  
1048 <    if (!initialized_) initialize();
1049 <    
850 <    ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
851 <    ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
852 <    
853 <    // logicals
1048 >      // only accumulate the forces and torques resulting from the
1049 >      // indirect reaction field terms.
1050  
1051 <    bool i_is_Charge = data1.is_Charge;
1052 <    bool i_is_Dipole = data1.is_Dipole;
1053 <
858 <    bool j_is_Charge = data2.is_Charge;
859 <    bool j_is_Dipole = data2.is_Dipole;
860 <
861 <    RealType q_i, q_j;
862 <    
863 <    // The skippedCharge computation is needed by the real-space cutoff methods
864 <    // (i.e. shifted force and shifted potential)
865 <
866 <    if (i_is_Charge) {
867 <      q_i = data1.charge;
868 <      skdat.skippedCharge2 += q_i;
869 <    }
870 <
871 <    if (j_is_Charge) {
872 <      q_j = data2.charge;
873 <      skdat.skippedCharge1 += q_j;
874 <    }
875 <
876 <    // the rest of this function should only be necessary for reaction field.
877 <
878 <    if (summationMethod_ == REACTION_FIELD) {
879 <      RealType riji, ri2, ri3;
880 <      RealType q_i, mu_i, ct_i;
881 <      RealType q_j, mu_j, ct_j;
882 <      RealType preVal, rfVal, vterm, dudr, pref, myPot;
883 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
884 <
885 <      // some variables we'll need independent of electrostatic type:
1051 >      *(idat.vpair) += indirect_vpair;
1052 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1053 >      *(idat.f1) += indirect_dVdr;
1054        
887      riji = 1.0 / skdat.rij;
888      rhat = skdat.d  * riji;
889
890      if (i_is_Dipole) {
891        mu_i = data1.dipole_moment;
892        uz_i = skdat.eFrame1.getColumn(2);      
893        ct_i = dot(uz_i, rhat);
894        duduz_i = V3Zero;
895      }
896            
897      if (j_is_Dipole) {
898        mu_j = data2.dipole_moment;
899        uz_j = skdat.eFrame2.getColumn(2);      
900        ct_j = dot(uz_j, rhat);
901        duduz_j = V3Zero;
902      }
903    
904      if (i_is_Charge) {
905        if (j_is_Charge) {
906          preVal = skdat.electroMult * pre11_ * q_i * q_j;
907          rfVal = preRF_ * skdat.rij * skdat.rij;
908          vterm = preVal * rfVal;
909          myPot += skdat.sw * vterm;        
910          dudr  = skdat.sw * preVal * 2.0 * rfVal * riji;        
911          dVdr += dudr * rhat;
912        }
913        
914        if (j_is_Dipole) {
915          ri2 = riji * riji;
916          ri3 = ri2 * riji;        
917          pref = skdat.electroMult * pre12_ * q_i * mu_j;
918          vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
919          myPot += skdat.sw * vterm;        
920          dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
921          duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
922        }
923      }
924      if (i_is_Dipole) {
925        if (j_is_Charge) {
926          ri2 = riji * riji;
927          ri3 = ri2 * riji;        
928          pref = skdat.electroMult * pre12_ * q_j * mu_i;
929          vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
930          myPot += skdat.sw * vterm;        
931          dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
932          duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
933        }
934      }
935      
936      // accumulate the forces and torques resulting from the self term
937      skdat.pot += myPot;
938      skdat.f1 += dVdr;
939      
1055        if (i_is_Dipole)
1056 <        skdat.t1 -= cross(uz_i, duduz_i);
1056 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1057        if (j_is_Dipole)
1058 <        skdat.t2 -= cross(uz_j, duduz_j);
1058 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1059      }
1060 <  }
1060 >
1061 >    return;
1062 >  }  
1063      
1064 <  void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
1065 <    RealType mu1, preVal, chg1, self;
949 <    
1064 >  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1065 >    RealType mu1, preVal, self;
1066      if (!initialized_) initialize();
1067 <    
1068 <    ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
1067 >
1068 >    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1069    
1070      // logicals
955
1071      bool i_is_Charge = data.is_Charge;
1072      bool i_is_Dipole = data.is_Dipole;
1073 +    bool i_is_Fluctuating = data.is_Fluctuating;
1074 +    RealType chg1 = data.fixedCharge;  
1075 +    
1076 +    if (i_is_Fluctuating) {
1077 +      chg1 += *(sdat.flucQ);
1078 +      // dVdFQ is really a force, so this is negative the derivative
1079 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1080 +    }
1081  
1082 <    if (summationMethod_ == REACTION_FIELD) {
1082 >    if (summationMethod_ == esm_REACTION_FIELD) {
1083        if (i_is_Dipole) {
1084          mu1 = data.dipole_moment;          
1085          preVal = pre22_ * preRF2_ * mu1 * mu1;
1086 <        scdat.pot -= 0.5 * preVal;
1086 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1087          
1088          // The self-correction term adds into the reaction field vector
1089 <        Vector3d uz_i = scdat.eFrame.getColumn(2);
1089 >        Vector3d uz_i = sdat.eFrame->getColumn(2);
1090          Vector3d ei = preVal * uz_i;
1091  
1092          // This looks very wrong.  A vector crossed with itself is zero.
1093 <        scdat.t -= cross(uz_i, ei);
1093 >        *(sdat.t) -= cross(uz_i, ei);
1094        }
1095 <    } else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) {
1095 >    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1096        if (i_is_Charge) {        
974        chg1 = data.charge;
1097          if (screeningMethod_ == DAMPED) {
1098 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1098 >          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1099          } else {        
1100 <          self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1100 >          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1101          }
1102 <        scdat.pot += self;
1102 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1103        }
1104      }
1105    }
1106  
1107 <  RealType Electrostatic::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) {
1107 >  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1108      // This seems to work moderately well as a default.  There's no
1109      // inherent scale for 1/r interactions that we can standardize.
1110      // 12 angstroms seems to be a reasonably good guess for most

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines