ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1504 by gezelter, Sat Oct 2 20:41:53 2010 UTC vs.
Revision 1613 by gezelter, Thu Aug 18 20:18:19 2011 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
# Line 47 | Line 47
47   #include "utils/simError.h"
48   #include "types/NonBondedInteractionType.hpp"
49   #include "types/DirectionalAtomType.hpp"
50 + #include "io/Globals.hpp"
51  
51
52   namespace OpenMD {
53    
54    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55 <                                  forceField_(NULL) {}
55 >                                  forceField_(NULL), info_(NULL),
56 >                                  haveCutoffRadius_(false),
57 >                                  haveDampingAlpha_(false),
58 >                                  haveDielectric_(false),
59 >                                  haveElectroSpline_(false)
60 >  {}
61    
62    void Electrostatic::initialize() {
63 +    
64 +    Globals* simParams_ = info_->getSimParams();
65 +
66 +    summationMap_["HARD"]               = esm_HARD;
67 +    summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
68 +    summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
69 +    summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
70 +    summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
71 +    summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
72 +    summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
73 +    summationMap_["EWALD_SPME"]         = esm_EWALD_SPME;        
74 +    screeningMap_["DAMPED"]             = DAMPED;
75 +    screeningMap_["UNDAMPED"]           = UNDAMPED;
76 +
77      // these prefactors convert the multipole interactions into kcal / mol
78      // all were computed assuming distances are measured in angstroms
79      // Charge-Charge, assuming charges are measured in electrons
# Line 79 | Line 98 | namespace OpenMD {
98      
99      // variables to handle different summation methods for long-range
100      // electrostatics:
101 <    summationMethod_ = NONE;    
101 >    summationMethod_ = esm_HARD;    
102      screeningMethod_ = UNDAMPED;
103      dielectric_ = 1.0;
104      one_third_ = 1.0 / 3.0;
86    haveDefaultCutoff_ = false;
87    haveDampingAlpha_ = false;
88    haveDielectric_ = false;  
89    haveElectroSpline_ = false;
105    
106 +    // check the summation method:
107 +    if (simParams_->haveElectrostaticSummationMethod()) {
108 +      string myMethod = simParams_->getElectrostaticSummationMethod();
109 +      toUpper(myMethod);
110 +      map<string, ElectrostaticSummationMethod>::iterator i;
111 +      i = summationMap_.find(myMethod);
112 +      if ( i != summationMap_.end() ) {
113 +        summationMethod_ = (*i).second;
114 +      } else {
115 +        // throw error
116 +        sprintf( painCave.errMsg,
117 +                 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
118 +                 "\t(Input file specified %s .)\n"
119 +                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
120 +                 "\t\"shifted_potential\", \"shifted_force\", or \n"
121 +                 "\t\"reaction_field\".\n", myMethod.c_str() );
122 +        painCave.isFatal = 1;
123 +        simError();
124 +      }
125 +    } else {
126 +      // set ElectrostaticSummationMethod to the cutoffMethod:
127 +      if (simParams_->haveCutoffMethod()){
128 +        string myMethod = simParams_->getCutoffMethod();
129 +        toUpper(myMethod);
130 +        map<string, ElectrostaticSummationMethod>::iterator i;
131 +        i = summationMap_.find(myMethod);
132 +        if ( i != summationMap_.end() ) {
133 +          summationMethod_ = (*i).second;
134 +        }
135 +      }
136 +    }
137 +    
138 +    if (summationMethod_ == esm_REACTION_FIELD) {        
139 +      if (!simParams_->haveDielectric()) {
140 +        // throw warning
141 +        sprintf( painCave.errMsg,
142 +                 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
143 +                 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
144 +        painCave.isFatal = 0;
145 +        painCave.severity = OPENMD_INFO;
146 +        simError();
147 +      } else {
148 +        dielectric_ = simParams_->getDielectric();      
149 +      }
150 +      haveDielectric_ = true;
151 +    }
152 +    
153 +    if (simParams_->haveElectrostaticScreeningMethod()) {
154 +      string myScreen = simParams_->getElectrostaticScreeningMethod();
155 +      toUpper(myScreen);
156 +      map<string, ElectrostaticScreeningMethod>::iterator i;
157 +      i = screeningMap_.find(myScreen);
158 +      if ( i != screeningMap_.end()) {
159 +        screeningMethod_ = (*i).second;
160 +      } else {
161 +        sprintf( painCave.errMsg,
162 +                 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
163 +                 "\t(Input file specified %s .)\n"
164 +                 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
165 +                 "or \"damped\".\n", myScreen.c_str() );
166 +        painCave.isFatal = 1;
167 +        simError();
168 +      }
169 +    }
170 +
171 +    // check to make sure a cutoff value has been set:
172 +    if (!haveCutoffRadius_) {
173 +      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
174 +               "Cutoff value!\n");
175 +      painCave.severity = OPENMD_ERROR;
176 +      painCave.isFatal = 1;
177 +      simError();
178 +    }
179 +          
180 +    if (screeningMethod_ == DAMPED) {      
181 +      if (!simParams_->haveDampingAlpha()) {
182 +        // first set a cutoff dependent alpha value
183 +        // we assume alpha depends linearly with rcut from 0 to 20.5 ang
184 +        dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
185 +        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
186 +        
187 +        // throw warning
188 +        sprintf( painCave.errMsg,
189 +                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
190 +                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
191 +                 dampingAlpha_, cutoffRadius_);
192 +        painCave.severity = OPENMD_INFO;
193 +        painCave.isFatal = 0;
194 +        simError();
195 +      } else {
196 +        dampingAlpha_ = simParams_->getDampingAlpha();
197 +      }
198 +      haveDampingAlpha_ = true;
199 +    }
200 +
201      // find all of the Electrostatic atom Types:
202      ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
203      ForceField::AtomTypeContainer::MapTypeIterator i;
204      AtomType* at;
205 <
205 >    
206      for (at = atomTypes->beginType(i); at != NULL;
207           at = atomTypes->nextType(i)) {
208        
# Line 100 | Line 210 | namespace OpenMD {
210          addType(at);
211      }
212      
103    // check to make sure a cutoff value has been set:
104    if (!haveDefaultCutoff_) {
105      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
106               "Cutoff value!\n");
107      painCave.severity = OPENMD_ERROR;
108      painCave.isFatal = 1;
109      simError();
110    }
213  
214 <    defaultCutoff2_ = defaultCutoff_ * defaultCutoff_;
215 <    rcuti_ = 1.0 / defaultCutoff_;
214 >    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
215 >    rcuti_ = 1.0 / cutoffRadius_;
216      rcuti2_ = rcuti_ * rcuti_;
217      rcuti3_ = rcuti2_ * rcuti_;
218      rcuti4_ = rcuti2_ * rcuti2_;
219  
220      if (screeningMethod_ == DAMPED) {
221 <      if (!haveDampingAlpha_) {
120 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no "
121 <                 "DampingAlpha value!\n");
122 <        painCave.severity = OPENMD_ERROR;
123 <        painCave.isFatal = 1;
124 <        simError();
125 <      }
126 <
221 >      
222        alpha2_ = dampingAlpha_ * dampingAlpha_;
223        alpha4_ = alpha2_ * alpha2_;
224        alpha6_ = alpha4_ * alpha2_;
225        alpha8_ = alpha4_ * alpha4_;
226        
227 <      constEXP_ = exp(-alpha2_ * defaultCutoff2_);
227 >      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
228        invRootPi_ = 0.56418958354775628695;
229        alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
230  
231 <      c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_;
231 >      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
232        c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
233        c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
234        c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
# Line 148 | Line 243 | namespace OpenMD {
243        c6c_ = 9.0 * c5c_ * rcuti2_;
244      }
245    
246 <    if (summationMethod_ == REACTION_FIELD) {
247 <      if (haveDielectric_) {
248 <        preRF_ = (dielectric_ - 1.0) /
249 <            ((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_);
155 <        preRF2_ = 2.0 * preRF_;
156 <      } else {
157 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric"
158 <                 " value!\n");
159 <        painCave.severity = OPENMD_ERROR;
160 <        painCave.isFatal = 1;
161 <        simError();
162 <      }
246 >    if (summationMethod_ == esm_REACTION_FIELD) {
247 >      preRF_ = (dielectric_ - 1.0) /
248 >        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
249 >      preRF2_ = 2.0 * preRF_;
250      }
251 <                              
252 <    RealType dx = defaultCutoff_ / RealType(np_ - 1);
251 >    
252 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
253 >    // have charged atoms longer than the cutoffRadius away from each
254 >    // other.  Splining may not be the best choice here.  Direct calls
255 >    // to erfc might be preferrable.
256 >
257 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
258      RealType rval;
259      vector<RealType> rvals;
260      vector<RealType> yvals;
# Line 283 | Line 375 | namespace OpenMD {
375            simError();                  
376          }
377          
378 +        // Quadrupoles in OpenMD are set as the diagonal elements
379 +        // of the diagonalized traceless quadrupole moment tensor.
380 +        // The column vectors of the unitary matrix that diagonalizes
381 +        // the quadrupole moment tensor become the eFrame (or the
382 +        // electrostatic version of the body-fixed frame.
383 +
384          Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
385          if (v3dData == NULL) {
386            sprintf( painCave.errMsg,
# Line 315 | Line 413 | namespace OpenMD {
413      return;
414    }
415    
416 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
417 <                                                    RealType theRSW ) {
418 <    defaultCutoff_ = theECR;
419 <    rrf_ = defaultCutoff_;
322 <    rt_ = theRSW;
323 <    haveDefaultCutoff_ = true;
416 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
417 >    cutoffRadius_ = rCut;
418 >    rrf_ = cutoffRadius_;
419 >    haveCutoffRadius_ = true;
420    }
421 +
422 +  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
423 +    rt_ = rSwitch;
424 +  }
425    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
426      summationMethod_ = esm;
427    }
# Line 337 | Line 437 | namespace OpenMD {
437      haveDielectric_ = true;
438    }
439  
440 <  void Electrostatic::calcForce(InteractionData idat) {
440 >  void Electrostatic::calcForce(InteractionData &idat) {
441  
442      // utility variables.  Should clean these up and use the Vector3d and
443      // Mat3x3d to replace as many as we can in future versions:
# Line 351 | Line 451 | namespace OpenMD {
451      RealType ct_i, ct_j, ct_ij, a1;
452      RealType riji, ri, ri2, ri3, ri4;
453      RealType pref, vterm, epot, dudr;
454 +    RealType vpair(0.0);
455      RealType scale, sc2;
456      RealType pot_term, preVal, rfVal;
457      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
458      RealType preSw, preSwSc;
459      RealType c1, c2, c3, c4;
460 <    RealType erfcVal, derfcVal;
460 >    RealType erfcVal(1.0), derfcVal(0.0);
461      RealType BigR;
462  
463      Vector3d Q_i, Q_j;
# Line 367 | Line 468 | namespace OpenMD {
468      Vector3d rhatdot2, rhatc4;
469      Vector3d dVdr;
470  
471 +    // variables for indirect (reaction field) interactions for excluded pairs:
472 +    RealType indirect_Pot(0.0);
473 +    RealType indirect_vpair(0.0);
474 +    Vector3d indirect_dVdr(V3Zero);
475 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
476 +
477      pair<RealType, RealType> res;
478      
479      if (!initialized_) initialize();
480      
481 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
482 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
481 >    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
482 >    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
483      
484      // some variables we'll need independent of electrostatic type:
485  
486 <    riji = 1.0 / idat.rij;
487 <    Vector3d rhat = idat.d  * riji;
486 >    riji = 1.0 /  *(idat.rij) ;
487 >    Vector3d rhat =  *(idat.d)   * riji;
488  
489      // logicals
490  
# Line 391 | Line 498 | namespace OpenMD {
498      bool j_is_SplitDipole = data2.is_SplitDipole;
499      bool j_is_Quadrupole = data2.is_Quadrupole;
500      
501 <    if (i_is_Charge)
501 >    if (i_is_Charge) {
502        q_i = data1.charge;
503 +      if (idat.excluded) {
504 +        *(idat.skippedCharge2) += q_i;
505 +      }
506 +    }
507  
508      if (i_is_Dipole) {
509        mu_i = data1.dipole_moment;
510 <      uz_i = idat.eFrame1.getColumn(2);
510 >      uz_i = idat.eFrame1->getColumn(2);
511        
512        ct_i = dot(uz_i, rhat);
513  
# Line 412 | Line 523 | namespace OpenMD {
523        qyy_i = Q_i.y();
524        qzz_i = Q_i.z();
525        
526 <      ux_i = idat.eFrame1.getColumn(0);
527 <      uy_i = idat.eFrame1.getColumn(1);
528 <      uz_i = idat.eFrame1.getColumn(2);
526 >      ux_i = idat.eFrame1->getColumn(0);
527 >      uy_i = idat.eFrame1->getColumn(1);
528 >      uz_i = idat.eFrame1->getColumn(2);
529  
530        cx_i = dot(ux_i, rhat);
531        cy_i = dot(uy_i, rhat);
# Line 425 | Line 536 | namespace OpenMD {
536        duduz_i = V3Zero;
537      }
538  
539 <    if (j_is_Charge)
539 >    if (j_is_Charge) {
540        q_j = data2.charge;
541 +      if (idat.excluded) {
542 +        *(idat.skippedCharge1) += q_j;
543 +      }
544 +    }
545  
546 +
547      if (j_is_Dipole) {
548        mu_j = data2.dipole_moment;
549 <      uz_j = idat.eFrame2.getColumn(2);
549 >      uz_j = idat.eFrame2->getColumn(2);
550        
551        ct_j = dot(uz_j, rhat);
552  
# Line 446 | Line 562 | namespace OpenMD {
562        qyy_j = Q_j.y();
563        qzz_j = Q_j.z();
564        
565 <      ux_j = idat.eFrame2.getColumn(0);
566 <      uy_j = idat.eFrame2.getColumn(1);
567 <      uz_j = idat.eFrame2.getColumn(2);
565 >      ux_j = idat.eFrame2->getColumn(0);
566 >      uy_j = idat.eFrame2->getColumn(1);
567 >      uz_j = idat.eFrame2->getColumn(2);
568  
569        cx_j = dot(ux_j, rhat);
570        cy_j = dot(uy_j, rhat);
# Line 467 | Line 583 | namespace OpenMD {
583        if (j_is_Charge) {
584          if (screeningMethod_ == DAMPED) {
585            // assemble the damping variables
586 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
586 >          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
587            erfcVal = res.first;
588            derfcVal = res.second;
589            c1 = erfcVal * riji;
# Line 477 | Line 593 | namespace OpenMD {
593            c2 = c1 * riji;
594          }
595  
596 <        preVal = idat.electroMult * pre11_ * q_i * q_j;
596 >        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
597          
598 <        if (summationMethod_ == SHIFTED_POTENTIAL) {
598 >        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
599            vterm = preVal * (c1 - c1c_);
600 <          dudr  = -idat.sw * preVal * c2;
600 >          dudr  = - *(idat.sw)  * preVal * c2;
601  
602 <        } else if (summationMethod_ == SHIFTED_FORCE)  {
603 <          vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) );
604 <          dudr  = idat.sw * preVal * (c2c_ - c2);
602 >        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
603 >          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
604 >          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
605  
606 <        } else if (summationMethod_ == REACTION_FIELD) {
607 <          rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
606 >        } else if (summationMethod_ == esm_REACTION_FIELD) {
607 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
608 >
609            vterm = preVal * ( riji + rfVal );            
610 <          dudr  = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
610 >          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
611 >          
612 >          // if this is an excluded pair, there are still indirect
613 >          // interactions via the reaction field we must worry about:
614  
615 +          if (idat.excluded) {
616 +            indirect_vpair += preVal * rfVal;
617 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
618 +            indirect_dVdr += *(idat.sw)  * preVal * 2.0 * rfVal  * riji * rhat;
619 +          }
620 +          
621          } else {
496          vterm = preVal * riji * erfcVal;            
622  
623 <          dudr  = - idat.sw * preVal * c2;
623 >          vterm = preVal * riji * erfcVal;          
624 >          dudr  = -  *(idat.sw)  * preVal * c2;
625  
626          }
501
502        idat.vpair += vterm;
503        epot += idat.sw * vterm;
627  
628 <        dVdr += dudr * rhat;      
628 >        vpair += vterm;
629 >        epot +=  *(idat.sw)  * vterm;
630 >        dVdr += dudr * rhat;                
631        }
632  
633        if (j_is_Dipole) {
634          // pref is used by all the possible methods
635 <        pref = idat.electroMult * pre12_ * q_i * mu_j;
636 <        preSw = idat.sw * pref;
635 >        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
636 >        preSw =  *(idat.sw)  * pref;
637  
638 <        if (summationMethod_ == REACTION_FIELD) {
638 >        if (summationMethod_ == esm_REACTION_FIELD) {
639            ri2 = riji * riji;
640            ri3 = ri2 * riji;
641      
642 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
643 <          idat.vpair += vterm;
644 <          epot += idat.sw * vterm;
642 >          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
643 >          vpair += vterm;
644 >          epot +=  *(idat.sw)  * vterm;
645  
646            dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
647 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);  
647 >          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
648  
649 +          // Even if we excluded this pair from direct interactions,
650 +          // we still have the reaction-field-mediated charge-dipole
651 +          // interaction:
652 +
653 +          if (idat.excluded) {
654 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
655 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
656 +            indirect_dVdr += preSw * preRF2_ * uz_j;
657 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
658 +          }
659 +                      
660          } else {
661            // determine the inverse r used if we have split dipoles
662            if (j_is_SplitDipole) {
663 <            BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
663 >            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
664              ri = 1.0 / BigR;
665 <            scale = idat.rij * ri;
665 >            scale =  *(idat.rij)  * ri;
666            } else {
667              ri = riji;
668              scale = 1.0;
# Line 536 | Line 672 | namespace OpenMD {
672  
673            if (screeningMethod_ == DAMPED) {
674              // assemble the damping variables
675 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
675 >            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
676              erfcVal = res.first;
677              derfcVal = res.second;
678              c1 = erfcVal * ri;
# Line 553 | Line 689 | namespace OpenMD {
689            // calculate the potential
690            pot_term =  scale * c2;
691            vterm = -pref * ct_j * pot_term;
692 <          idat.vpair += vterm;
693 <          epot += idat.sw * vterm;
692 >          vpair += vterm;
693 >          epot +=  *(idat.sw)  * vterm;
694              
695            // calculate derivatives for forces and torques
696  
# Line 569 | Line 705 | namespace OpenMD {
705          cx2 = cx_j * cx_j;
706          cy2 = cy_j * cy_j;
707          cz2 = cz_j * cz_j;
708 <        pref =  idat.electroMult * pre14_ * q_i * one_third_;
708 >        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
709            
710          if (screeningMethod_ == DAMPED) {
711            // assemble the damping variables
712 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
712 >          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
713            erfcVal = res.first;
714            derfcVal = res.second;
715            c1 = erfcVal * riji;
# Line 588 | Line 724 | namespace OpenMD {
724          }
725  
726          // precompute variables for convenience
727 <        preSw = idat.sw * pref;
727 >        preSw =  *(idat.sw)  * pref;
728          c2ri = c2 * riji;
729          c3ri = c3 * riji;
730 <        c4rij = c4 * idat.rij;
730 >        c4rij = c4 *  *(idat.rij) ;
731          rhatdot2 = 2.0 * rhat * c3;
732          rhatc4 = rhat * c4rij;
733  
# Line 600 | Line 736 | namespace OpenMD {
736                       qyy_j * (cy2*c3 - c2ri) +
737                       qzz_j * (cz2*c3 - c2ri) );
738          vterm = pref * pot_term;
739 <        idat.vpair += vterm;
740 <        epot += idat.sw * vterm;
739 >        vpair += vterm;
740 >        epot +=  *(idat.sw)  * vterm;
741                  
742          // calculate derivatives for the forces and torques
743  
# Line 619 | Line 755 | namespace OpenMD {
755  
756        if (j_is_Charge) {
757          // variables used by all the methods
758 <        pref = idat.electroMult * pre12_ * q_j * mu_i;
759 <        preSw = idat.sw * pref;
758 >        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
759 >        preSw =  *(idat.sw)  * pref;
760  
761 <        if (summationMethod_ == REACTION_FIELD) {
761 >        if (summationMethod_ == esm_REACTION_FIELD) {
762  
763            ri2 = riji * riji;
764            ri3 = ri2 * riji;
765  
766 <          vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
767 <          idat.vpair += vterm;
768 <          epot += idat.sw * vterm;
766 >          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
767 >          vpair += vterm;
768 >          epot +=  *(idat.sw)  * vterm;
769            
770            dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
771            
772 <          duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
772 >          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
773 >
774 >          // Even if we excluded this pair from direct interactions,
775 >          // we still have the reaction-field-mediated charge-dipole
776 >          // interaction:
777 >
778 >          if (idat.excluded) {
779 >            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
780 >            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
781 >            indirect_dVdr += -preSw * preRF2_ * uz_i;
782 >            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
783 >          }
784              
785          } else {
786            
787            // determine inverse r if we are using split dipoles
788            if (i_is_SplitDipole) {
789 <            BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
789 >            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
790              ri = 1.0 / BigR;
791 <            scale = idat.rij * ri;
791 >            scale =  *(idat.rij)  * ri;
792            } else {
793              ri = riji;
794              scale = 1.0;
# Line 651 | Line 798 | namespace OpenMD {
798              
799            if (screeningMethod_ == DAMPED) {
800              // assemble the damping variables
801 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
801 >            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
802              erfcVal = res.first;
803              derfcVal = res.second;
804              c1 = erfcVal * ri;
# Line 668 | Line 815 | namespace OpenMD {
815            // calculate the potential
816            pot_term = c2 * scale;
817            vterm = pref * ct_i * pot_term;
818 <          idat.vpair += vterm;
819 <          epot += idat.sw * vterm;
818 >          vpair += vterm;
819 >          epot +=  *(idat.sw)  * vterm;
820  
821            // calculate derivatives for the forces and torques
822            dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
# Line 681 | Line 828 | namespace OpenMD {
828          // variables used by all methods
829          ct_ij = dot(uz_i, uz_j);
830  
831 <        pref = idat.electroMult * pre22_ * mu_i * mu_j;
832 <        preSw = idat.sw * pref;
831 >        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
832 >        preSw =  *(idat.sw)  * pref;
833  
834 <        if (summationMethod_ == REACTION_FIELD) {
834 >        if (summationMethod_ == esm_REACTION_FIELD) {
835            ri2 = riji * riji;
836            ri3 = ri2 * riji;
837            ri4 = ri2 * ri2;
838  
839            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
840                             preRF2_ * ct_ij );
841 <          idat.vpair += vterm;
842 <          epot += idat.sw * vterm;
841 >          vpair += vterm;
842 >          epot +=  *(idat.sw)  * vterm;
843              
844            a1 = 5.0 * ct_i * ct_j - ct_ij;
845              
# Line 700 | Line 847 | namespace OpenMD {
847  
848            duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
849            duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
850 +
851 +          if (idat.excluded) {
852 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
853 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
854 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
855 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
856 +          }
857  
858          } else {
859            
860            if (i_is_SplitDipole) {
861              if (j_is_SplitDipole) {
862 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
862 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
863              } else {
864 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
864 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
865              }
866              ri = 1.0 / BigR;
867 <            scale = idat.rij * ri;
867 >            scale =  *(idat.rij)  * ri;
868            } else {
869              if (j_is_SplitDipole) {
870 <              BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
870 >              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
871                ri = 1.0 / BigR;
872 <              scale = idat.rij * ri;
872 >              scale =  *(idat.rij)  * ri;
873              } else {
874                ri = riji;
875                scale = 1.0;
# Line 723 | Line 877 | namespace OpenMD {
877            }
878            if (screeningMethod_ == DAMPED) {
879              // assemble damping variables
880 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
880 >            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
881              erfcVal = res.first;
882              derfcVal = res.second;
883              c1 = erfcVal * ri;
# Line 745 | Line 899 | namespace OpenMD {
899            preSwSc = preSw * scale;
900            c2ri = c2 * ri;
901            c3ri = c3 * ri;
902 <          c4rij = c4 * idat.rij;
902 >          c4rij = c4 *  *(idat.rij) ;
903  
904            // calculate the potential
905            pot_term = (ct_ij * c2ri - ctidotj * c3);
906            vterm = pref * pot_term;
907 <          idat.vpair += vterm;
908 <          epot += idat.sw * vterm;
907 >          vpair += vterm;
908 >          epot +=  *(idat.sw)  * vterm;
909  
910            // calculate derivatives for the forces and torques
911            dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
# Line 770 | Line 924 | namespace OpenMD {
924          cy2 = cy_i * cy_i;
925          cz2 = cz_i * cz_i;
926  
927 <        pref = idat.electroMult * pre14_ * q_j * one_third_;
927 >        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
928  
929          if (screeningMethod_ == DAMPED) {
930            // assemble the damping variables
931 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
931 >          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
932            erfcVal = res.first;
933            derfcVal = res.second;
934            c1 = erfcVal * riji;
# Line 789 | Line 943 | namespace OpenMD {
943          }
944            
945          // precompute some variables for convenience
946 <        preSw = idat.sw * pref;
946 >        preSw =  *(idat.sw)  * pref;
947          c2ri = c2 * riji;
948          c3ri = c3 * riji;
949 <        c4rij = c4 * idat.rij;
949 >        c4rij = c4 *  *(idat.rij) ;
950          rhatdot2 = 2.0 * rhat * c3;
951          rhatc4 = rhat * c4rij;
952  
# Line 802 | Line 956 | namespace OpenMD {
956                       qzz_i * (cz2 * c3 - c2ri) );
957          
958          vterm = pref * pot_term;
959 <        idat.vpair += vterm;
960 <        epot += idat.sw * vterm;
959 >        vpair += vterm;
960 >        epot +=  *(idat.sw)  * vterm;
961  
962          // calculate the derivatives for the forces and torques
963  
# Line 817 | Line 971 | namespace OpenMD {
971        }
972      }
973  
820    idat.pot += epot;
821    idat.f1 += dVdr;
974  
975 <    if (i_is_Dipole || i_is_Quadrupole)
976 <      idat.t1 -= cross(uz_i, duduz_i);
977 <    if (i_is_Quadrupole) {
978 <      idat.t1 -= cross(ux_i, dudux_i);
979 <      idat.t1 -= cross(uy_i, duduy_i);
980 <    }
975 >    if (!idat.excluded) {
976 >      *(idat.vpair) += vpair;
977 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
978 >      *(idat.f1) += dVdr;
979 >      
980 >      if (i_is_Dipole || i_is_Quadrupole)
981 >        *(idat.t1) -= cross(uz_i, duduz_i);
982 >      if (i_is_Quadrupole) {
983 >        *(idat.t1) -= cross(ux_i, dudux_i);
984 >        *(idat.t1) -= cross(uy_i, duduy_i);
985 >      }
986 >      
987 >      if (j_is_Dipole || j_is_Quadrupole)
988 >        *(idat.t2) -= cross(uz_j, duduz_j);
989 >      if (j_is_Quadrupole) {
990 >        *(idat.t2) -= cross(uz_j, dudux_j);
991 >        *(idat.t2) -= cross(uz_j, duduy_j);
992 >      }
993  
994 <    if (j_is_Dipole || j_is_Quadrupole)
995 <      idat.t2 -= cross(uz_j, duduz_j);
996 <    if (j_is_Quadrupole) {
997 <      idat.t2 -= cross(uz_j, dudux_j);
998 <      idat.t2 -= cross(uz_j, duduy_j);
994 >    } else {
995 >
996 >      // only accumulate the forces and torques resulting from the
997 >      // indirect reaction field terms.
998 >      *(idat.vpair) += indirect_vpair;
999 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1000 >      *(idat.f1) += indirect_dVdr;
1001 >      
1002 >      if (i_is_Dipole)
1003 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1004 >      if (j_is_Dipole)
1005 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1006      }
1007  
1008 +
1009      return;
1010    }  
839
840  void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
841
842    if (!initialized_) initialize();
1011      
1012 <    ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
845 <    ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
846 <    
847 <    // logicals
848 <
849 <    bool i_is_Charge = data1.is_Charge;
850 <    bool i_is_Dipole = data1.is_Dipole;
851 <
852 <    bool j_is_Charge = data2.is_Charge;
853 <    bool j_is_Dipole = data2.is_Dipole;
854 <
855 <    RealType q_i, q_j;
856 <    
857 <    // The skippedCharge computation is needed by the real-space cutoff methods
858 <    // (i.e. shifted force and shifted potential)
859 <
860 <    if (i_is_Charge) {
861 <      q_i = data1.charge;
862 <      skdat.skippedCharge2 += q_i;
863 <    }
864 <
865 <    if (j_is_Charge) {
866 <      q_j = data2.charge;
867 <      skdat.skippedCharge1 += q_j;
868 <    }
869 <
870 <    // the rest of this function should only be necessary for reaction field.
871 <
872 <    if (summationMethod_ == REACTION_FIELD) {
873 <      RealType riji, ri2, ri3;
874 <      RealType q_i, mu_i, ct_i;
875 <      RealType q_j, mu_j, ct_j;
876 <      RealType preVal, rfVal, vterm, dudr, pref, myPot;
877 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
878 <
879 <      // some variables we'll need independent of electrostatic type:
880 <      
881 <      riji = 1.0 / skdat.rij;
882 <      rhat = skdat.d  * riji;
883 <
884 <      if (i_is_Dipole) {
885 <        mu_i = data1.dipole_moment;
886 <        uz_i = skdat.eFrame1.getColumn(2);      
887 <        ct_i = dot(uz_i, rhat);
888 <        duduz_i = V3Zero;
889 <      }
890 <            
891 <      if (j_is_Dipole) {
892 <        mu_j = data2.dipole_moment;
893 <        uz_j = skdat.eFrame2.getColumn(2);      
894 <        ct_j = dot(uz_j, rhat);
895 <        duduz_j = V3Zero;
896 <      }
897 <    
898 <      if (i_is_Charge) {
899 <        if (j_is_Charge) {
900 <          preVal = skdat.electroMult * pre11_ * q_i * q_j;
901 <          rfVal = preRF_ * skdat.rij * skdat.rij;
902 <          vterm = preVal * rfVal;
903 <          myPot += skdat.sw * vterm;        
904 <          dudr  = skdat.sw * preVal * 2.0 * rfVal * riji;        
905 <          dVdr += dudr * rhat;
906 <        }
907 <        
908 <        if (j_is_Dipole) {
909 <          ri2 = riji * riji;
910 <          ri3 = ri2 * riji;        
911 <          pref = skdat.electroMult * pre12_ * q_i * mu_j;
912 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
913 <          myPot += skdat.sw * vterm;        
914 <          dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
915 <          duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
916 <        }
917 <      }
918 <      if (i_is_Dipole) {
919 <        if (j_is_Charge) {
920 <          ri2 = riji * riji;
921 <          ri3 = ri2 * riji;        
922 <          pref = skdat.electroMult * pre12_ * q_j * mu_i;
923 <          vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
924 <          myPot += skdat.sw * vterm;        
925 <          dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
926 <          duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
927 <        }
928 <      }
929 <      
930 <      // accumulate the forces and torques resulting from the self term
931 <      skdat.pot += myPot;
932 <      skdat.f1 += dVdr;
933 <      
934 <      if (i_is_Dipole)
935 <        skdat.t1 -= cross(uz_i, duduz_i);
936 <      if (j_is_Dipole)
937 <        skdat.t2 -= cross(uz_j, duduz_j);
938 <    }
939 <  }
940 <    
941 <  void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
1012 >  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1013      RealType mu1, preVal, chg1, self;
1014      
1015      if (!initialized_) initialize();
1016 <    
1017 <    ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
1016 >
1017 >    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1018    
1019      // logicals
949
1020      bool i_is_Charge = data.is_Charge;
1021      bool i_is_Dipole = data.is_Dipole;
1022  
1023 <    if (summationMethod_ == REACTION_FIELD) {
1023 >    if (summationMethod_ == esm_REACTION_FIELD) {
1024        if (i_is_Dipole) {
1025          mu1 = data.dipole_moment;          
1026          preVal = pre22_ * preRF2_ * mu1 * mu1;
1027 <        scdat.pot -= 0.5 * preVal;
1027 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1028          
1029          // The self-correction term adds into the reaction field vector
1030 <        Vector3d uz_i = scdat.eFrame.getColumn(2);
1030 >        Vector3d uz_i = sdat.eFrame->getColumn(2);
1031          Vector3d ei = preVal * uz_i;
1032  
1033          // This looks very wrong.  A vector crossed with itself is zero.
1034 <        scdat.t -= cross(uz_i, ei);
1034 >        *(sdat.t) -= cross(uz_i, ei);
1035        }
1036 <    } else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) {
1036 >    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1037        if (i_is_Charge) {        
1038          chg1 = data.charge;
1039          if (screeningMethod_ == DAMPED) {
1040 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1040 >          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1041          } else {        
1042 <          self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1042 >          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1043          }
1044 <        scdat.pot += self;
1044 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1045        }
1046      }
1047    }
1048 +
1049 +  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1050 +    // This seems to work moderately well as a default.  There's no
1051 +    // inherent scale for 1/r interactions that we can standardize.
1052 +    // 12 angstroms seems to be a reasonably good guess for most
1053 +    // cases.
1054 +    return 12.0;
1055 +  }
1056   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines