34 |
|
* work. Good starting points are: |
35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
47 |
|
#include "utils/simError.h" |
48 |
|
#include "types/NonBondedInteractionType.hpp" |
49 |
|
#include "types/DirectionalAtomType.hpp" |
50 |
+ |
#include "io/Globals.hpp" |
51 |
|
|
51 |
– |
|
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
< |
forceField_(NULL) {} |
55 |
> |
forceField_(NULL), info_(NULL), |
56 |
> |
haveCutoffRadius_(false), |
57 |
> |
haveDampingAlpha_(false), |
58 |
> |
haveDielectric_(false), |
59 |
> |
haveElectroSpline_(false) |
60 |
> |
{} |
61 |
|
|
62 |
|
void Electrostatic::initialize() { |
63 |
+ |
|
64 |
+ |
Globals* simParams_ = info_->getSimParams(); |
65 |
+ |
|
66 |
+ |
summationMap_["HARD"] = esm_HARD; |
67 |
+ |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
68 |
+ |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
69 |
+ |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
70 |
+ |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
71 |
+ |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
72 |
+ |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
73 |
+ |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
74 |
+ |
screeningMap_["DAMPED"] = DAMPED; |
75 |
+ |
screeningMap_["UNDAMPED"] = UNDAMPED; |
76 |
+ |
|
77 |
|
// these prefactors convert the multipole interactions into kcal / mol |
78 |
|
// all were computed assuming distances are measured in angstroms |
79 |
|
// Charge-Charge, assuming charges are measured in electrons |
98 |
|
|
99 |
|
// variables to handle different summation methods for long-range |
100 |
|
// electrostatics: |
101 |
< |
summationMethod_ = NONE; |
101 |
> |
summationMethod_ = esm_HARD; |
102 |
|
screeningMethod_ = UNDAMPED; |
103 |
|
dielectric_ = 1.0; |
104 |
|
one_third_ = 1.0 / 3.0; |
86 |
– |
haveDefaultCutoff_ = false; |
87 |
– |
haveDampingAlpha_ = false; |
88 |
– |
haveDielectric_ = false; |
89 |
– |
haveElectroSpline_ = false; |
105 |
|
|
106 |
+ |
// check the summation method: |
107 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
108 |
+ |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
109 |
+ |
toUpper(myMethod); |
110 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
111 |
+ |
i = summationMap_.find(myMethod); |
112 |
+ |
if ( i != summationMap_.end() ) { |
113 |
+ |
summationMethod_ = (*i).second; |
114 |
+ |
} else { |
115 |
+ |
// throw error |
116 |
+ |
sprintf( painCave.errMsg, |
117 |
+ |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
118 |
+ |
"\t(Input file specified %s .)\n" |
119 |
+ |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
120 |
+ |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
121 |
+ |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
122 |
+ |
painCave.isFatal = 1; |
123 |
+ |
simError(); |
124 |
+ |
} |
125 |
+ |
} else { |
126 |
+ |
// set ElectrostaticSummationMethod to the cutoffMethod: |
127 |
+ |
if (simParams_->haveCutoffMethod()){ |
128 |
+ |
string myMethod = simParams_->getCutoffMethod(); |
129 |
+ |
toUpper(myMethod); |
130 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
131 |
+ |
i = summationMap_.find(myMethod); |
132 |
+ |
if ( i != summationMap_.end() ) { |
133 |
+ |
summationMethod_ = (*i).second; |
134 |
+ |
} |
135 |
+ |
} |
136 |
+ |
} |
137 |
+ |
|
138 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
139 |
+ |
if (!simParams_->haveDielectric()) { |
140 |
+ |
// throw warning |
141 |
+ |
sprintf( painCave.errMsg, |
142 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
143 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
144 |
+ |
painCave.isFatal = 0; |
145 |
+ |
painCave.severity = OPENMD_INFO; |
146 |
+ |
simError(); |
147 |
+ |
} else { |
148 |
+ |
dielectric_ = simParams_->getDielectric(); |
149 |
+ |
} |
150 |
+ |
haveDielectric_ = true; |
151 |
+ |
} |
152 |
+ |
|
153 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
154 |
+ |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
155 |
+ |
toUpper(myScreen); |
156 |
+ |
map<string, ElectrostaticScreeningMethod>::iterator i; |
157 |
+ |
i = screeningMap_.find(myScreen); |
158 |
+ |
if ( i != screeningMap_.end()) { |
159 |
+ |
screeningMethod_ = (*i).second; |
160 |
+ |
} else { |
161 |
+ |
sprintf( painCave.errMsg, |
162 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
163 |
+ |
"\t(Input file specified %s .)\n" |
164 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
165 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
166 |
+ |
painCave.isFatal = 1; |
167 |
+ |
simError(); |
168 |
+ |
} |
169 |
+ |
} |
170 |
+ |
|
171 |
+ |
// check to make sure a cutoff value has been set: |
172 |
+ |
if (!haveCutoffRadius_) { |
173 |
+ |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
174 |
+ |
"Cutoff value!\n"); |
175 |
+ |
painCave.severity = OPENMD_ERROR; |
176 |
+ |
painCave.isFatal = 1; |
177 |
+ |
simError(); |
178 |
+ |
} |
179 |
+ |
|
180 |
+ |
if (screeningMethod_ == DAMPED) { |
181 |
+ |
if (!simParams_->haveDampingAlpha()) { |
182 |
+ |
// first set a cutoff dependent alpha value |
183 |
+ |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
184 |
+ |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
185 |
+ |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
186 |
+ |
|
187 |
+ |
// throw warning |
188 |
+ |
sprintf( painCave.errMsg, |
189 |
+ |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
190 |
+ |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
191 |
+ |
dampingAlpha_, cutoffRadius_); |
192 |
+ |
painCave.severity = OPENMD_INFO; |
193 |
+ |
painCave.isFatal = 0; |
194 |
+ |
simError(); |
195 |
+ |
} else { |
196 |
+ |
dampingAlpha_ = simParams_->getDampingAlpha(); |
197 |
+ |
} |
198 |
+ |
haveDampingAlpha_ = true; |
199 |
+ |
} |
200 |
+ |
|
201 |
|
// find all of the Electrostatic atom Types: |
202 |
|
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
203 |
|
ForceField::AtomTypeContainer::MapTypeIterator i; |
204 |
|
AtomType* at; |
205 |
< |
|
205 |
> |
|
206 |
|
for (at = atomTypes->beginType(i); at != NULL; |
207 |
|
at = atomTypes->nextType(i)) { |
208 |
|
|
210 |
|
addType(at); |
211 |
|
} |
212 |
|
|
103 |
– |
// check to make sure a cutoff value has been set: |
104 |
– |
if (!haveDefaultCutoff_) { |
105 |
– |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
106 |
– |
"Cutoff value!\n"); |
107 |
– |
painCave.severity = OPENMD_ERROR; |
108 |
– |
painCave.isFatal = 1; |
109 |
– |
simError(); |
110 |
– |
} |
213 |
|
|
214 |
< |
defaultCutoff2_ = defaultCutoff_ * defaultCutoff_; |
215 |
< |
rcuti_ = 1.0 / defaultCutoff_; |
214 |
> |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
215 |
> |
rcuti_ = 1.0 / cutoffRadius_; |
216 |
|
rcuti2_ = rcuti_ * rcuti_; |
217 |
|
rcuti3_ = rcuti2_ * rcuti_; |
218 |
|
rcuti4_ = rcuti2_ * rcuti2_; |
219 |
|
|
220 |
|
if (screeningMethod_ == DAMPED) { |
221 |
< |
if (!haveDampingAlpha_) { |
120 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no " |
121 |
< |
"DampingAlpha value!\n"); |
122 |
< |
painCave.severity = OPENMD_ERROR; |
123 |
< |
painCave.isFatal = 1; |
124 |
< |
simError(); |
125 |
< |
} |
126 |
< |
|
221 |
> |
|
222 |
|
alpha2_ = dampingAlpha_ * dampingAlpha_; |
223 |
|
alpha4_ = alpha2_ * alpha2_; |
224 |
|
alpha6_ = alpha4_ * alpha2_; |
225 |
|
alpha8_ = alpha4_ * alpha4_; |
226 |
|
|
227 |
< |
constEXP_ = exp(-alpha2_ * defaultCutoff2_); |
227 |
> |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
228 |
|
invRootPi_ = 0.56418958354775628695; |
229 |
|
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
230 |
|
|
231 |
< |
c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_; |
231 |
> |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
232 |
|
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
233 |
|
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
234 |
|
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
243 |
|
c6c_ = 9.0 * c5c_ * rcuti2_; |
244 |
|
} |
245 |
|
|
246 |
< |
if (summationMethod_ == REACTION_FIELD) { |
247 |
< |
if (haveDielectric_) { |
248 |
< |
preRF_ = (dielectric_ - 1.0) / |
249 |
< |
((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_); |
155 |
< |
preRF2_ = 2.0 * preRF_; |
156 |
< |
} else { |
157 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric" |
158 |
< |
" value!\n"); |
159 |
< |
painCave.severity = OPENMD_ERROR; |
160 |
< |
painCave.isFatal = 1; |
161 |
< |
simError(); |
162 |
< |
} |
246 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
247 |
> |
preRF_ = (dielectric_ - 1.0) / |
248 |
> |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
249 |
> |
preRF2_ = 2.0 * preRF_; |
250 |
|
} |
251 |
< |
|
252 |
< |
RealType dx = defaultCutoff_ / RealType(np_ - 1); |
251 |
> |
|
252 |
> |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
253 |
|
RealType rval; |
254 |
|
vector<RealType> rvals; |
255 |
|
vector<RealType> yvals; |
370 |
|
simError(); |
371 |
|
} |
372 |
|
|
373 |
+ |
// Quadrupoles in OpenMD are set as the diagonal elements |
374 |
+ |
// of the diagonalized traceless quadrupole moment tensor. |
375 |
+ |
// The column vectors of the unitary matrix that diagonalizes |
376 |
+ |
// the quadrupole moment tensor become the eFrame (or the |
377 |
+ |
// electrostatic version of the body-fixed frame. |
378 |
+ |
|
379 |
|
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
380 |
|
if (v3dData == NULL) { |
381 |
|
sprintf( painCave.errMsg, |
408 |
|
return; |
409 |
|
} |
410 |
|
|
411 |
< |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
412 |
< |
RealType theRSW ) { |
413 |
< |
defaultCutoff_ = theECR; |
414 |
< |
rrf_ = defaultCutoff_; |
322 |
< |
rt_ = theRSW; |
323 |
< |
haveDefaultCutoff_ = true; |
411 |
> |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
412 |
> |
cutoffRadius_ = rCut; |
413 |
> |
rrf_ = cutoffRadius_; |
414 |
> |
haveCutoffRadius_ = true; |
415 |
|
} |
416 |
+ |
|
417 |
+ |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
418 |
+ |
rt_ = rSwitch; |
419 |
+ |
} |
420 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
421 |
|
summationMethod_ = esm; |
422 |
|
} |
432 |
|
haveDielectric_ = true; |
433 |
|
} |
434 |
|
|
435 |
< |
void Electrostatic::calcForce(InteractionData idat) { |
435 |
> |
void Electrostatic::calcForce(InteractionData &idat) { |
436 |
|
|
437 |
|
// utility variables. Should clean these up and use the Vector3d and |
438 |
|
// Mat3x3d to replace as many as we can in future versions: |
446 |
|
RealType ct_i, ct_j, ct_ij, a1; |
447 |
|
RealType riji, ri, ri2, ri3, ri4; |
448 |
|
RealType pref, vterm, epot, dudr; |
449 |
+ |
RealType vpair(0.0); |
450 |
|
RealType scale, sc2; |
451 |
|
RealType pot_term, preVal, rfVal; |
452 |
|
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
453 |
|
RealType preSw, preSwSc; |
454 |
|
RealType c1, c2, c3, c4; |
455 |
< |
RealType erfcVal, derfcVal; |
455 |
> |
RealType erfcVal(1.0), derfcVal(0.0); |
456 |
|
RealType BigR; |
457 |
|
|
458 |
|
Vector3d Q_i, Q_j; |
463 |
|
Vector3d rhatdot2, rhatc4; |
464 |
|
Vector3d dVdr; |
465 |
|
|
466 |
+ |
// variables for indirect (reaction field) interactions for excluded pairs: |
467 |
+ |
RealType indirect_Pot(0.0); |
468 |
+ |
RealType indirect_vpair(0.0); |
469 |
+ |
Vector3d indirect_dVdr(V3Zero); |
470 |
+ |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
471 |
+ |
|
472 |
|
pair<RealType, RealType> res; |
473 |
|
|
474 |
|
if (!initialized_) initialize(); |
475 |
|
|
476 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
477 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
476 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
477 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
478 |
|
|
479 |
|
// some variables we'll need independent of electrostatic type: |
480 |
|
|
481 |
< |
riji = 1.0 / idat.rij; |
482 |
< |
Vector3d rhat = idat.d * riji; |
481 |
> |
riji = 1.0 / *(idat.rij) ; |
482 |
> |
Vector3d rhat = *(idat.d) * riji; |
483 |
|
|
484 |
|
// logicals |
485 |
|
|
493 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
494 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
495 |
|
|
496 |
< |
if (i_is_Charge) |
496 |
> |
if (i_is_Charge) { |
497 |
|
q_i = data1.charge; |
498 |
+ |
if (idat.excluded) { |
499 |
+ |
*(idat.skippedCharge2) += q_i; |
500 |
+ |
} |
501 |
+ |
} |
502 |
|
|
503 |
|
if (i_is_Dipole) { |
504 |
|
mu_i = data1.dipole_moment; |
505 |
< |
uz_i = idat.eFrame1.getColumn(2); |
505 |
> |
uz_i = idat.eFrame1->getColumn(2); |
506 |
|
|
507 |
|
ct_i = dot(uz_i, rhat); |
508 |
|
|
518 |
|
qyy_i = Q_i.y(); |
519 |
|
qzz_i = Q_i.z(); |
520 |
|
|
521 |
< |
ux_i = idat.eFrame1.getColumn(0); |
522 |
< |
uy_i = idat.eFrame1.getColumn(1); |
523 |
< |
uz_i = idat.eFrame1.getColumn(2); |
521 |
> |
ux_i = idat.eFrame1->getColumn(0); |
522 |
> |
uy_i = idat.eFrame1->getColumn(1); |
523 |
> |
uz_i = idat.eFrame1->getColumn(2); |
524 |
|
|
525 |
|
cx_i = dot(ux_i, rhat); |
526 |
|
cy_i = dot(uy_i, rhat); |
531 |
|
duduz_i = V3Zero; |
532 |
|
} |
533 |
|
|
534 |
< |
if (j_is_Charge) |
534 |
> |
if (j_is_Charge) { |
535 |
|
q_j = data2.charge; |
536 |
+ |
if (idat.excluded) { |
537 |
+ |
*(idat.skippedCharge1) += q_j; |
538 |
+ |
} |
539 |
+ |
} |
540 |
|
|
541 |
+ |
|
542 |
|
if (j_is_Dipole) { |
543 |
|
mu_j = data2.dipole_moment; |
544 |
< |
uz_j = idat.eFrame2.getColumn(2); |
544 |
> |
uz_j = idat.eFrame2->getColumn(2); |
545 |
|
|
546 |
|
ct_j = dot(uz_j, rhat); |
547 |
|
|
557 |
|
qyy_j = Q_j.y(); |
558 |
|
qzz_j = Q_j.z(); |
559 |
|
|
560 |
< |
ux_j = idat.eFrame2.getColumn(0); |
561 |
< |
uy_j = idat.eFrame2.getColumn(1); |
562 |
< |
uz_j = idat.eFrame2.getColumn(2); |
560 |
> |
ux_j = idat.eFrame2->getColumn(0); |
561 |
> |
uy_j = idat.eFrame2->getColumn(1); |
562 |
> |
uz_j = idat.eFrame2->getColumn(2); |
563 |
|
|
564 |
|
cx_j = dot(ux_j, rhat); |
565 |
|
cy_j = dot(uy_j, rhat); |
578 |
|
if (j_is_Charge) { |
579 |
|
if (screeningMethod_ == DAMPED) { |
580 |
|
// assemble the damping variables |
581 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
581 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
582 |
|
erfcVal = res.first; |
583 |
|
derfcVal = res.second; |
584 |
|
c1 = erfcVal * riji; |
588 |
|
c2 = c1 * riji; |
589 |
|
} |
590 |
|
|
591 |
< |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
591 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
592 |
|
|
593 |
< |
if (summationMethod_ == SHIFTED_POTENTIAL) { |
593 |
> |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
594 |
|
vterm = preVal * (c1 - c1c_); |
595 |
< |
dudr = -idat.sw * preVal * c2; |
595 |
> |
dudr = - *(idat.sw) * preVal * c2; |
596 |
|
|
597 |
< |
} else if (summationMethod_ == SHIFTED_FORCE) { |
598 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) ); |
599 |
< |
dudr = idat.sw * preVal * (c2c_ - c2); |
597 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
598 |
> |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
599 |
> |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
600 |
|
|
601 |
< |
} else if (summationMethod_ == REACTION_FIELD) { |
602 |
< |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
601 |
> |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
602 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
603 |
> |
|
604 |
|
vterm = preVal * ( riji + rfVal ); |
605 |
< |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
605 |
> |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
606 |
> |
|
607 |
> |
// if this is an excluded pair, there are still indirect |
608 |
> |
// interactions via the reaction field we must worry about: |
609 |
|
|
610 |
+ |
if (idat.excluded) { |
611 |
+ |
indirect_vpair += preVal * rfVal; |
612 |
+ |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
613 |
+ |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
614 |
+ |
} |
615 |
+ |
|
616 |
|
} else { |
496 |
– |
vterm = preVal * riji * erfcVal; |
617 |
|
|
618 |
< |
dudr = - idat.sw * preVal * c2; |
618 |
> |
vterm = preVal * riji * erfcVal; |
619 |
> |
dudr = - *(idat.sw) * preVal * c2; |
620 |
|
|
621 |
|
} |
501 |
– |
|
502 |
– |
idat.vpair += vterm; |
503 |
– |
epot += idat.sw * vterm; |
622 |
|
|
623 |
< |
dVdr += dudr * rhat; |
623 |
> |
vpair += vterm; |
624 |
> |
epot += *(idat.sw) * vterm; |
625 |
> |
dVdr += dudr * rhat; |
626 |
|
} |
627 |
|
|
628 |
|
if (j_is_Dipole) { |
629 |
|
// pref is used by all the possible methods |
630 |
< |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
631 |
< |
preSw = idat.sw * pref; |
630 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
631 |
> |
preSw = *(idat.sw) * pref; |
632 |
|
|
633 |
< |
if (summationMethod_ == REACTION_FIELD) { |
633 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
634 |
|
ri2 = riji * riji; |
635 |
|
ri3 = ri2 * riji; |
636 |
|
|
637 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
638 |
< |
idat.vpair += vterm; |
639 |
< |
epot += idat.sw * vterm; |
637 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
638 |
> |
vpair += vterm; |
639 |
> |
epot += *(idat.sw) * vterm; |
640 |
|
|
641 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
642 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
642 |
> |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
643 |
|
|
644 |
+ |
// Even if we excluded this pair from direct interactions, |
645 |
+ |
// we still have the reaction-field-mediated charge-dipole |
646 |
+ |
// interaction: |
647 |
+ |
|
648 |
+ |
if (idat.excluded) { |
649 |
+ |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
650 |
+ |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
651 |
+ |
indirect_dVdr += preSw * preRF2_ * uz_j; |
652 |
+ |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
653 |
+ |
} |
654 |
+ |
|
655 |
|
} else { |
656 |
|
// determine the inverse r used if we have split dipoles |
657 |
|
if (j_is_SplitDipole) { |
658 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
658 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
659 |
|
ri = 1.0 / BigR; |
660 |
< |
scale = idat.rij * ri; |
660 |
> |
scale = *(idat.rij) * ri; |
661 |
|
} else { |
662 |
|
ri = riji; |
663 |
|
scale = 1.0; |
667 |
|
|
668 |
|
if (screeningMethod_ == DAMPED) { |
669 |
|
// assemble the damping variables |
670 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
670 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
671 |
|
erfcVal = res.first; |
672 |
|
derfcVal = res.second; |
673 |
|
c1 = erfcVal * ri; |
684 |
|
// calculate the potential |
685 |
|
pot_term = scale * c2; |
686 |
|
vterm = -pref * ct_j * pot_term; |
687 |
< |
idat.vpair += vterm; |
688 |
< |
epot += idat.sw * vterm; |
687 |
> |
vpair += vterm; |
688 |
> |
epot += *(idat.sw) * vterm; |
689 |
|
|
690 |
|
// calculate derivatives for forces and torques |
691 |
|
|
700 |
|
cx2 = cx_j * cx_j; |
701 |
|
cy2 = cy_j * cy_j; |
702 |
|
cz2 = cz_j * cz_j; |
703 |
< |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
703 |
> |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
704 |
|
|
705 |
|
if (screeningMethod_ == DAMPED) { |
706 |
|
// assemble the damping variables |
707 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
707 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
708 |
|
erfcVal = res.first; |
709 |
|
derfcVal = res.second; |
710 |
|
c1 = erfcVal * riji; |
719 |
|
} |
720 |
|
|
721 |
|
// precompute variables for convenience |
722 |
< |
preSw = idat.sw * pref; |
722 |
> |
preSw = *(idat.sw) * pref; |
723 |
|
c2ri = c2 * riji; |
724 |
|
c3ri = c3 * riji; |
725 |
< |
c4rij = c4 * idat.rij; |
725 |
> |
c4rij = c4 * *(idat.rij) ; |
726 |
|
rhatdot2 = 2.0 * rhat * c3; |
727 |
|
rhatc4 = rhat * c4rij; |
728 |
|
|
731 |
|
qyy_j * (cy2*c3 - c2ri) + |
732 |
|
qzz_j * (cz2*c3 - c2ri) ); |
733 |
|
vterm = pref * pot_term; |
734 |
< |
idat.vpair += vterm; |
735 |
< |
epot += idat.sw * vterm; |
734 |
> |
vpair += vterm; |
735 |
> |
epot += *(idat.sw) * vterm; |
736 |
|
|
737 |
|
// calculate derivatives for the forces and torques |
738 |
|
|
750 |
|
|
751 |
|
if (j_is_Charge) { |
752 |
|
// variables used by all the methods |
753 |
< |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
754 |
< |
preSw = idat.sw * pref; |
753 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
754 |
> |
preSw = *(idat.sw) * pref; |
755 |
|
|
756 |
< |
if (summationMethod_ == REACTION_FIELD) { |
756 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
757 |
|
|
758 |
|
ri2 = riji * riji; |
759 |
|
ri3 = ri2 * riji; |
760 |
|
|
761 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
762 |
< |
idat.vpair += vterm; |
763 |
< |
epot += idat.sw * vterm; |
761 |
> |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
762 |
> |
vpair += vterm; |
763 |
> |
epot += *(idat.sw) * vterm; |
764 |
|
|
765 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
766 |
|
|
767 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
767 |
> |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
768 |
> |
|
769 |
> |
// Even if we excluded this pair from direct interactions, |
770 |
> |
// we still have the reaction-field-mediated charge-dipole |
771 |
> |
// interaction: |
772 |
> |
|
773 |
> |
if (idat.excluded) { |
774 |
> |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
775 |
> |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
776 |
> |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
777 |
> |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
778 |
> |
} |
779 |
|
|
780 |
|
} else { |
781 |
|
|
782 |
|
// determine inverse r if we are using split dipoles |
783 |
|
if (i_is_SplitDipole) { |
784 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
784 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
785 |
|
ri = 1.0 / BigR; |
786 |
< |
scale = idat.rij * ri; |
786 |
> |
scale = *(idat.rij) * ri; |
787 |
|
} else { |
788 |
|
ri = riji; |
789 |
|
scale = 1.0; |
793 |
|
|
794 |
|
if (screeningMethod_ == DAMPED) { |
795 |
|
// assemble the damping variables |
796 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
796 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
797 |
|
erfcVal = res.first; |
798 |
|
derfcVal = res.second; |
799 |
|
c1 = erfcVal * ri; |
810 |
|
// calculate the potential |
811 |
|
pot_term = c2 * scale; |
812 |
|
vterm = pref * ct_i * pot_term; |
813 |
< |
idat.vpair += vterm; |
814 |
< |
epot += idat.sw * vterm; |
813 |
> |
vpair += vterm; |
814 |
> |
epot += *(idat.sw) * vterm; |
815 |
|
|
816 |
|
// calculate derivatives for the forces and torques |
817 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
823 |
|
// variables used by all methods |
824 |
|
ct_ij = dot(uz_i, uz_j); |
825 |
|
|
826 |
< |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
827 |
< |
preSw = idat.sw * pref; |
826 |
> |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
827 |
> |
preSw = *(idat.sw) * pref; |
828 |
|
|
829 |
< |
if (summationMethod_ == REACTION_FIELD) { |
829 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
830 |
|
ri2 = riji * riji; |
831 |
|
ri3 = ri2 * riji; |
832 |
|
ri4 = ri2 * ri2; |
833 |
|
|
834 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
835 |
|
preRF2_ * ct_ij ); |
836 |
< |
idat.vpair += vterm; |
837 |
< |
epot += idat.sw * vterm; |
836 |
> |
vpair += vterm; |
837 |
> |
epot += *(idat.sw) * vterm; |
838 |
|
|
839 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
840 |
|
|
843 |
|
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
844 |
|
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
845 |
|
|
846 |
+ |
if (idat.excluded) { |
847 |
+ |
indirect_vpair += - pref * preRF2_ * ct_ij; |
848 |
+ |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
849 |
+ |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
850 |
+ |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
851 |
+ |
} |
852 |
+ |
|
853 |
|
} else { |
854 |
|
|
855 |
|
if (i_is_SplitDipole) { |
856 |
|
if (j_is_SplitDipole) { |
857 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
857 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
858 |
|
} else { |
859 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
859 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
860 |
|
} |
861 |
|
ri = 1.0 / BigR; |
862 |
< |
scale = idat.rij * ri; |
862 |
> |
scale = *(idat.rij) * ri; |
863 |
|
} else { |
864 |
|
if (j_is_SplitDipole) { |
865 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
865 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
866 |
|
ri = 1.0 / BigR; |
867 |
< |
scale = idat.rij * ri; |
867 |
> |
scale = *(idat.rij) * ri; |
868 |
|
} else { |
869 |
|
ri = riji; |
870 |
|
scale = 1.0; |
872 |
|
} |
873 |
|
if (screeningMethod_ == DAMPED) { |
874 |
|
// assemble damping variables |
875 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
875 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
876 |
|
erfcVal = res.first; |
877 |
|
derfcVal = res.second; |
878 |
|
c1 = erfcVal * ri; |
894 |
|
preSwSc = preSw * scale; |
895 |
|
c2ri = c2 * ri; |
896 |
|
c3ri = c3 * ri; |
897 |
< |
c4rij = c4 * idat.rij; |
897 |
> |
c4rij = c4 * *(idat.rij) ; |
898 |
|
|
899 |
|
// calculate the potential |
900 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
901 |
|
vterm = pref * pot_term; |
902 |
< |
idat.vpair += vterm; |
903 |
< |
epot += idat.sw * vterm; |
902 |
> |
vpair += vterm; |
903 |
> |
epot += *(idat.sw) * vterm; |
904 |
|
|
905 |
|
// calculate derivatives for the forces and torques |
906 |
|
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
919 |
|
cy2 = cy_i * cy_i; |
920 |
|
cz2 = cz_i * cz_i; |
921 |
|
|
922 |
< |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
922 |
> |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
923 |
|
|
924 |
|
if (screeningMethod_ == DAMPED) { |
925 |
|
// assemble the damping variables |
926 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
926 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
927 |
|
erfcVal = res.first; |
928 |
|
derfcVal = res.second; |
929 |
|
c1 = erfcVal * riji; |
938 |
|
} |
939 |
|
|
940 |
|
// precompute some variables for convenience |
941 |
< |
preSw = idat.sw * pref; |
941 |
> |
preSw = *(idat.sw) * pref; |
942 |
|
c2ri = c2 * riji; |
943 |
|
c3ri = c3 * riji; |
944 |
< |
c4rij = c4 * idat.rij; |
944 |
> |
c4rij = c4 * *(idat.rij) ; |
945 |
|
rhatdot2 = 2.0 * rhat * c3; |
946 |
|
rhatc4 = rhat * c4rij; |
947 |
|
|
951 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
952 |
|
|
953 |
|
vterm = pref * pot_term; |
954 |
< |
idat.vpair += vterm; |
955 |
< |
epot += idat.sw * vterm; |
954 |
> |
vpair += vterm; |
955 |
> |
epot += *(idat.sw) * vterm; |
956 |
|
|
957 |
|
// calculate the derivatives for the forces and torques |
958 |
|
|
966 |
|
} |
967 |
|
} |
968 |
|
|
820 |
– |
idat.pot += epot; |
821 |
– |
idat.f1 += dVdr; |
969 |
|
|
970 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
971 |
< |
idat.t1 -= cross(uz_i, duduz_i); |
972 |
< |
if (i_is_Quadrupole) { |
973 |
< |
idat.t1 -= cross(ux_i, dudux_i); |
974 |
< |
idat.t1 -= cross(uy_i, duduy_i); |
975 |
< |
} |
970 |
> |
if (!idat.excluded) { |
971 |
> |
*(idat.vpair) += vpair; |
972 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
973 |
> |
*(idat.f1) += dVdr; |
974 |
> |
|
975 |
> |
if (i_is_Dipole || i_is_Quadrupole) |
976 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
977 |
> |
if (i_is_Quadrupole) { |
978 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
979 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
980 |
> |
} |
981 |
> |
|
982 |
> |
if (j_is_Dipole || j_is_Quadrupole) |
983 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
984 |
> |
if (j_is_Quadrupole) { |
985 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
986 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
987 |
> |
} |
988 |
|
|
989 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
990 |
< |
idat.t2 -= cross(uz_j, duduz_j); |
991 |
< |
if (j_is_Quadrupole) { |
992 |
< |
idat.t2 -= cross(uz_j, dudux_j); |
993 |
< |
idat.t2 -= cross(uz_j, duduy_j); |
989 |
> |
} else { |
990 |
> |
|
991 |
> |
// only accumulate the forces and torques resulting from the |
992 |
> |
// indirect reaction field terms. |
993 |
> |
*(idat.vpair) += indirect_vpair; |
994 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
995 |
> |
*(idat.f1) += indirect_dVdr; |
996 |
> |
|
997 |
> |
if (i_is_Dipole) |
998 |
> |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
999 |
> |
if (j_is_Dipole) |
1000 |
> |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1001 |
|
} |
1002 |
|
|
1003 |
+ |
|
1004 |
|
return; |
1005 |
|
} |
839 |
– |
|
840 |
– |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
841 |
– |
|
842 |
– |
if (!initialized_) initialize(); |
1006 |
|
|
1007 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
845 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
846 |
< |
|
847 |
< |
// logicals |
848 |
< |
|
849 |
< |
bool i_is_Charge = data1.is_Charge; |
850 |
< |
bool i_is_Dipole = data1.is_Dipole; |
851 |
< |
|
852 |
< |
bool j_is_Charge = data2.is_Charge; |
853 |
< |
bool j_is_Dipole = data2.is_Dipole; |
854 |
< |
|
855 |
< |
RealType q_i, q_j; |
856 |
< |
|
857 |
< |
// The skippedCharge computation is needed by the real-space cutoff methods |
858 |
< |
// (i.e. shifted force and shifted potential) |
859 |
< |
|
860 |
< |
if (i_is_Charge) { |
861 |
< |
q_i = data1.charge; |
862 |
< |
skdat.skippedCharge2 += q_i; |
863 |
< |
} |
864 |
< |
|
865 |
< |
if (j_is_Charge) { |
866 |
< |
q_j = data2.charge; |
867 |
< |
skdat.skippedCharge1 += q_j; |
868 |
< |
} |
869 |
< |
|
870 |
< |
// the rest of this function should only be necessary for reaction field. |
871 |
< |
|
872 |
< |
if (summationMethod_ == REACTION_FIELD) { |
873 |
< |
RealType riji, ri2, ri3; |
874 |
< |
RealType q_i, mu_i, ct_i; |
875 |
< |
RealType q_j, mu_j, ct_j; |
876 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
877 |
< |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
878 |
< |
|
879 |
< |
// some variables we'll need independent of electrostatic type: |
880 |
< |
|
881 |
< |
riji = 1.0 / skdat.rij; |
882 |
< |
rhat = skdat.d * riji; |
883 |
< |
|
884 |
< |
if (i_is_Dipole) { |
885 |
< |
mu_i = data1.dipole_moment; |
886 |
< |
uz_i = skdat.eFrame1.getColumn(2); |
887 |
< |
ct_i = dot(uz_i, rhat); |
888 |
< |
duduz_i = V3Zero; |
889 |
< |
} |
890 |
< |
|
891 |
< |
if (j_is_Dipole) { |
892 |
< |
mu_j = data2.dipole_moment; |
893 |
< |
uz_j = skdat.eFrame2.getColumn(2); |
894 |
< |
ct_j = dot(uz_j, rhat); |
895 |
< |
duduz_j = V3Zero; |
896 |
< |
} |
897 |
< |
|
898 |
< |
if (i_is_Charge) { |
899 |
< |
if (j_is_Charge) { |
900 |
< |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
901 |
< |
rfVal = preRF_ * skdat.rij * skdat.rij; |
902 |
< |
vterm = preVal * rfVal; |
903 |
< |
myPot += skdat.sw * vterm; |
904 |
< |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
905 |
< |
dVdr += dudr * rhat; |
906 |
< |
} |
907 |
< |
|
908 |
< |
if (j_is_Dipole) { |
909 |
< |
ri2 = riji * riji; |
910 |
< |
ri3 = ri2 * riji; |
911 |
< |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
912 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
913 |
< |
myPot += skdat.sw * vterm; |
914 |
< |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
915 |
< |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
916 |
< |
} |
917 |
< |
} |
918 |
< |
if (i_is_Dipole) { |
919 |
< |
if (j_is_Charge) { |
920 |
< |
ri2 = riji * riji; |
921 |
< |
ri3 = ri2 * riji; |
922 |
< |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
923 |
< |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
924 |
< |
myPot += skdat.sw * vterm; |
925 |
< |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
926 |
< |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
927 |
< |
} |
928 |
< |
} |
929 |
< |
|
930 |
< |
// accumulate the forces and torques resulting from the self term |
931 |
< |
skdat.pot += myPot; |
932 |
< |
skdat.f1 += dVdr; |
933 |
< |
|
934 |
< |
if (i_is_Dipole) |
935 |
< |
skdat.t1 -= cross(uz_i, duduz_i); |
936 |
< |
if (j_is_Dipole) |
937 |
< |
skdat.t2 -= cross(uz_j, duduz_j); |
938 |
< |
} |
939 |
< |
} |
940 |
< |
|
941 |
< |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
1007 |
> |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1008 |
|
RealType mu1, preVal, chg1, self; |
1009 |
|
|
1010 |
|
if (!initialized_) initialize(); |
1011 |
< |
|
1012 |
< |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
1011 |
> |
|
1012 |
> |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1013 |
|
|
1014 |
|
// logicals |
949 |
– |
|
1015 |
|
bool i_is_Charge = data.is_Charge; |
1016 |
|
bool i_is_Dipole = data.is_Dipole; |
1017 |
|
|
1018 |
< |
if (summationMethod_ == REACTION_FIELD) { |
1018 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
1019 |
|
if (i_is_Dipole) { |
1020 |
|
mu1 = data.dipole_moment; |
1021 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1022 |
< |
scdat.pot -= 0.5 * preVal; |
1022 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1023 |
|
|
1024 |
|
// The self-correction term adds into the reaction field vector |
1025 |
< |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
1025 |
> |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1026 |
|
Vector3d ei = preVal * uz_i; |
1027 |
|
|
1028 |
|
// This looks very wrong. A vector crossed with itself is zero. |
1029 |
< |
scdat.t -= cross(uz_i, ei); |
1029 |
> |
*(sdat.t) -= cross(uz_i, ei); |
1030 |
|
} |
1031 |
< |
} else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) { |
1031 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1032 |
|
if (i_is_Charge) { |
1033 |
|
chg1 = data.charge; |
1034 |
|
if (screeningMethod_ == DAMPED) { |
1035 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1035 |
> |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1036 |
|
} else { |
1037 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1037 |
> |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1038 |
|
} |
1039 |
< |
scdat.pot += self; |
1039 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1040 |
|
} |
1041 |
|
} |
1042 |
|
} |
1043 |
+ |
|
1044 |
+ |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1045 |
+ |
// This seems to work moderately well as a default. There's no |
1046 |
+ |
// inherent scale for 1/r interactions that we can standardize. |
1047 |
+ |
// 12 angstroms seems to be a reasonably good guess for most |
1048 |
+ |
// cases. |
1049 |
+ |
return 12.0; |
1050 |
+ |
} |
1051 |
|
} |