47 |
|
#include "utils/simError.h" |
48 |
|
#include "types/NonBondedInteractionType.hpp" |
49 |
|
#include "types/DirectionalAtomType.hpp" |
50 |
+ |
#include "io/Globals.hpp" |
51 |
|
|
51 |
– |
|
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
|
forceField_(NULL) {} |
56 |
|
|
57 |
|
void Electrostatic::initialize() { |
58 |
+ |
|
59 |
+ |
Globals* simParams_; |
60 |
+ |
|
61 |
+ |
summationMap_["HARD"] = esm_HARD; |
62 |
+ |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
63 |
+ |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
64 |
+ |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
65 |
+ |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
66 |
+ |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
67 |
+ |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
68 |
+ |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
69 |
+ |
screeningMap_["DAMPED"] = DAMPED; |
70 |
+ |
screeningMap_["UNDAMPED"] = UNDAMPED; |
71 |
+ |
|
72 |
|
// these prefactors convert the multipole interactions into kcal / mol |
73 |
|
// all were computed assuming distances are measured in angstroms |
74 |
|
// Charge-Charge, assuming charges are measured in electrons |
93 |
|
|
94 |
|
// variables to handle different summation methods for long-range |
95 |
|
// electrostatics: |
96 |
< |
summationMethod_ = NONE; |
96 |
> |
summationMethod_ = esm_HARD; |
97 |
|
screeningMethod_ = UNDAMPED; |
98 |
|
dielectric_ = 1.0; |
99 |
|
one_third_ = 1.0 / 3.0; |
100 |
< |
haveDefaultCutoff_ = false; |
100 |
> |
haveCutoffRadius_ = false; |
101 |
|
haveDampingAlpha_ = false; |
102 |
|
haveDielectric_ = false; |
103 |
|
haveElectroSpline_ = false; |
104 |
|
|
105 |
+ |
// check the summation method: |
106 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
107 |
+ |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
108 |
+ |
toUpper(myMethod); |
109 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
110 |
+ |
i = summationMap_.find(myMethod); |
111 |
+ |
if ( i != summationMap_.end() ) { |
112 |
+ |
summationMethod_ = (*i).second; |
113 |
+ |
} else { |
114 |
+ |
// throw error |
115 |
+ |
sprintf( painCave.errMsg, |
116 |
+ |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
117 |
+ |
"\t(Input file specified %s .)\n" |
118 |
+ |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
119 |
+ |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
120 |
+ |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
121 |
+ |
painCave.isFatal = 1; |
122 |
+ |
simError(); |
123 |
+ |
} |
124 |
+ |
} else { |
125 |
+ |
// set ElectrostaticSummationMethod to the cutoffMethod: |
126 |
+ |
if (simParams_->haveCutoffMethod()){ |
127 |
+ |
string myMethod = simParams_->getCutoffMethod(); |
128 |
+ |
toUpper(myMethod); |
129 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
130 |
+ |
i = summationMap_.find(myMethod); |
131 |
+ |
if ( i != summationMap_.end() ) { |
132 |
+ |
summationMethod_ = (*i).second; |
133 |
+ |
} |
134 |
+ |
} |
135 |
+ |
} |
136 |
+ |
|
137 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
138 |
+ |
if (!simParams_->haveDielectric()) { |
139 |
+ |
// throw warning |
140 |
+ |
sprintf( painCave.errMsg, |
141 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
142 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
143 |
+ |
painCave.isFatal = 0; |
144 |
+ |
painCave.severity = OPENMD_INFO; |
145 |
+ |
simError(); |
146 |
+ |
} else { |
147 |
+ |
dielectric_ = simParams_->getDielectric(); |
148 |
+ |
} |
149 |
+ |
haveDielectric_ = true; |
150 |
+ |
} |
151 |
+ |
|
152 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
153 |
+ |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
154 |
+ |
toUpper(myScreen); |
155 |
+ |
map<string, ElectrostaticScreeningMethod>::iterator i; |
156 |
+ |
i = screeningMap_.find(myScreen); |
157 |
+ |
if ( i != screeningMap_.end()) { |
158 |
+ |
screeningMethod_ = (*i).second; |
159 |
+ |
} else { |
160 |
+ |
sprintf( painCave.errMsg, |
161 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
162 |
+ |
"\t(Input file specified %s .)\n" |
163 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
164 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
165 |
+ |
painCave.isFatal = 1; |
166 |
+ |
simError(); |
167 |
+ |
} |
168 |
+ |
} |
169 |
+ |
|
170 |
+ |
// check to make sure a cutoff value has been set: |
171 |
+ |
if (!haveCutoffRadius_) { |
172 |
+ |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
173 |
+ |
"Cutoff value!\n"); |
174 |
+ |
painCave.severity = OPENMD_ERROR; |
175 |
+ |
painCave.isFatal = 1; |
176 |
+ |
simError(); |
177 |
+ |
} |
178 |
+ |
|
179 |
+ |
if (screeningMethod_ == DAMPED) { |
180 |
+ |
if (!simParams_->haveDampingAlpha()) { |
181 |
+ |
// first set a cutoff dependent alpha value |
182 |
+ |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
183 |
+ |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
184 |
+ |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
185 |
+ |
|
186 |
+ |
// throw warning |
187 |
+ |
sprintf( painCave.errMsg, |
188 |
+ |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
189 |
+ |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
190 |
+ |
dampingAlpha_, cutoffRadius_); |
191 |
+ |
painCave.severity = OPENMD_INFO; |
192 |
+ |
painCave.isFatal = 0; |
193 |
+ |
simError(); |
194 |
+ |
} else { |
195 |
+ |
dampingAlpha_ = simParams_->getDampingAlpha(); |
196 |
+ |
} |
197 |
+ |
haveDampingAlpha_ = true; |
198 |
+ |
} |
199 |
+ |
|
200 |
|
// find all of the Electrostatic atom Types: |
201 |
|
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
202 |
|
ForceField::AtomTypeContainer::MapTypeIterator i; |
203 |
|
AtomType* at; |
204 |
< |
|
204 |
> |
|
205 |
|
for (at = atomTypes->beginType(i); at != NULL; |
206 |
|
at = atomTypes->nextType(i)) { |
207 |
|
|
209 |
|
addType(at); |
210 |
|
} |
211 |
|
|
103 |
– |
// check to make sure a cutoff value has been set: |
104 |
– |
if (!haveDefaultCutoff_) { |
105 |
– |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
106 |
– |
"Cutoff value!\n"); |
107 |
– |
painCave.severity = OPENMD_ERROR; |
108 |
– |
painCave.isFatal = 1; |
109 |
– |
simError(); |
110 |
– |
} |
212 |
|
|
213 |
< |
defaultCutoff2_ = defaultCutoff_ * defaultCutoff_; |
214 |
< |
rcuti_ = 1.0 / defaultCutoff_; |
213 |
> |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
214 |
> |
rcuti_ = 1.0 / cutoffRadius_; |
215 |
|
rcuti2_ = rcuti_ * rcuti_; |
216 |
|
rcuti3_ = rcuti2_ * rcuti_; |
217 |
|
rcuti4_ = rcuti2_ * rcuti2_; |
218 |
|
|
219 |
|
if (screeningMethod_ == DAMPED) { |
220 |
< |
if (!haveDampingAlpha_) { |
120 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no " |
121 |
< |
"DampingAlpha value!\n"); |
122 |
< |
painCave.severity = OPENMD_ERROR; |
123 |
< |
painCave.isFatal = 1; |
124 |
< |
simError(); |
125 |
< |
} |
126 |
< |
|
220 |
> |
|
221 |
|
alpha2_ = dampingAlpha_ * dampingAlpha_; |
222 |
|
alpha4_ = alpha2_ * alpha2_; |
223 |
|
alpha6_ = alpha4_ * alpha2_; |
224 |
|
alpha8_ = alpha4_ * alpha4_; |
225 |
|
|
226 |
< |
constEXP_ = exp(-alpha2_ * defaultCutoff2_); |
226 |
> |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
227 |
|
invRootPi_ = 0.56418958354775628695; |
228 |
|
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
229 |
|
|
230 |
< |
c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_; |
230 |
> |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
231 |
|
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
232 |
|
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
233 |
|
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
242 |
|
c6c_ = 9.0 * c5c_ * rcuti2_; |
243 |
|
} |
244 |
|
|
245 |
< |
if (summationMethod_ == REACTION_FIELD) { |
246 |
< |
if (haveDielectric_) { |
247 |
< |
preRF_ = (dielectric_ - 1.0) / |
248 |
< |
((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_); |
155 |
< |
preRF2_ = 2.0 * preRF_; |
156 |
< |
} else { |
157 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric" |
158 |
< |
" value!\n"); |
159 |
< |
painCave.severity = OPENMD_ERROR; |
160 |
< |
painCave.isFatal = 1; |
161 |
< |
simError(); |
162 |
< |
} |
245 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
246 |
> |
preRF_ = (dielectric_ - 1.0) / |
247 |
> |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
248 |
> |
preRF2_ = 2.0 * preRF_; |
249 |
|
} |
250 |
< |
|
251 |
< |
RealType dx = defaultCutoff_ / RealType(np_ - 1); |
250 |
> |
|
251 |
> |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
252 |
|
RealType rval; |
253 |
|
vector<RealType> rvals; |
254 |
|
vector<RealType> yvals; |
369 |
|
simError(); |
370 |
|
} |
371 |
|
|
372 |
+ |
// Quadrupoles in OpenMD are set as the diagonal elements |
373 |
+ |
// of the diagonalized traceless quadrupole moment tensor. |
374 |
+ |
// The column vectors of the unitary matrix that diagonalizes |
375 |
+ |
// the quadrupole moment tensor become the eFrame (or the |
376 |
+ |
// electrostatic version of the body-fixed frame. |
377 |
+ |
|
378 |
|
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
379 |
|
if (v3dData == NULL) { |
380 |
|
sprintf( painCave.errMsg, |
409 |
|
|
410 |
|
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
411 |
|
RealType theRSW ) { |
412 |
< |
defaultCutoff_ = theECR; |
413 |
< |
rrf_ = defaultCutoff_; |
412 |
> |
cutoffRadius_ = theECR; |
413 |
> |
rrf_ = cutoffRadius_; |
414 |
|
rt_ = theRSW; |
415 |
< |
haveDefaultCutoff_ = true; |
415 |
> |
haveCutoffRadius_ = true; |
416 |
|
} |
417 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
418 |
|
summationMethod_ = esm; |
429 |
|
haveDielectric_ = true; |
430 |
|
} |
431 |
|
|
432 |
< |
void Electrostatic::calcForce(InteractionData idat) { |
432 |
> |
void Electrostatic::calcForce(InteractionData &idat) { |
433 |
|
|
434 |
|
// utility variables. Should clean these up and use the Vector3d and |
435 |
|
// Mat3x3d to replace as many as we can in future versions: |
463 |
|
|
464 |
|
if (!initialized_) initialize(); |
465 |
|
|
466 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
467 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
466 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes->first]; |
467 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes->second]; |
468 |
|
|
469 |
|
// some variables we'll need independent of electrostatic type: |
470 |
|
|
471 |
< |
riji = 1.0 / idat.rij; |
472 |
< |
Vector3d rhat = idat.d * riji; |
471 |
> |
riji = 1.0 / *(idat.rij) ; |
472 |
> |
Vector3d rhat = *(idat.d) * riji; |
473 |
|
|
474 |
|
// logicals |
475 |
|
|
488 |
|
|
489 |
|
if (i_is_Dipole) { |
490 |
|
mu_i = data1.dipole_moment; |
491 |
< |
uz_i = idat.eFrame1.getColumn(2); |
491 |
> |
uz_i = idat.eFrame1->getColumn(2); |
492 |
|
|
493 |
|
ct_i = dot(uz_i, rhat); |
494 |
|
|
504 |
|
qyy_i = Q_i.y(); |
505 |
|
qzz_i = Q_i.z(); |
506 |
|
|
507 |
< |
ux_i = idat.eFrame1.getColumn(0); |
508 |
< |
uy_i = idat.eFrame1.getColumn(1); |
509 |
< |
uz_i = idat.eFrame1.getColumn(2); |
507 |
> |
ux_i = idat.eFrame1->getColumn(0); |
508 |
> |
uy_i = idat.eFrame1->getColumn(1); |
509 |
> |
uz_i = idat.eFrame1->getColumn(2); |
510 |
|
|
511 |
|
cx_i = dot(ux_i, rhat); |
512 |
|
cy_i = dot(uy_i, rhat); |
522 |
|
|
523 |
|
if (j_is_Dipole) { |
524 |
|
mu_j = data2.dipole_moment; |
525 |
< |
uz_j = idat.eFrame2.getColumn(2); |
525 |
> |
uz_j = idat.eFrame2->getColumn(2); |
526 |
|
|
527 |
|
ct_j = dot(uz_j, rhat); |
528 |
|
|
538 |
|
qyy_j = Q_j.y(); |
539 |
|
qzz_j = Q_j.z(); |
540 |
|
|
541 |
< |
ux_j = idat.eFrame2.getColumn(0); |
542 |
< |
uy_j = idat.eFrame2.getColumn(1); |
543 |
< |
uz_j = idat.eFrame2.getColumn(2); |
541 |
> |
ux_j = idat.eFrame2->getColumn(0); |
542 |
> |
uy_j = idat.eFrame2->getColumn(1); |
543 |
> |
uz_j = idat.eFrame2->getColumn(2); |
544 |
|
|
545 |
|
cx_j = dot(ux_j, rhat); |
546 |
|
cy_j = dot(uy_j, rhat); |
559 |
|
if (j_is_Charge) { |
560 |
|
if (screeningMethod_ == DAMPED) { |
561 |
|
// assemble the damping variables |
562 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
562 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
563 |
|
erfcVal = res.first; |
564 |
|
derfcVal = res.second; |
565 |
|
c1 = erfcVal * riji; |
569 |
|
c2 = c1 * riji; |
570 |
|
} |
571 |
|
|
572 |
< |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
572 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
573 |
|
|
574 |
< |
if (summationMethod_ == SHIFTED_POTENTIAL) { |
574 |
> |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
575 |
|
vterm = preVal * (c1 - c1c_); |
576 |
< |
dudr = -idat.sw * preVal * c2; |
576 |
> |
dudr = - *(idat.sw) * preVal * c2; |
577 |
|
|
578 |
< |
} else if (summationMethod_ == SHIFTED_FORCE) { |
579 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) ); |
580 |
< |
dudr = idat.sw * preVal * (c2c_ - c2); |
578 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
579 |
> |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
580 |
> |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
581 |
|
|
582 |
< |
} else if (summationMethod_ == REACTION_FIELD) { |
583 |
< |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
582 |
> |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
583 |
> |
rfVal = *(idat.electroMult) * preRF_ * *(idat.rij) * *(idat.rij) ; |
584 |
|
vterm = preVal * ( riji + rfVal ); |
585 |
< |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
585 |
> |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
586 |
|
|
587 |
|
} else { |
588 |
|
vterm = preVal * riji * erfcVal; |
589 |
|
|
590 |
< |
dudr = - idat.sw * preVal * c2; |
590 |
> |
dudr = - *(idat.sw) * preVal * c2; |
591 |
|
|
592 |
|
} |
593 |
|
|
594 |
< |
idat.vpair += vterm; |
595 |
< |
epot += idat.sw * vterm; |
594 |
> |
*(idat.vpair) += vterm; |
595 |
> |
epot += *(idat.sw) * vterm; |
596 |
|
|
597 |
|
dVdr += dudr * rhat; |
598 |
|
} |
599 |
|
|
600 |
|
if (j_is_Dipole) { |
601 |
|
// pref is used by all the possible methods |
602 |
< |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
603 |
< |
preSw = idat.sw * pref; |
602 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
603 |
> |
preSw = *(idat.sw) * pref; |
604 |
|
|
605 |
< |
if (summationMethod_ == REACTION_FIELD) { |
605 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
606 |
|
ri2 = riji * riji; |
607 |
|
ri3 = ri2 * riji; |
608 |
|
|
609 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
610 |
< |
idat.vpair += vterm; |
611 |
< |
epot += idat.sw * vterm; |
609 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
610 |
> |
*(idat.vpair) += vterm; |
611 |
> |
epot += *(idat.sw) * vterm; |
612 |
|
|
613 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
614 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
614 |
> |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
615 |
|
|
616 |
|
} else { |
617 |
|
// determine the inverse r used if we have split dipoles |
618 |
|
if (j_is_SplitDipole) { |
619 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
619 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
620 |
|
ri = 1.0 / BigR; |
621 |
< |
scale = idat.rij * ri; |
621 |
> |
scale = *(idat.rij) * ri; |
622 |
|
} else { |
623 |
|
ri = riji; |
624 |
|
scale = 1.0; |
628 |
|
|
629 |
|
if (screeningMethod_ == DAMPED) { |
630 |
|
// assemble the damping variables |
631 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
631 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
632 |
|
erfcVal = res.first; |
633 |
|
derfcVal = res.second; |
634 |
|
c1 = erfcVal * ri; |
645 |
|
// calculate the potential |
646 |
|
pot_term = scale * c2; |
647 |
|
vterm = -pref * ct_j * pot_term; |
648 |
< |
idat.vpair += vterm; |
649 |
< |
epot += idat.sw * vterm; |
648 |
> |
*(idat.vpair) += vterm; |
649 |
> |
epot += *(idat.sw) * vterm; |
650 |
|
|
651 |
|
// calculate derivatives for forces and torques |
652 |
|
|
661 |
|
cx2 = cx_j * cx_j; |
662 |
|
cy2 = cy_j * cy_j; |
663 |
|
cz2 = cz_j * cz_j; |
664 |
< |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
664 |
> |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
665 |
|
|
666 |
|
if (screeningMethod_ == DAMPED) { |
667 |
|
// assemble the damping variables |
668 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
668 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
669 |
|
erfcVal = res.first; |
670 |
|
derfcVal = res.second; |
671 |
|
c1 = erfcVal * riji; |
680 |
|
} |
681 |
|
|
682 |
|
// precompute variables for convenience |
683 |
< |
preSw = idat.sw * pref; |
683 |
> |
preSw = *(idat.sw) * pref; |
684 |
|
c2ri = c2 * riji; |
685 |
|
c3ri = c3 * riji; |
686 |
< |
c4rij = c4 * idat.rij; |
686 |
> |
c4rij = c4 * *(idat.rij) ; |
687 |
|
rhatdot2 = 2.0 * rhat * c3; |
688 |
|
rhatc4 = rhat * c4rij; |
689 |
|
|
692 |
|
qyy_j * (cy2*c3 - c2ri) + |
693 |
|
qzz_j * (cz2*c3 - c2ri) ); |
694 |
|
vterm = pref * pot_term; |
695 |
< |
idat.vpair += vterm; |
696 |
< |
epot += idat.sw * vterm; |
695 |
> |
*(idat.vpair) += vterm; |
696 |
> |
epot += *(idat.sw) * vterm; |
697 |
|
|
698 |
|
// calculate derivatives for the forces and torques |
699 |
|
|
711 |
|
|
712 |
|
if (j_is_Charge) { |
713 |
|
// variables used by all the methods |
714 |
< |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
715 |
< |
preSw = idat.sw * pref; |
714 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
715 |
> |
preSw = *(idat.sw) * pref; |
716 |
|
|
717 |
< |
if (summationMethod_ == REACTION_FIELD) { |
717 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
718 |
|
|
719 |
|
ri2 = riji * riji; |
720 |
|
ri3 = ri2 * riji; |
721 |
|
|
722 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
723 |
< |
idat.vpair += vterm; |
724 |
< |
epot += idat.sw * vterm; |
722 |
> |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
723 |
> |
*(idat.vpair) += vterm; |
724 |
> |
epot += *(idat.sw) * vterm; |
725 |
|
|
726 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
727 |
|
|
728 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
728 |
> |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
729 |
|
|
730 |
|
} else { |
731 |
|
|
732 |
|
// determine inverse r if we are using split dipoles |
733 |
|
if (i_is_SplitDipole) { |
734 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
734 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
735 |
|
ri = 1.0 / BigR; |
736 |
< |
scale = idat.rij * ri; |
736 |
> |
scale = *(idat.rij) * ri; |
737 |
|
} else { |
738 |
|
ri = riji; |
739 |
|
scale = 1.0; |
743 |
|
|
744 |
|
if (screeningMethod_ == DAMPED) { |
745 |
|
// assemble the damping variables |
746 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
746 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
747 |
|
erfcVal = res.first; |
748 |
|
derfcVal = res.second; |
749 |
|
c1 = erfcVal * ri; |
760 |
|
// calculate the potential |
761 |
|
pot_term = c2 * scale; |
762 |
|
vterm = pref * ct_i * pot_term; |
763 |
< |
idat.vpair += vterm; |
764 |
< |
epot += idat.sw * vterm; |
763 |
> |
*(idat.vpair) += vterm; |
764 |
> |
epot += *(idat.sw) * vterm; |
765 |
|
|
766 |
|
// calculate derivatives for the forces and torques |
767 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
773 |
|
// variables used by all methods |
774 |
|
ct_ij = dot(uz_i, uz_j); |
775 |
|
|
776 |
< |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
777 |
< |
preSw = idat.sw * pref; |
776 |
> |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
777 |
> |
preSw = *(idat.sw) * pref; |
778 |
|
|
779 |
< |
if (summationMethod_ == REACTION_FIELD) { |
779 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
780 |
|
ri2 = riji * riji; |
781 |
|
ri3 = ri2 * riji; |
782 |
|
ri4 = ri2 * ri2; |
783 |
|
|
784 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
785 |
|
preRF2_ * ct_ij ); |
786 |
< |
idat.vpair += vterm; |
787 |
< |
epot += idat.sw * vterm; |
786 |
> |
*(idat.vpair) += vterm; |
787 |
> |
epot += *(idat.sw) * vterm; |
788 |
|
|
789 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
790 |
|
|
797 |
|
|
798 |
|
if (i_is_SplitDipole) { |
799 |
|
if (j_is_SplitDipole) { |
800 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
800 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
801 |
|
} else { |
802 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
802 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
803 |
|
} |
804 |
|
ri = 1.0 / BigR; |
805 |
< |
scale = idat.rij * ri; |
805 |
> |
scale = *(idat.rij) * ri; |
806 |
|
} else { |
807 |
|
if (j_is_SplitDipole) { |
808 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
808 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
809 |
|
ri = 1.0 / BigR; |
810 |
< |
scale = idat.rij * ri; |
810 |
> |
scale = *(idat.rij) * ri; |
811 |
|
} else { |
812 |
|
ri = riji; |
813 |
|
scale = 1.0; |
815 |
|
} |
816 |
|
if (screeningMethod_ == DAMPED) { |
817 |
|
// assemble damping variables |
818 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
818 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
819 |
|
erfcVal = res.first; |
820 |
|
derfcVal = res.second; |
821 |
|
c1 = erfcVal * ri; |
837 |
|
preSwSc = preSw * scale; |
838 |
|
c2ri = c2 * ri; |
839 |
|
c3ri = c3 * ri; |
840 |
< |
c4rij = c4 * idat.rij; |
840 |
> |
c4rij = c4 * *(idat.rij) ; |
841 |
|
|
842 |
|
// calculate the potential |
843 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
844 |
|
vterm = pref * pot_term; |
845 |
< |
idat.vpair += vterm; |
846 |
< |
epot += idat.sw * vterm; |
845 |
> |
*(idat.vpair) += vterm; |
846 |
> |
epot += *(idat.sw) * vterm; |
847 |
|
|
848 |
|
// calculate derivatives for the forces and torques |
849 |
|
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
862 |
|
cy2 = cy_i * cy_i; |
863 |
|
cz2 = cz_i * cz_i; |
864 |
|
|
865 |
< |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
865 |
> |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
866 |
|
|
867 |
|
if (screeningMethod_ == DAMPED) { |
868 |
|
// assemble the damping variables |
869 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
869 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
870 |
|
erfcVal = res.first; |
871 |
|
derfcVal = res.second; |
872 |
|
c1 = erfcVal * riji; |
881 |
|
} |
882 |
|
|
883 |
|
// precompute some variables for convenience |
884 |
< |
preSw = idat.sw * pref; |
884 |
> |
preSw = *(idat.sw) * pref; |
885 |
|
c2ri = c2 * riji; |
886 |
|
c3ri = c3 * riji; |
887 |
< |
c4rij = c4 * idat.rij; |
887 |
> |
c4rij = c4 * *(idat.rij) ; |
888 |
|
rhatdot2 = 2.0 * rhat * c3; |
889 |
|
rhatc4 = rhat * c4rij; |
890 |
|
|
894 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
895 |
|
|
896 |
|
vterm = pref * pot_term; |
897 |
< |
idat.vpair += vterm; |
898 |
< |
epot += idat.sw * vterm; |
897 |
> |
*(idat.vpair) += vterm; |
898 |
> |
epot += *(idat.sw) * vterm; |
899 |
|
|
900 |
|
// calculate the derivatives for the forces and torques |
901 |
|
|
909 |
|
} |
910 |
|
} |
911 |
|
|
912 |
< |
idat.pot += epot; |
913 |
< |
idat.f1 += dVdr; |
912 |
> |
idat.pot[ELECTROSTATIC_FAMILY] += epot; |
913 |
> |
*(idat.f1) += dVdr; |
914 |
|
|
915 |
|
if (i_is_Dipole || i_is_Quadrupole) |
916 |
< |
idat.t1 -= cross(uz_i, duduz_i); |
916 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
917 |
|
if (i_is_Quadrupole) { |
918 |
< |
idat.t1 -= cross(ux_i, dudux_i); |
919 |
< |
idat.t1 -= cross(uy_i, duduy_i); |
918 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
919 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
920 |
|
} |
921 |
< |
|
921 |
> |
|
922 |
|
if (j_is_Dipole || j_is_Quadrupole) |
923 |
< |
idat.t2 -= cross(uz_j, duduz_j); |
923 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
924 |
|
if (j_is_Quadrupole) { |
925 |
< |
idat.t2 -= cross(uz_j, dudux_j); |
926 |
< |
idat.t2 -= cross(uz_j, duduy_j); |
925 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
926 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
927 |
|
} |
928 |
|
|
929 |
|
return; |
930 |
|
} |
931 |
|
|
932 |
< |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
932 |
> |
void Electrostatic::calcSkipCorrection(InteractionData &idat) { |
933 |
|
|
934 |
|
if (!initialized_) initialize(); |
935 |
|
|
936 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
937 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
936 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes->first]; |
937 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes->second]; |
938 |
|
|
939 |
|
// logicals |
940 |
|
|
951 |
|
|
952 |
|
if (i_is_Charge) { |
953 |
|
q_i = data1.charge; |
954 |
< |
skdat.skippedCharge2 += q_i; |
954 |
> |
*(idat.skippedCharge2) += q_i; |
955 |
|
} |
956 |
|
|
957 |
|
if (j_is_Charge) { |
958 |
|
q_j = data2.charge; |
959 |
< |
skdat.skippedCharge1 += q_j; |
959 |
> |
*(idat.skippedCharge1) += q_j; |
960 |
|
} |
961 |
|
|
962 |
|
// the rest of this function should only be necessary for reaction field. |
963 |
|
|
964 |
< |
if (summationMethod_ == REACTION_FIELD) { |
964 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
965 |
|
RealType riji, ri2, ri3; |
966 |
< |
RealType q_i, mu_i, ct_i; |
967 |
< |
RealType q_j, mu_j, ct_j; |
968 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
966 |
> |
RealType mu_i, ct_i; |
967 |
> |
RealType mu_j, ct_j; |
968 |
> |
RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0); |
969 |
|
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
970 |
|
|
971 |
|
// some variables we'll need independent of electrostatic type: |
972 |
|
|
973 |
< |
riji = 1.0 / skdat.rij; |
974 |
< |
rhat = skdat.d * riji; |
973 |
> |
riji = 1.0 / *(idat.rij) ; |
974 |
> |
rhat = *(idat.d) * riji; |
975 |
|
|
976 |
|
if (i_is_Dipole) { |
977 |
|
mu_i = data1.dipole_moment; |
978 |
< |
uz_i = skdat.eFrame1.getColumn(2); |
978 |
> |
uz_i = idat.eFrame1->getColumn(2); |
979 |
|
ct_i = dot(uz_i, rhat); |
980 |
|
duduz_i = V3Zero; |
981 |
|
} |
982 |
|
|
983 |
|
if (j_is_Dipole) { |
984 |
|
mu_j = data2.dipole_moment; |
985 |
< |
uz_j = skdat.eFrame2.getColumn(2); |
985 |
> |
uz_j = idat.eFrame2->getColumn(2); |
986 |
|
ct_j = dot(uz_j, rhat); |
987 |
|
duduz_j = V3Zero; |
988 |
|
} |
989 |
|
|
990 |
|
if (i_is_Charge) { |
991 |
|
if (j_is_Charge) { |
992 |
< |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
993 |
< |
rfVal = preRF_ * skdat.rij * skdat.rij; |
992 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
993 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij) ; |
994 |
|
vterm = preVal * rfVal; |
995 |
< |
myPot += skdat.sw * vterm; |
996 |
< |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
995 |
> |
myPot += *(idat.sw) * vterm; |
996 |
> |
dudr = *(idat.sw) * preVal * 2.0 * rfVal * riji; |
997 |
|
dVdr += dudr * rhat; |
998 |
|
} |
999 |
|
|
1000 |
|
if (j_is_Dipole) { |
1001 |
|
ri2 = riji * riji; |
1002 |
|
ri3 = ri2 * riji; |
1003 |
< |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
1004 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
1005 |
< |
myPot += skdat.sw * vterm; |
1006 |
< |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1007 |
< |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1003 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
1004 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
1005 |
> |
myPot += *(idat.sw) * vterm; |
1006 |
> |
dVdr += - *(idat.sw) * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1007 |
> |
duduz_j += - *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
1008 |
|
} |
1009 |
|
} |
1010 |
|
if (i_is_Dipole) { |
1011 |
|
if (j_is_Charge) { |
1012 |
|
ri2 = riji * riji; |
1013 |
|
ri3 = ri2 * riji; |
1014 |
< |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
1015 |
< |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
1016 |
< |
myPot += skdat.sw * vterm; |
1017 |
< |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1018 |
< |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1014 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
1015 |
> |
vterm = - pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1016 |
> |
myPot += *(idat.sw) * vterm; |
1017 |
> |
dVdr += *(idat.sw) * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1018 |
> |
duduz_i += *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij)); |
1019 |
|
} |
1020 |
|
} |
1021 |
|
|
1022 |
|
// accumulate the forces and torques resulting from the self term |
1023 |
< |
skdat.pot += myPot; |
1024 |
< |
skdat.f1 += dVdr; |
1023 |
> |
idat.pot[ELECTROSTATIC_FAMILY] += myPot; |
1024 |
> |
*(idat.f1) += dVdr; |
1025 |
|
|
1026 |
|
if (i_is_Dipole) |
1027 |
< |
skdat.t1 -= cross(uz_i, duduz_i); |
1027 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
1028 |
|
if (j_is_Dipole) |
1029 |
< |
skdat.t2 -= cross(uz_j, duduz_j); |
1029 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
1030 |
|
} |
1031 |
|
} |
1032 |
|
|
1033 |
< |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
1033 |
> |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1034 |
|
RealType mu1, preVal, chg1, self; |
1035 |
|
|
1036 |
|
if (!initialized_) initialize(); |
1037 |
|
|
1038 |
< |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
1038 |
> |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1039 |
|
|
1040 |
|
// logicals |
1041 |
|
|
1042 |
|
bool i_is_Charge = data.is_Charge; |
1043 |
|
bool i_is_Dipole = data.is_Dipole; |
1044 |
|
|
1045 |
< |
if (summationMethod_ == REACTION_FIELD) { |
1045 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
1046 |
|
if (i_is_Dipole) { |
1047 |
|
mu1 = data.dipole_moment; |
1048 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1049 |
< |
scdat.pot -= 0.5 * preVal; |
1049 |
> |
sdat.pot[2] -= 0.5 * preVal; |
1050 |
|
|
1051 |
|
// The self-correction term adds into the reaction field vector |
1052 |
< |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
1052 |
> |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1053 |
|
Vector3d ei = preVal * uz_i; |
1054 |
|
|
1055 |
|
// This looks very wrong. A vector crossed with itself is zero. |
1056 |
< |
scdat.t -= cross(uz_i, ei); |
1056 |
> |
*(sdat.t) -= cross(uz_i, ei); |
1057 |
|
} |
1058 |
< |
} else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) { |
1058 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1059 |
|
if (i_is_Charge) { |
1060 |
|
chg1 = data.charge; |
1061 |
|
if (screeningMethod_ == DAMPED) { |
1062 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1062 |
> |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1063 |
|
} else { |
1064 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1064 |
> |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1065 |
|
} |
1066 |
< |
scdat.pot += self; |
1066 |
> |
sdat.pot[ELECTROSTATIC_FAMILY] += self; |
1067 |
|
} |
1068 |
|
} |
1069 |
|
} |
1070 |
+ |
|
1071 |
+ |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1072 |
+ |
// This seems to work moderately well as a default. There's no |
1073 |
+ |
// inherent scale for 1/r interactions that we can standardize. |
1074 |
+ |
// 12 angstroms seems to be a reasonably good guess for most |
1075 |
+ |
// cases. |
1076 |
+ |
return 12.0; |
1077 |
+ |
} |
1078 |
|
} |