ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1723
Committed: Thu May 24 20:59:54 2012 UTC (12 years, 11 months ago) by gezelter
File size: 38156 byte(s)
Log Message:
Bug fixes for heat flux import

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/Electrostatic.hpp"
48 #include "utils/simError.h"
49 #include "types/NonBondedInteractionType.hpp"
50 #include "types/FixedChargeAdapter.hpp"
51 #include "types/FluctuatingChargeAdapter.hpp"
52 #include "types/MultipoleAdapter.hpp"
53 #include "io/Globals.hpp"
54 #include "nonbonded/SlaterIntegrals.hpp"
55 #include "utils/PhysicalConstants.hpp"
56
57
58 namespace OpenMD {
59
60 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 forceField_(NULL), info_(NULL),
62 haveCutoffRadius_(false),
63 haveDampingAlpha_(false),
64 haveDielectric_(false),
65 haveElectroSpline_(false)
66 {}
67
68 void Electrostatic::initialize() {
69
70 Globals* simParams_ = info_->getSimParams();
71
72 summationMap_["HARD"] = esm_HARD;
73 summationMap_["NONE"] = esm_HARD;
74 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79 summationMap_["EWALD_PME"] = esm_EWALD_PME;
80 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81 screeningMap_["DAMPED"] = DAMPED;
82 screeningMap_["UNDAMPED"] = UNDAMPED;
83
84 // these prefactors convert the multipole interactions into kcal / mol
85 // all were computed assuming distances are measured in angstroms
86 // Charge-Charge, assuming charges are measured in electrons
87 pre11_ = 332.0637778;
88 // Charge-Dipole, assuming charges are measured in electrons, and
89 // dipoles are measured in debyes
90 pre12_ = 69.13373;
91 // Dipole-Dipole, assuming dipoles are measured in debyes
92 pre22_ = 14.39325;
93 // Charge-Quadrupole, assuming charges are measured in electrons, and
94 // quadrupoles are measured in 10^-26 esu cm^2
95 // This unit is also known affectionately as an esu centi-barn.
96 pre14_ = 69.13373;
97
98 // conversions for the simulation box dipole moment
99 chargeToC_ = 1.60217733e-19;
100 angstromToM_ = 1.0e-10;
101 debyeToCm_ = 3.33564095198e-30;
102
103 // number of points for electrostatic splines
104 np_ = 100;
105
106 // variables to handle different summation methods for long-range
107 // electrostatics:
108 summationMethod_ = esm_HARD;
109 screeningMethod_ = UNDAMPED;
110 dielectric_ = 1.0;
111 one_third_ = 1.0 / 3.0;
112
113 // check the summation method:
114 if (simParams_->haveElectrostaticSummationMethod()) {
115 string myMethod = simParams_->getElectrostaticSummationMethod();
116 toUpper(myMethod);
117 map<string, ElectrostaticSummationMethod>::iterator i;
118 i = summationMap_.find(myMethod);
119 if ( i != summationMap_.end() ) {
120 summationMethod_ = (*i).second;
121 } else {
122 // throw error
123 sprintf( painCave.errMsg,
124 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 "\t(Input file specified %s .)\n"
126 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 "\t\"shifted_potential\", \"shifted_force\", or \n"
128 "\t\"reaction_field\".\n", myMethod.c_str() );
129 painCave.isFatal = 1;
130 simError();
131 }
132 } else {
133 // set ElectrostaticSummationMethod to the cutoffMethod:
134 if (simParams_->haveCutoffMethod()){
135 string myMethod = simParams_->getCutoffMethod();
136 toUpper(myMethod);
137 map<string, ElectrostaticSummationMethod>::iterator i;
138 i = summationMap_.find(myMethod);
139 if ( i != summationMap_.end() ) {
140 summationMethod_ = (*i).second;
141 }
142 }
143 }
144
145 if (summationMethod_ == esm_REACTION_FIELD) {
146 if (!simParams_->haveDielectric()) {
147 // throw warning
148 sprintf( painCave.errMsg,
149 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151 painCave.isFatal = 0;
152 painCave.severity = OPENMD_INFO;
153 simError();
154 } else {
155 dielectric_ = simParams_->getDielectric();
156 }
157 haveDielectric_ = true;
158 }
159
160 if (simParams_->haveElectrostaticScreeningMethod()) {
161 string myScreen = simParams_->getElectrostaticScreeningMethod();
162 toUpper(myScreen);
163 map<string, ElectrostaticScreeningMethod>::iterator i;
164 i = screeningMap_.find(myScreen);
165 if ( i != screeningMap_.end()) {
166 screeningMethod_ = (*i).second;
167 } else {
168 sprintf( painCave.errMsg,
169 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170 "\t(Input file specified %s .)\n"
171 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172 "or \"damped\".\n", myScreen.c_str() );
173 painCave.isFatal = 1;
174 simError();
175 }
176 }
177
178 // check to make sure a cutoff value has been set:
179 if (!haveCutoffRadius_) {
180 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181 "Cutoff value!\n");
182 painCave.severity = OPENMD_ERROR;
183 painCave.isFatal = 1;
184 simError();
185 }
186
187 if (screeningMethod_ == DAMPED) {
188 if (!simParams_->haveDampingAlpha()) {
189 // first set a cutoff dependent alpha value
190 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193
194 // throw warning
195 sprintf( painCave.errMsg,
196 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
198 dampingAlpha_, cutoffRadius_);
199 painCave.severity = OPENMD_INFO;
200 painCave.isFatal = 0;
201 simError();
202 } else {
203 dampingAlpha_ = simParams_->getDampingAlpha();
204 }
205 haveDampingAlpha_ = true;
206 }
207
208 // find all of the Electrostatic atom Types:
209 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
210 ForceField::AtomTypeContainer::MapTypeIterator i;
211 AtomType* at;
212
213 for (at = atomTypes->beginType(i); at != NULL;
214 at = atomTypes->nextType(i)) {
215
216 if (at->isElectrostatic())
217 addType(at);
218 }
219
220 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
221 rcuti_ = 1.0 / cutoffRadius_;
222 rcuti2_ = rcuti_ * rcuti_;
223 rcuti3_ = rcuti2_ * rcuti_;
224 rcuti4_ = rcuti2_ * rcuti2_;
225
226 if (screeningMethod_ == DAMPED) {
227
228 alpha2_ = dampingAlpha_ * dampingAlpha_;
229 alpha4_ = alpha2_ * alpha2_;
230 alpha6_ = alpha4_ * alpha2_;
231 alpha8_ = alpha4_ * alpha4_;
232
233 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
234 invRootPi_ = 0.56418958354775628695;
235 alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
236
237 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
238 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
239 c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
240 c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
241 c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
242 c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
243 } else {
244 c1c_ = rcuti_;
245 c2c_ = c1c_ * rcuti_;
246 c3c_ = 3.0 * c2c_ * rcuti_;
247 c4c_ = 5.0 * c3c_ * rcuti2_;
248 c5c_ = 7.0 * c4c_ * rcuti2_;
249 c6c_ = 9.0 * c5c_ * rcuti2_;
250 }
251
252 if (summationMethod_ == esm_REACTION_FIELD) {
253 preRF_ = (dielectric_ - 1.0) /
254 ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
255 preRF2_ = 2.0 * preRF_;
256 }
257
258 // Add a 2 angstrom safety window to deal with cutoffGroups that
259 // have charged atoms longer than the cutoffRadius away from each
260 // other. Splining may not be the best choice here. Direct calls
261 // to erfc might be preferrable.
262
263 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
264 RealType rval;
265 vector<RealType> rvals;
266 vector<RealType> yvals;
267 for (int i = 0; i < np_; i++) {
268 rval = RealType(i) * dx;
269 rvals.push_back(rval);
270 yvals.push_back(erfc(dampingAlpha_ * rval));
271 }
272 erfcSpline_ = new CubicSpline();
273 erfcSpline_->addPoints(rvals, yvals);
274 haveElectroSpline_ = true;
275
276 initialized_ = true;
277 }
278
279 void Electrostatic::addType(AtomType* atomType){
280
281 ElectrostaticAtomData electrostaticAtomData;
282 electrostaticAtomData.is_Charge = false;
283 electrostaticAtomData.is_Dipole = false;
284 electrostaticAtomData.is_SplitDipole = false;
285 electrostaticAtomData.is_Quadrupole = false;
286 electrostaticAtomData.is_Fluctuating = false;
287
288 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289
290 if (fca.isFixedCharge()) {
291 electrostaticAtomData.is_Charge = true;
292 electrostaticAtomData.fixedCharge = fca.getCharge();
293 }
294
295 MultipoleAdapter ma = MultipoleAdapter(atomType);
296 if (ma.isMultipole()) {
297 if (ma.isDipole()) {
298 electrostaticAtomData.is_Dipole = true;
299 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300 }
301 if (ma.isSplitDipole()) {
302 electrostaticAtomData.is_SplitDipole = true;
303 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304 }
305 if (ma.isQuadrupole()) {
306 // Quadrupoles in OpenMD are set as the diagonal elements
307 // of the diagonalized traceless quadrupole moment tensor.
308 // The column vectors of the unitary matrix that diagonalizes
309 // the quadrupole moment tensor become the eFrame (or the
310 // electrostatic version of the body-fixed frame.
311 electrostaticAtomData.is_Quadrupole = true;
312 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313 }
314 }
315
316 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317
318 if (fqa.isFluctuatingCharge()) {
319 electrostaticAtomData.is_Fluctuating = true;
320 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321 electrostaticAtomData.hardness = fqa.getHardness();
322 electrostaticAtomData.slaterN = fqa.getSlaterN();
323 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 }
325
326 pair<map<int,AtomType*>::iterator,bool> ret;
327 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
328 atomType) );
329 if (ret.second == false) {
330 sprintf( painCave.errMsg,
331 "Electrostatic already had a previous entry with ident %d\n",
332 atomType->getIdent() );
333 painCave.severity = OPENMD_INFO;
334 painCave.isFatal = 0;
335 simError();
336 }
337
338 ElectrostaticMap[atomType] = electrostaticAtomData;
339
340 // Now, iterate over all known types and add to the mixing map:
341
342 map<AtomType*, ElectrostaticAtomData>::iterator it;
343 for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
344 AtomType* atype2 = (*it).first;
345 ElectrostaticAtomData eaData2 = (*it).second;
346 if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
347
348 RealType a = electrostaticAtomData.slaterZeta;
349 RealType b = eaData2.slaterZeta;
350 int m = electrostaticAtomData.slaterN;
351 int n = eaData2.slaterN;
352
353 // Create the spline of the coulombic integral for s-type
354 // Slater orbitals. Add a 2 angstrom safety window to deal
355 // with cutoffGroups that have charged atoms longer than the
356 // cutoffRadius away from each other.
357
358 RealType rval;
359 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
360 vector<RealType> rvals;
361 vector<RealType> J1vals;
362 vector<RealType> J2vals;
363 for (int i = 0; i < np_; i++) {
364 rval = RealType(i) * dr;
365 rvals.push_back(rval);
366 J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
367 // may not be necessary if Slater coulomb integral is symmetric
368 J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
369 }
370
371 CubicSpline* J1 = new CubicSpline();
372 J1->addPoints(rvals, J1vals);
373 CubicSpline* J2 = new CubicSpline();
374 J2->addPoints(rvals, J2vals);
375
376 pair<AtomType*, AtomType*> key1, key2;
377 key1 = make_pair(atomType, atype2);
378 key2 = make_pair(atype2, atomType);
379
380 Jij[key1] = J1;
381 Jij[key2] = J2;
382 }
383 }
384
385 return;
386 }
387
388 void Electrostatic::setCutoffRadius( RealType rCut ) {
389 cutoffRadius_ = rCut;
390 rrf_ = cutoffRadius_;
391 haveCutoffRadius_ = true;
392 }
393
394 void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
395 rt_ = rSwitch;
396 }
397 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
398 summationMethod_ = esm;
399 }
400 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
401 screeningMethod_ = sm;
402 }
403 void Electrostatic::setDampingAlpha( RealType alpha ) {
404 dampingAlpha_ = alpha;
405 haveDampingAlpha_ = true;
406 }
407 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
408 dielectric_ = dielectric;
409 haveDielectric_ = true;
410 }
411
412 void Electrostatic::calcForce(InteractionData &idat) {
413
414 // utility variables. Should clean these up and use the Vector3d and
415 // Mat3x3d to replace as many as we can in future versions:
416
417 RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
418 RealType qxx_i, qyy_i, qzz_i;
419 RealType qxx_j, qyy_j, qzz_j;
420 RealType cx_i, cy_i, cz_i;
421 RealType cx_j, cy_j, cz_j;
422 RealType cx2, cy2, cz2;
423 RealType ct_i, ct_j, ct_ij, a1;
424 RealType riji, ri, ri2, ri3, ri4;
425 RealType pref, vterm, epot, dudr;
426 RealType vpair(0.0);
427 RealType scale, sc2;
428 RealType pot_term, preVal, rfVal;
429 RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
430 RealType preSw, preSwSc;
431 RealType c1, c2, c3, c4;
432 RealType erfcVal(1.0), derfcVal(0.0);
433 RealType BigR;
434 RealType two(2.0), three(3.0);
435
436 Vector3d Q_i, Q_j;
437 Vector3d ux_i, uy_i, uz_i;
438 Vector3d ux_j, uy_j, uz_j;
439 Vector3d dudux_i, duduy_i, duduz_i;
440 Vector3d dudux_j, duduy_j, duduz_j;
441 Vector3d rhatdot2, rhatc4;
442 Vector3d dVdr;
443
444 // variables for indirect (reaction field) interactions for excluded pairs:
445 RealType indirect_Pot(0.0);
446 RealType indirect_vpair(0.0);
447 Vector3d indirect_dVdr(V3Zero);
448 Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
449
450 RealType coulInt, vFluc1(0.0), vFluc2(0.0);
451 pair<RealType, RealType> res;
452
453 // splines for coulomb integrals
454 CubicSpline* J1;
455 CubicSpline* J2;
456
457 if (!initialized_) initialize();
458
459 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
460 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
461
462 // some variables we'll need independent of electrostatic type:
463
464 riji = 1.0 / *(idat.rij) ;
465 Vector3d rhat = *(idat.d) * riji;
466
467 // logicals
468
469 bool i_is_Charge = data1.is_Charge;
470 bool i_is_Dipole = data1.is_Dipole;
471 bool i_is_SplitDipole = data1.is_SplitDipole;
472 bool i_is_Quadrupole = data1.is_Quadrupole;
473 bool i_is_Fluctuating = data1.is_Fluctuating;
474
475 bool j_is_Charge = data2.is_Charge;
476 bool j_is_Dipole = data2.is_Dipole;
477 bool j_is_SplitDipole = data2.is_SplitDipole;
478 bool j_is_Quadrupole = data2.is_Quadrupole;
479 bool j_is_Fluctuating = data2.is_Fluctuating;
480
481 if (i_is_Charge) {
482 q_i = data1.fixedCharge;
483
484 if (i_is_Fluctuating) {
485 q_i += *(idat.flucQ1);
486 }
487
488 if (idat.excluded) {
489 *(idat.skippedCharge2) += q_i;
490 }
491 }
492
493 if (i_is_Dipole) {
494 mu_i = data1.dipole_moment;
495 uz_i = idat.eFrame1->getColumn(2);
496
497 ct_i = dot(uz_i, rhat);
498
499 if (i_is_SplitDipole)
500 d_i = data1.split_dipole_distance;
501
502 duduz_i = V3Zero;
503 }
504
505 if (i_is_Quadrupole) {
506 Q_i = data1.quadrupole_moments;
507 qxx_i = Q_i.x();
508 qyy_i = Q_i.y();
509 qzz_i = Q_i.z();
510
511 ux_i = idat.eFrame1->getColumn(0);
512 uy_i = idat.eFrame1->getColumn(1);
513 uz_i = idat.eFrame1->getColumn(2);
514
515 cx_i = dot(ux_i, rhat);
516 cy_i = dot(uy_i, rhat);
517 cz_i = dot(uz_i, rhat);
518
519 dudux_i = V3Zero;
520 duduy_i = V3Zero;
521 duduz_i = V3Zero;
522 }
523
524 if (j_is_Charge) {
525 q_j = data2.fixedCharge;
526
527 if (i_is_Fluctuating)
528 q_j += *(idat.flucQ2);
529
530 if (idat.excluded) {
531 *(idat.skippedCharge1) += q_j;
532 }
533 }
534
535
536 if (j_is_Dipole) {
537 mu_j = data2.dipole_moment;
538 uz_j = idat.eFrame2->getColumn(2);
539
540 ct_j = dot(uz_j, rhat);
541
542 if (j_is_SplitDipole)
543 d_j = data2.split_dipole_distance;
544
545 duduz_j = V3Zero;
546 }
547
548 if (j_is_Quadrupole) {
549 Q_j = data2.quadrupole_moments;
550 qxx_j = Q_j.x();
551 qyy_j = Q_j.y();
552 qzz_j = Q_j.z();
553
554 ux_j = idat.eFrame2->getColumn(0);
555 uy_j = idat.eFrame2->getColumn(1);
556 uz_j = idat.eFrame2->getColumn(2);
557
558 cx_j = dot(ux_j, rhat);
559 cy_j = dot(uy_j, rhat);
560 cz_j = dot(uz_j, rhat);
561
562 dudux_j = V3Zero;
563 duduy_j = V3Zero;
564 duduz_j = V3Zero;
565 }
566
567 if (i_is_Fluctuating && j_is_Fluctuating) {
568 J1 = Jij[idat.atypes];
569 J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
570 }
571
572 epot = 0.0;
573 dVdr = V3Zero;
574
575 if (i_is_Charge) {
576
577 if (j_is_Charge) {
578 if (screeningMethod_ == DAMPED) {
579 // assemble the damping variables
580 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
581 //erfcVal = res.first;
582 //derfcVal = res.second;
583
584 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
585 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
586
587 c1 = erfcVal * riji;
588 c2 = (-derfcVal + c1) * riji;
589 } else {
590 c1 = riji;
591 c2 = c1 * riji;
592 }
593
594 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
595
596 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
597 vterm = preVal * (c1 - c1c_);
598 dudr = - *(idat.sw) * preVal * c2;
599
600 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
601 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
602 dudr = *(idat.sw) * preVal * (c2c_ - c2);
603
604 } else if (summationMethod_ == esm_REACTION_FIELD) {
605 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
606
607 vterm = preVal * ( riji + rfVal );
608 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
609
610 // if this is an excluded pair, there are still indirect
611 // interactions via the reaction field we must worry about:
612
613 if (idat.excluded) {
614 indirect_vpair += preVal * rfVal;
615 indirect_Pot += *(idat.sw) * preVal * rfVal;
616 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
617 }
618
619 } else {
620
621 vterm = preVal * riji * erfcVal;
622 dudr = - *(idat.sw) * preVal * c2;
623
624 }
625
626 vpair += vterm;
627 epot += *(idat.sw) * vterm;
628 dVdr += dudr * rhat;
629
630 if (i_is_Fluctuating) {
631 if (idat.excluded) {
632 // vFluc1 is the difference between the direct coulomb integral
633 // and the normal 1/r-like interaction between point charges.
634 coulInt = J1->getValueAt( *(idat.rij) );
635 vFluc1 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm);
636 } else {
637 vFluc1 = 0.0;
638 }
639 *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) / q_i;
640 }
641
642 if (j_is_Fluctuating) {
643 if (idat.excluded) {
644 // vFluc2 is the difference between the direct coulomb integral
645 // and the normal 1/r-like interaction between point charges.
646 coulInt = J2->getValueAt( *(idat.rij) );
647 vFluc2 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm);
648 } else {
649 vFluc2 = 0.0;
650 }
651 *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) / q_j;
652 }
653
654
655 }
656
657 if (j_is_Dipole) {
658 // pref is used by all the possible methods
659 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
660 preSw = *(idat.sw) * pref;
661
662 if (summationMethod_ == esm_REACTION_FIELD) {
663 ri2 = riji * riji;
664 ri3 = ri2 * riji;
665
666 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
667 vpair += vterm;
668 epot += *(idat.sw) * vterm;
669
670 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
671 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
672
673 // Even if we excluded this pair from direct interactions,
674 // we still have the reaction-field-mediated charge-dipole
675 // interaction:
676
677 if (idat.excluded) {
678 indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
679 indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
680 indirect_dVdr += preSw * preRF2_ * uz_j;
681 indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
682 }
683
684 } else {
685 // determine the inverse r used if we have split dipoles
686 if (j_is_SplitDipole) {
687 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
688 ri = 1.0 / BigR;
689 scale = *(idat.rij) * ri;
690 } else {
691 ri = riji;
692 scale = 1.0;
693 }
694
695 sc2 = scale * scale;
696
697 if (screeningMethod_ == DAMPED) {
698 // assemble the damping variables
699 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
700 //erfcVal = res.first;
701 //derfcVal = res.second;
702 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
703 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
704 c1 = erfcVal * ri;
705 c2 = (-derfcVal + c1) * ri;
706 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
707 } else {
708 c1 = ri;
709 c2 = c1 * ri;
710 c3 = 3.0 * c2 * ri;
711 }
712
713 c2ri = c2 * ri;
714
715 // calculate the potential
716 pot_term = scale * c2;
717 vterm = -pref * ct_j * pot_term;
718 vpair += vterm;
719 epot += *(idat.sw) * vterm;
720
721 // calculate derivatives for forces and torques
722
723 dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
724 duduz_j += -preSw * pot_term * rhat;
725
726 }
727 if (i_is_Fluctuating) {
728 *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
729 }
730 }
731
732 if (j_is_Quadrupole) {
733 // first precalculate some necessary variables
734 cx2 = cx_j * cx_j;
735 cy2 = cy_j * cy_j;
736 cz2 = cz_j * cz_j;
737 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
738
739 if (screeningMethod_ == DAMPED) {
740 // assemble the damping variables
741 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
742 //erfcVal = res.first;
743 //derfcVal = res.second;
744 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
745 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
746 c1 = erfcVal * riji;
747 c2 = (-derfcVal + c1) * riji;
748 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
749 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
750 } else {
751 c1 = riji;
752 c2 = c1 * riji;
753 c3 = 3.0 * c2 * riji;
754 c4 = 5.0 * c3 * riji * riji;
755 }
756
757 // precompute variables for convenience
758 preSw = *(idat.sw) * pref;
759 c2ri = c2 * riji;
760 c3ri = c3 * riji;
761 c4rij = c4 * *(idat.rij) ;
762 rhatdot2 = two * rhat * c3;
763 rhatc4 = rhat * c4rij;
764
765 // calculate the potential
766 pot_term = ( qxx_j * (cx2*c3 - c2ri) +
767 qyy_j * (cy2*c3 - c2ri) +
768 qzz_j * (cz2*c3 - c2ri) );
769 vterm = pref * pot_term;
770 vpair += vterm;
771 epot += *(idat.sw) * vterm;
772
773 // calculate derivatives for the forces and torques
774
775 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
776 qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
777 qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
778
779 dudux_j += preSw * qxx_j * cx_j * rhatdot2;
780 duduy_j += preSw * qyy_j * cy_j * rhatdot2;
781 duduz_j += preSw * qzz_j * cz_j * rhatdot2;
782 if (i_is_Fluctuating) {
783 *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
784 }
785
786 }
787 }
788
789 if (i_is_Dipole) {
790
791 if (j_is_Charge) {
792 // variables used by all the methods
793 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
794 preSw = *(idat.sw) * pref;
795
796 if (summationMethod_ == esm_REACTION_FIELD) {
797
798 ri2 = riji * riji;
799 ri3 = ri2 * riji;
800
801 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
802 vpair += vterm;
803 epot += *(idat.sw) * vterm;
804
805 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
806
807 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
808
809 // Even if we excluded this pair from direct interactions,
810 // we still have the reaction-field-mediated charge-dipole
811 // interaction:
812
813 if (idat.excluded) {
814 indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
815 indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
816 indirect_dVdr += -preSw * preRF2_ * uz_i;
817 indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
818 }
819
820 } else {
821
822 // determine inverse r if we are using split dipoles
823 if (i_is_SplitDipole) {
824 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
825 ri = 1.0 / BigR;
826 scale = *(idat.rij) * ri;
827 } else {
828 ri = riji;
829 scale = 1.0;
830 }
831
832 sc2 = scale * scale;
833
834 if (screeningMethod_ == DAMPED) {
835 // assemble the damping variables
836 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
837 //erfcVal = res.first;
838 //derfcVal = res.second;
839 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
840 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
841 c1 = erfcVal * ri;
842 c2 = (-derfcVal + c1) * ri;
843 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
844 } else {
845 c1 = ri;
846 c2 = c1 * ri;
847 c3 = 3.0 * c2 * ri;
848 }
849
850 c2ri = c2 * ri;
851
852 // calculate the potential
853 pot_term = c2 * scale;
854 vterm = pref * ct_i * pot_term;
855 vpair += vterm;
856 epot += *(idat.sw) * vterm;
857
858 // calculate derivatives for the forces and torques
859 dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
860 duduz_i += preSw * pot_term * rhat;
861 }
862
863 if (j_is_Fluctuating) {
864 *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
865 }
866
867 }
868
869 if (j_is_Dipole) {
870 // variables used by all methods
871 ct_ij = dot(uz_i, uz_j);
872
873 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
874 preSw = *(idat.sw) * pref;
875
876 if (summationMethod_ == esm_REACTION_FIELD) {
877 ri2 = riji * riji;
878 ri3 = ri2 * riji;
879 ri4 = ri2 * ri2;
880
881 vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
882 preRF2_ * ct_ij );
883 vpair += vterm;
884 epot += *(idat.sw) * vterm;
885
886 a1 = 5.0 * ct_i * ct_j - ct_ij;
887
888 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
889
890 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
891 duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
892
893 if (idat.excluded) {
894 indirect_vpair += - pref * preRF2_ * ct_ij;
895 indirect_Pot += - preSw * preRF2_ * ct_ij;
896 indirect_duduz_i += -preSw * preRF2_ * uz_j;
897 indirect_duduz_j += -preSw * preRF2_ * uz_i;
898 }
899
900 } else {
901
902 if (i_is_SplitDipole) {
903 if (j_is_SplitDipole) {
904 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
905 } else {
906 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
907 }
908 ri = 1.0 / BigR;
909 scale = *(idat.rij) * ri;
910 } else {
911 if (j_is_SplitDipole) {
912 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
913 ri = 1.0 / BigR;
914 scale = *(idat.rij) * ri;
915 } else {
916 ri = riji;
917 scale = 1.0;
918 }
919 }
920 if (screeningMethod_ == DAMPED) {
921 // assemble damping variables
922 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
923 //erfcVal = res.first;
924 //derfcVal = res.second;
925 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
926 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
927 c1 = erfcVal * ri;
928 c2 = (-derfcVal + c1) * ri;
929 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
930 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
931 } else {
932 c1 = ri;
933 c2 = c1 * ri;
934 c3 = 3.0 * c2 * ri;
935 c4 = 5.0 * c3 * ri * ri;
936 }
937
938 // precompute variables for convenience
939 sc2 = scale * scale;
940 cti3 = ct_i * sc2 * c3;
941 ctj3 = ct_j * sc2 * c3;
942 ctidotj = ct_i * ct_j * sc2;
943 preSwSc = preSw * scale;
944 c2ri = c2 * ri;
945 c3ri = c3 * ri;
946 c4rij = c4 * *(idat.rij) ;
947
948 // calculate the potential
949 pot_term = (ct_ij * c2ri - ctidotj * c3);
950 vterm = pref * pot_term;
951 vpair += vterm;
952 epot += *(idat.sw) * vterm;
953
954 // calculate derivatives for the forces and torques
955 dVdr += preSwSc * ( ctidotj * rhat * c4rij -
956 (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
957
958 duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
959 duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
960 }
961 }
962 }
963
964 if (i_is_Quadrupole) {
965 if (j_is_Charge) {
966 // precompute some necessary variables
967 cx2 = cx_i * cx_i;
968 cy2 = cy_i * cy_i;
969 cz2 = cz_i * cz_i;
970
971 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
972
973 if (screeningMethod_ == DAMPED) {
974 // assemble the damping variables
975 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
976 //erfcVal = res.first;
977 //derfcVal = res.second;
978 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
979 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
980 c1 = erfcVal * riji;
981 c2 = (-derfcVal + c1) * riji;
982 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
983 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
984 } else {
985 c1 = riji;
986 c2 = c1 * riji;
987 c3 = 3.0 * c2 * riji;
988 c4 = 5.0 * c3 * riji * riji;
989 }
990
991 // precompute some variables for convenience
992 preSw = *(idat.sw) * pref;
993 c2ri = c2 * riji;
994 c3ri = c3 * riji;
995 c4rij = c4 * *(idat.rij) ;
996 rhatdot2 = two * rhat * c3;
997 rhatc4 = rhat * c4rij;
998
999 // calculate the potential
1000 pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1001 qyy_i * (cy2 * c3 - c2ri) +
1002 qzz_i * (cz2 * c3 - c2ri) );
1003
1004 vterm = pref * pot_term;
1005 vpair += vterm;
1006 epot += *(idat.sw) * vterm;
1007
1008 // calculate the derivatives for the forces and torques
1009
1010 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1011 qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1012 qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1013
1014 dudux_i += preSw * qxx_i * cx_i * rhatdot2;
1015 duduy_i += preSw * qyy_i * cy_i * rhatdot2;
1016 duduz_i += preSw * qzz_i * cz_i * rhatdot2;
1017
1018 if (j_is_Fluctuating) {
1019 *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1020 }
1021
1022 }
1023 }
1024
1025
1026 if (!idat.excluded) {
1027 *(idat.vpair) += vpair;
1028 (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1029 *(idat.f1) += dVdr;
1030
1031 if (i_is_Dipole || i_is_Quadrupole)
1032 *(idat.t1) -= cross(uz_i, duduz_i);
1033 if (i_is_Quadrupole) {
1034 *(idat.t1) -= cross(ux_i, dudux_i);
1035 *(idat.t1) -= cross(uy_i, duduy_i);
1036 }
1037
1038 if (j_is_Dipole || j_is_Quadrupole)
1039 *(idat.t2) -= cross(uz_j, duduz_j);
1040 if (j_is_Quadrupole) {
1041 *(idat.t2) -= cross(uz_j, dudux_j);
1042 *(idat.t2) -= cross(uz_j, duduy_j);
1043 }
1044
1045 } else {
1046
1047 // only accumulate the forces and torques resulting from the
1048 // indirect reaction field terms.
1049
1050 *(idat.vpair) += indirect_vpair;
1051 (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1052 *(idat.f1) += indirect_dVdr;
1053
1054 if (i_is_Dipole)
1055 *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1056 if (j_is_Dipole)
1057 *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1058 }
1059
1060 return;
1061 }
1062
1063 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1064 RealType mu1, preVal, chg1, self;
1065
1066 if (!initialized_) initialize();
1067
1068 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1069
1070 // logicals
1071 bool i_is_Charge = data.is_Charge;
1072 bool i_is_Dipole = data.is_Dipole;
1073
1074 if (summationMethod_ == esm_REACTION_FIELD) {
1075 if (i_is_Dipole) {
1076 mu1 = data.dipole_moment;
1077 preVal = pre22_ * preRF2_ * mu1 * mu1;
1078 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1079
1080 // The self-correction term adds into the reaction field vector
1081 Vector3d uz_i = sdat.eFrame->getColumn(2);
1082 Vector3d ei = preVal * uz_i;
1083
1084 // This looks very wrong. A vector crossed with itself is zero.
1085 *(sdat.t) -= cross(uz_i, ei);
1086 }
1087 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1088 if (i_is_Charge) {
1089 chg1 = data.fixedCharge;
1090 if (screeningMethod_ == DAMPED) {
1091 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1092 } else {
1093 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1094 }
1095 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1096 }
1097 }
1098 }
1099
1100 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1101 // This seems to work moderately well as a default. There's no
1102 // inherent scale for 1/r interactions that we can standardize.
1103 // 12 angstroms seems to be a reasonably good guess for most
1104 // cases.
1105 return 12.0;
1106 }
1107 }

Properties

Name Value
svn:eol-style native