ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1720
Committed: Thu May 24 01:48:29 2012 UTC (12 years, 11 months ago) by gezelter
File size: 36140 byte(s)
Log Message:
Fixed a few bugs in that last commit

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/Electrostatic.hpp"
48 #include "utils/simError.h"
49 #include "types/NonBondedInteractionType.hpp"
50 #include "types/FixedChargeAdapter.hpp"
51 #include "types/FluctuatingChargeAdapter.hpp"
52 #include "types/MultipoleAdapter.hpp"
53 #include "io/Globals.hpp"
54 #include "nonbonded/SlaterIntegrals.hpp"
55 #include "utils/PhysicalConstants.hpp"
56
57
58 namespace OpenMD {
59
60 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 forceField_(NULL), info_(NULL),
62 haveCutoffRadius_(false),
63 haveDampingAlpha_(false),
64 haveDielectric_(false),
65 haveElectroSpline_(false)
66 {}
67
68 void Electrostatic::initialize() {
69
70 Globals* simParams_ = info_->getSimParams();
71
72 summationMap_["HARD"] = esm_HARD;
73 summationMap_["NONE"] = esm_HARD;
74 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79 summationMap_["EWALD_PME"] = esm_EWALD_PME;
80 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81 screeningMap_["DAMPED"] = DAMPED;
82 screeningMap_["UNDAMPED"] = UNDAMPED;
83
84 // these prefactors convert the multipole interactions into kcal / mol
85 // all were computed assuming distances are measured in angstroms
86 // Charge-Charge, assuming charges are measured in electrons
87 pre11_ = 332.0637778;
88 // Charge-Dipole, assuming charges are measured in electrons, and
89 // dipoles are measured in debyes
90 pre12_ = 69.13373;
91 // Dipole-Dipole, assuming dipoles are measured in debyes
92 pre22_ = 14.39325;
93 // Charge-Quadrupole, assuming charges are measured in electrons, and
94 // quadrupoles are measured in 10^-26 esu cm^2
95 // This unit is also known affectionately as an esu centi-barn.
96 pre14_ = 69.13373;
97
98 // conversions for the simulation box dipole moment
99 chargeToC_ = 1.60217733e-19;
100 angstromToM_ = 1.0e-10;
101 debyeToCm_ = 3.33564095198e-30;
102
103 // number of points for electrostatic splines
104 np_ = 100;
105
106 // variables to handle different summation methods for long-range
107 // electrostatics:
108 summationMethod_ = esm_HARD;
109 screeningMethod_ = UNDAMPED;
110 dielectric_ = 1.0;
111 one_third_ = 1.0 / 3.0;
112
113 // check the summation method:
114 if (simParams_->haveElectrostaticSummationMethod()) {
115 string myMethod = simParams_->getElectrostaticSummationMethod();
116 toUpper(myMethod);
117 map<string, ElectrostaticSummationMethod>::iterator i;
118 i = summationMap_.find(myMethod);
119 if ( i != summationMap_.end() ) {
120 summationMethod_ = (*i).second;
121 } else {
122 // throw error
123 sprintf( painCave.errMsg,
124 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 "\t(Input file specified %s .)\n"
126 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 "\t\"shifted_potential\", \"shifted_force\", or \n"
128 "\t\"reaction_field\".\n", myMethod.c_str() );
129 painCave.isFatal = 1;
130 simError();
131 }
132 } else {
133 // set ElectrostaticSummationMethod to the cutoffMethod:
134 if (simParams_->haveCutoffMethod()){
135 string myMethod = simParams_->getCutoffMethod();
136 toUpper(myMethod);
137 map<string, ElectrostaticSummationMethod>::iterator i;
138 i = summationMap_.find(myMethod);
139 if ( i != summationMap_.end() ) {
140 summationMethod_ = (*i).second;
141 }
142 }
143 }
144
145 if (summationMethod_ == esm_REACTION_FIELD) {
146 if (!simParams_->haveDielectric()) {
147 // throw warning
148 sprintf( painCave.errMsg,
149 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151 painCave.isFatal = 0;
152 painCave.severity = OPENMD_INFO;
153 simError();
154 } else {
155 dielectric_ = simParams_->getDielectric();
156 }
157 haveDielectric_ = true;
158 }
159
160 if (simParams_->haveElectrostaticScreeningMethod()) {
161 string myScreen = simParams_->getElectrostaticScreeningMethod();
162 toUpper(myScreen);
163 map<string, ElectrostaticScreeningMethod>::iterator i;
164 i = screeningMap_.find(myScreen);
165 if ( i != screeningMap_.end()) {
166 screeningMethod_ = (*i).second;
167 } else {
168 sprintf( painCave.errMsg,
169 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170 "\t(Input file specified %s .)\n"
171 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172 "or \"damped\".\n", myScreen.c_str() );
173 painCave.isFatal = 1;
174 simError();
175 }
176 }
177
178 // check to make sure a cutoff value has been set:
179 if (!haveCutoffRadius_) {
180 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181 "Cutoff value!\n");
182 painCave.severity = OPENMD_ERROR;
183 painCave.isFatal = 1;
184 simError();
185 }
186
187 if (screeningMethod_ == DAMPED) {
188 if (!simParams_->haveDampingAlpha()) {
189 // first set a cutoff dependent alpha value
190 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193
194 // throw warning
195 sprintf( painCave.errMsg,
196 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
198 dampingAlpha_, cutoffRadius_);
199 painCave.severity = OPENMD_INFO;
200 painCave.isFatal = 0;
201 simError();
202 } else {
203 dampingAlpha_ = simParams_->getDampingAlpha();
204 }
205 haveDampingAlpha_ = true;
206 }
207
208 // find all of the Electrostatic atom Types:
209 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
210 ForceField::AtomTypeContainer::MapTypeIterator i;
211 AtomType* at;
212
213 for (at = atomTypes->beginType(i); at != NULL;
214 at = atomTypes->nextType(i)) {
215
216 if (at->isElectrostatic())
217 addType(at);
218 }
219
220
221 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222 rcuti_ = 1.0 / cutoffRadius_;
223 rcuti2_ = rcuti_ * rcuti_;
224 rcuti3_ = rcuti2_ * rcuti_;
225 rcuti4_ = rcuti2_ * rcuti2_;
226
227 if (screeningMethod_ == DAMPED) {
228
229 alpha2_ = dampingAlpha_ * dampingAlpha_;
230 alpha4_ = alpha2_ * alpha2_;
231 alpha6_ = alpha4_ * alpha2_;
232 alpha8_ = alpha4_ * alpha4_;
233
234 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 invRootPi_ = 0.56418958354775628695;
236 alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237
238 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240 c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241 c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242 c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243 c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244 } else {
245 c1c_ = rcuti_;
246 c2c_ = c1c_ * rcuti_;
247 c3c_ = 3.0 * c2c_ * rcuti_;
248 c4c_ = 5.0 * c3c_ * rcuti2_;
249 c5c_ = 7.0 * c4c_ * rcuti2_;
250 c6c_ = 9.0 * c5c_ * rcuti2_;
251 }
252
253 if (summationMethod_ == esm_REACTION_FIELD) {
254 preRF_ = (dielectric_ - 1.0) /
255 ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 preRF2_ = 2.0 * preRF_;
257 }
258
259 // Add a 2 angstrom safety window to deal with cutoffGroups that
260 // have charged atoms longer than the cutoffRadius away from each
261 // other. Splining may not be the best choice here. Direct calls
262 // to erfc might be preferrable.
263
264 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265 RealType rval;
266 vector<RealType> rvals;
267 vector<RealType> yvals;
268 for (int i = 0; i < np_; i++) {
269 rval = RealType(i) * dx;
270 rvals.push_back(rval);
271 yvals.push_back(erfc(dampingAlpha_ * rval));
272 }
273 erfcSpline_ = new CubicSpline();
274 erfcSpline_->addPoints(rvals, yvals);
275 haveElectroSpline_ = true;
276
277 initialized_ = true;
278 }
279
280 void Electrostatic::addType(AtomType* atomType){
281
282 ElectrostaticAtomData electrostaticAtomData;
283 electrostaticAtomData.is_Charge = false;
284 electrostaticAtomData.is_Dipole = false;
285 electrostaticAtomData.is_SplitDipole = false;
286 electrostaticAtomData.is_Quadrupole = false;
287
288 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289
290 if (fca.isFixedCharge()) {
291 electrostaticAtomData.is_Charge = true;
292 electrostaticAtomData.fixedCharge = fca.getCharge();
293 }
294
295 MultipoleAdapter ma = MultipoleAdapter(atomType);
296 if (ma.isMultipole()) {
297 if (ma.isDipole()) {
298 electrostaticAtomData.is_Dipole = true;
299 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300 }
301 if (ma.isSplitDipole()) {
302 electrostaticAtomData.is_SplitDipole = true;
303 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304 }
305 if (ma.isQuadrupole()) {
306 // Quadrupoles in OpenMD are set as the diagonal elements
307 // of the diagonalized traceless quadrupole moment tensor.
308 // The column vectors of the unitary matrix that diagonalizes
309 // the quadrupole moment tensor become the eFrame (or the
310 // electrostatic version of the body-fixed frame.
311 electrostaticAtomData.is_Quadrupole = true;
312 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313 }
314 }
315
316 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317
318 if (fqa.isFluctuatingCharge()) {
319 electrostaticAtomData.is_Fluctuating = true;
320 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321 electrostaticAtomData.hardness = fqa.getHardness();
322 electrostaticAtomData.slaterN = fqa.getSlaterN();
323 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 }
325
326 pair<map<int,AtomType*>::iterator,bool> ret;
327 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
328 atomType) );
329 if (ret.second == false) {
330 sprintf( painCave.errMsg,
331 "Electrostatic already had a previous entry with ident %d\n",
332 atomType->getIdent() );
333 painCave.severity = OPENMD_INFO;
334 painCave.isFatal = 0;
335 simError();
336 }
337
338 ElectrostaticMap[atomType] = electrostaticAtomData;
339
340 // Now, iterate over all known types and add to the mixing map:
341
342 map<AtomType*, ElectrostaticAtomData>::iterator it;
343 for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
344 AtomType* atype2 = (*it).first;
345 ElectrostaticAtomData eaData2 = (*it).second;
346 if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
347
348 RealType a = electrostaticAtomData.slaterZeta;
349 RealType b = eaData2.slaterZeta;
350 int m = electrostaticAtomData.slaterN;
351 int n = eaData2.slaterN;
352
353 // Create the spline of the coulombic integral for s-type
354 // Slater orbitals. Add a 2 angstrom safety window to deal
355 // with cutoffGroups that have charged atoms longer than the
356 // cutoffRadius away from each other.
357
358 RealType rval;
359 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
360 vector<RealType> rvals;
361 vector<RealType> J1vals;
362 vector<RealType> J2vals;
363 for (int i = 0; i < np_; i++) {
364 rval = RealType(i) * dr;
365 rvals.push_back(rval);
366 J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
367 J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
368 }
369
370 CubicSpline* J1 = new CubicSpline();
371 J1->addPoints(rvals, J1vals);
372 CubicSpline* J2 = new CubicSpline();
373 J2->addPoints(rvals, J2vals);
374
375 pair<AtomType*, AtomType*> key1, key2;
376 key1 = make_pair(atomType, atype2);
377 key2 = make_pair(atype2, atomType);
378
379 Jij[key1] = J1;
380 Jij[key2] = J2;
381 }
382 }
383
384 return;
385 }
386
387 void Electrostatic::setCutoffRadius( RealType rCut ) {
388 cutoffRadius_ = rCut;
389 rrf_ = cutoffRadius_;
390 haveCutoffRadius_ = true;
391 }
392
393 void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
394 rt_ = rSwitch;
395 }
396 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
397 summationMethod_ = esm;
398 }
399 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
400 screeningMethod_ = sm;
401 }
402 void Electrostatic::setDampingAlpha( RealType alpha ) {
403 dampingAlpha_ = alpha;
404 haveDampingAlpha_ = true;
405 }
406 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
407 dielectric_ = dielectric;
408 haveDielectric_ = true;
409 }
410
411 void Electrostatic::calcForce(InteractionData &idat) {
412
413 // utility variables. Should clean these up and use the Vector3d and
414 // Mat3x3d to replace as many as we can in future versions:
415
416 RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
417 RealType qxx_i, qyy_i, qzz_i;
418 RealType qxx_j, qyy_j, qzz_j;
419 RealType cx_i, cy_i, cz_i;
420 RealType cx_j, cy_j, cz_j;
421 RealType cx2, cy2, cz2;
422 RealType ct_i, ct_j, ct_ij, a1;
423 RealType riji, ri, ri2, ri3, ri4;
424 RealType pref, vterm, epot, dudr;
425 RealType vpair(0.0);
426 RealType scale, sc2;
427 RealType pot_term, preVal, rfVal;
428 RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
429 RealType preSw, preSwSc;
430 RealType c1, c2, c3, c4;
431 RealType erfcVal(1.0), derfcVal(0.0);
432 RealType BigR;
433 RealType two(2.0), three(3.0);
434
435 Vector3d Q_i, Q_j;
436 Vector3d ux_i, uy_i, uz_i;
437 Vector3d ux_j, uy_j, uz_j;
438 Vector3d dudux_i, duduy_i, duduz_i;
439 Vector3d dudux_j, duduy_j, duduz_j;
440 Vector3d rhatdot2, rhatc4;
441 Vector3d dVdr;
442
443 // variables for indirect (reaction field) interactions for excluded pairs:
444 RealType indirect_Pot(0.0);
445 RealType indirect_vpair(0.0);
446 Vector3d indirect_dVdr(V3Zero);
447 Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
448
449 pair<RealType, RealType> res;
450
451 if (!initialized_) initialize();
452
453 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
454 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
455
456 // some variables we'll need independent of electrostatic type:
457
458 riji = 1.0 / *(idat.rij) ;
459 Vector3d rhat = *(idat.d) * riji;
460
461 // logicals
462
463 bool i_is_Charge = data1.is_Charge;
464 bool i_is_Dipole = data1.is_Dipole;
465 bool i_is_SplitDipole = data1.is_SplitDipole;
466 bool i_is_Quadrupole = data1.is_Quadrupole;
467
468 bool j_is_Charge = data2.is_Charge;
469 bool j_is_Dipole = data2.is_Dipole;
470 bool j_is_SplitDipole = data2.is_SplitDipole;
471 bool j_is_Quadrupole = data2.is_Quadrupole;
472
473 if (i_is_Charge) {
474 q_i = data1.fixedCharge;
475 if (idat.excluded) {
476 *(idat.skippedCharge2) += q_i;
477 }
478 }
479
480 if (i_is_Dipole) {
481 mu_i = data1.dipole_moment;
482 uz_i = idat.eFrame1->getColumn(2);
483
484 ct_i = dot(uz_i, rhat);
485
486 if (i_is_SplitDipole)
487 d_i = data1.split_dipole_distance;
488
489 duduz_i = V3Zero;
490 }
491
492 if (i_is_Quadrupole) {
493 Q_i = data1.quadrupole_moments;
494 qxx_i = Q_i.x();
495 qyy_i = Q_i.y();
496 qzz_i = Q_i.z();
497
498 ux_i = idat.eFrame1->getColumn(0);
499 uy_i = idat.eFrame1->getColumn(1);
500 uz_i = idat.eFrame1->getColumn(2);
501
502 cx_i = dot(ux_i, rhat);
503 cy_i = dot(uy_i, rhat);
504 cz_i = dot(uz_i, rhat);
505
506 dudux_i = V3Zero;
507 duduy_i = V3Zero;
508 duduz_i = V3Zero;
509 }
510
511 if (j_is_Charge) {
512 q_j = data2.fixedCharge;
513 if (idat.excluded) {
514 *(idat.skippedCharge1) += q_j;
515 }
516 }
517
518
519 if (j_is_Dipole) {
520 mu_j = data2.dipole_moment;
521 uz_j = idat.eFrame2->getColumn(2);
522
523 ct_j = dot(uz_j, rhat);
524
525 if (j_is_SplitDipole)
526 d_j = data2.split_dipole_distance;
527
528 duduz_j = V3Zero;
529 }
530
531 if (j_is_Quadrupole) {
532 Q_j = data2.quadrupole_moments;
533 qxx_j = Q_j.x();
534 qyy_j = Q_j.y();
535 qzz_j = Q_j.z();
536
537 ux_j = idat.eFrame2->getColumn(0);
538 uy_j = idat.eFrame2->getColumn(1);
539 uz_j = idat.eFrame2->getColumn(2);
540
541 cx_j = dot(ux_j, rhat);
542 cy_j = dot(uy_j, rhat);
543 cz_j = dot(uz_j, rhat);
544
545 dudux_j = V3Zero;
546 duduy_j = V3Zero;
547 duduz_j = V3Zero;
548 }
549
550 epot = 0.0;
551 dVdr = V3Zero;
552
553 if (i_is_Charge) {
554
555 if (j_is_Charge) {
556 if (screeningMethod_ == DAMPED) {
557 // assemble the damping variables
558 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
559 //erfcVal = res.first;
560 //derfcVal = res.second;
561
562 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
563 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
564
565 c1 = erfcVal * riji;
566 c2 = (-derfcVal + c1) * riji;
567 } else {
568 c1 = riji;
569 c2 = c1 * riji;
570 }
571
572 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
573
574 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
575 vterm = preVal * (c1 - c1c_);
576 dudr = - *(idat.sw) * preVal * c2;
577
578 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
579 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
580 dudr = *(idat.sw) * preVal * (c2c_ - c2);
581
582 } else if (summationMethod_ == esm_REACTION_FIELD) {
583 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
584
585 vterm = preVal * ( riji + rfVal );
586 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
587
588 // if this is an excluded pair, there are still indirect
589 // interactions via the reaction field we must worry about:
590
591 if (idat.excluded) {
592 indirect_vpair += preVal * rfVal;
593 indirect_Pot += *(idat.sw) * preVal * rfVal;
594 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
595 }
596
597 } else {
598
599 vterm = preVal * riji * erfcVal;
600 dudr = - *(idat.sw) * preVal * c2;
601
602 }
603
604 vpair += vterm;
605 epot += *(idat.sw) * vterm;
606 dVdr += dudr * rhat;
607 }
608
609 if (j_is_Dipole) {
610 // pref is used by all the possible methods
611 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
612 preSw = *(idat.sw) * pref;
613
614 if (summationMethod_ == esm_REACTION_FIELD) {
615 ri2 = riji * riji;
616 ri3 = ri2 * riji;
617
618 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
619 vpair += vterm;
620 epot += *(idat.sw) * vterm;
621
622 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
623 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
624
625 // Even if we excluded this pair from direct interactions,
626 // we still have the reaction-field-mediated charge-dipole
627 // interaction:
628
629 if (idat.excluded) {
630 indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
631 indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
632 indirect_dVdr += preSw * preRF2_ * uz_j;
633 indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
634 }
635
636 } else {
637 // determine the inverse r used if we have split dipoles
638 if (j_is_SplitDipole) {
639 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
640 ri = 1.0 / BigR;
641 scale = *(idat.rij) * ri;
642 } else {
643 ri = riji;
644 scale = 1.0;
645 }
646
647 sc2 = scale * scale;
648
649 if (screeningMethod_ == DAMPED) {
650 // assemble the damping variables
651 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
652 //erfcVal = res.first;
653 //derfcVal = res.second;
654 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
655 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
656 c1 = erfcVal * ri;
657 c2 = (-derfcVal + c1) * ri;
658 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
659 } else {
660 c1 = ri;
661 c2 = c1 * ri;
662 c3 = 3.0 * c2 * ri;
663 }
664
665 c2ri = c2 * ri;
666
667 // calculate the potential
668 pot_term = scale * c2;
669 vterm = -pref * ct_j * pot_term;
670 vpair += vterm;
671 epot += *(idat.sw) * vterm;
672
673 // calculate derivatives for forces and torques
674
675 dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
676 duduz_j += -preSw * pot_term * rhat;
677
678 }
679 }
680
681 if (j_is_Quadrupole) {
682 // first precalculate some necessary variables
683 cx2 = cx_j * cx_j;
684 cy2 = cy_j * cy_j;
685 cz2 = cz_j * cz_j;
686 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
687
688 if (screeningMethod_ == DAMPED) {
689 // assemble the damping variables
690 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
691 //erfcVal = res.first;
692 //derfcVal = res.second;
693 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
694 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
695 c1 = erfcVal * riji;
696 c2 = (-derfcVal + c1) * riji;
697 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
698 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
699 } else {
700 c1 = riji;
701 c2 = c1 * riji;
702 c3 = 3.0 * c2 * riji;
703 c4 = 5.0 * c3 * riji * riji;
704 }
705
706 // precompute variables for convenience
707 preSw = *(idat.sw) * pref;
708 c2ri = c2 * riji;
709 c3ri = c3 * riji;
710 c4rij = c4 * *(idat.rij) ;
711 rhatdot2 = two * rhat * c3;
712 rhatc4 = rhat * c4rij;
713
714 // calculate the potential
715 pot_term = ( qxx_j * (cx2*c3 - c2ri) +
716 qyy_j * (cy2*c3 - c2ri) +
717 qzz_j * (cz2*c3 - c2ri) );
718 vterm = pref * pot_term;
719 vpair += vterm;
720 epot += *(idat.sw) * vterm;
721
722 // calculate derivatives for the forces and torques
723
724 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
725 qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
726 qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
727
728 dudux_j += preSw * qxx_j * cx_j * rhatdot2;
729 duduy_j += preSw * qyy_j * cy_j * rhatdot2;
730 duduz_j += preSw * qzz_j * cz_j * rhatdot2;
731 }
732 }
733
734 if (i_is_Dipole) {
735
736 if (j_is_Charge) {
737 // variables used by all the methods
738 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
739 preSw = *(idat.sw) * pref;
740
741 if (summationMethod_ == esm_REACTION_FIELD) {
742
743 ri2 = riji * riji;
744 ri3 = ri2 * riji;
745
746 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
747 vpair += vterm;
748 epot += *(idat.sw) * vterm;
749
750 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
751
752 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
753
754 // Even if we excluded this pair from direct interactions,
755 // we still have the reaction-field-mediated charge-dipole
756 // interaction:
757
758 if (idat.excluded) {
759 indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
760 indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
761 indirect_dVdr += -preSw * preRF2_ * uz_i;
762 indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
763 }
764
765 } else {
766
767 // determine inverse r if we are using split dipoles
768 if (i_is_SplitDipole) {
769 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
770 ri = 1.0 / BigR;
771 scale = *(idat.rij) * ri;
772 } else {
773 ri = riji;
774 scale = 1.0;
775 }
776
777 sc2 = scale * scale;
778
779 if (screeningMethod_ == DAMPED) {
780 // assemble the damping variables
781 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
782 //erfcVal = res.first;
783 //derfcVal = res.second;
784 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
785 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
786 c1 = erfcVal * ri;
787 c2 = (-derfcVal + c1) * ri;
788 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
789 } else {
790 c1 = ri;
791 c2 = c1 * ri;
792 c3 = 3.0 * c2 * ri;
793 }
794
795 c2ri = c2 * ri;
796
797 // calculate the potential
798 pot_term = c2 * scale;
799 vterm = pref * ct_i * pot_term;
800 vpair += vterm;
801 epot += *(idat.sw) * vterm;
802
803 // calculate derivatives for the forces and torques
804 dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
805 duduz_i += preSw * pot_term * rhat;
806 }
807 }
808
809 if (j_is_Dipole) {
810 // variables used by all methods
811 ct_ij = dot(uz_i, uz_j);
812
813 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
814 preSw = *(idat.sw) * pref;
815
816 if (summationMethod_ == esm_REACTION_FIELD) {
817 ri2 = riji * riji;
818 ri3 = ri2 * riji;
819 ri4 = ri2 * ri2;
820
821 vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
822 preRF2_ * ct_ij );
823 vpair += vterm;
824 epot += *(idat.sw) * vterm;
825
826 a1 = 5.0 * ct_i * ct_j - ct_ij;
827
828 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
829
830 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
831 duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
832
833 if (idat.excluded) {
834 indirect_vpair += - pref * preRF2_ * ct_ij;
835 indirect_Pot += - preSw * preRF2_ * ct_ij;
836 indirect_duduz_i += -preSw * preRF2_ * uz_j;
837 indirect_duduz_j += -preSw * preRF2_ * uz_i;
838 }
839
840 } else {
841
842 if (i_is_SplitDipole) {
843 if (j_is_SplitDipole) {
844 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
845 } else {
846 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
847 }
848 ri = 1.0 / BigR;
849 scale = *(idat.rij) * ri;
850 } else {
851 if (j_is_SplitDipole) {
852 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
853 ri = 1.0 / BigR;
854 scale = *(idat.rij) * ri;
855 } else {
856 ri = riji;
857 scale = 1.0;
858 }
859 }
860 if (screeningMethod_ == DAMPED) {
861 // assemble damping variables
862 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
863 //erfcVal = res.first;
864 //derfcVal = res.second;
865 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
866 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
867 c1 = erfcVal * ri;
868 c2 = (-derfcVal + c1) * ri;
869 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
870 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
871 } else {
872 c1 = ri;
873 c2 = c1 * ri;
874 c3 = 3.0 * c2 * ri;
875 c4 = 5.0 * c3 * ri * ri;
876 }
877
878 // precompute variables for convenience
879 sc2 = scale * scale;
880 cti3 = ct_i * sc2 * c3;
881 ctj3 = ct_j * sc2 * c3;
882 ctidotj = ct_i * ct_j * sc2;
883 preSwSc = preSw * scale;
884 c2ri = c2 * ri;
885 c3ri = c3 * ri;
886 c4rij = c4 * *(idat.rij) ;
887
888 // calculate the potential
889 pot_term = (ct_ij * c2ri - ctidotj * c3);
890 vterm = pref * pot_term;
891 vpair += vterm;
892 epot += *(idat.sw) * vterm;
893
894 // calculate derivatives for the forces and torques
895 dVdr += preSwSc * ( ctidotj * rhat * c4rij -
896 (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
897
898 duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
899 duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
900 }
901 }
902 }
903
904 if (i_is_Quadrupole) {
905 if (j_is_Charge) {
906 // precompute some necessary variables
907 cx2 = cx_i * cx_i;
908 cy2 = cy_i * cy_i;
909 cz2 = cz_i * cz_i;
910
911 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
912
913 if (screeningMethod_ == DAMPED) {
914 // assemble the damping variables
915 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
916 //erfcVal = res.first;
917 //derfcVal = res.second;
918 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
919 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
920 c1 = erfcVal * riji;
921 c2 = (-derfcVal + c1) * riji;
922 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
923 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
924 } else {
925 c1 = riji;
926 c2 = c1 * riji;
927 c3 = 3.0 * c2 * riji;
928 c4 = 5.0 * c3 * riji * riji;
929 }
930
931 // precompute some variables for convenience
932 preSw = *(idat.sw) * pref;
933 c2ri = c2 * riji;
934 c3ri = c3 * riji;
935 c4rij = c4 * *(idat.rij) ;
936 rhatdot2 = two * rhat * c3;
937 rhatc4 = rhat * c4rij;
938
939 // calculate the potential
940 pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
941 qyy_i * (cy2 * c3 - c2ri) +
942 qzz_i * (cz2 * c3 - c2ri) );
943
944 vterm = pref * pot_term;
945 vpair += vterm;
946 epot += *(idat.sw) * vterm;
947
948 // calculate the derivatives for the forces and torques
949
950 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
951 qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
952 qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
953
954 dudux_i += preSw * qxx_i * cx_i * rhatdot2;
955 duduy_i += preSw * qyy_i * cy_i * rhatdot2;
956 duduz_i += preSw * qzz_i * cz_i * rhatdot2;
957 }
958 }
959
960
961 if (!idat.excluded) {
962 *(idat.vpair) += vpair;
963 (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
964 *(idat.f1) += dVdr;
965
966 if (i_is_Dipole || i_is_Quadrupole)
967 *(idat.t1) -= cross(uz_i, duduz_i);
968 if (i_is_Quadrupole) {
969 *(idat.t1) -= cross(ux_i, dudux_i);
970 *(idat.t1) -= cross(uy_i, duduy_i);
971 }
972
973 if (j_is_Dipole || j_is_Quadrupole)
974 *(idat.t2) -= cross(uz_j, duduz_j);
975 if (j_is_Quadrupole) {
976 *(idat.t2) -= cross(uz_j, dudux_j);
977 *(idat.t2) -= cross(uz_j, duduy_j);
978 }
979
980 } else {
981
982 // only accumulate the forces and torques resulting from the
983 // indirect reaction field terms.
984
985 *(idat.vpair) += indirect_vpair;
986 (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
987 *(idat.f1) += indirect_dVdr;
988
989 if (i_is_Dipole)
990 *(idat.t1) -= cross(uz_i, indirect_duduz_i);
991 if (j_is_Dipole)
992 *(idat.t2) -= cross(uz_j, indirect_duduz_j);
993 }
994
995
996 return;
997 }
998
999 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1000 RealType mu1, preVal, chg1, self;
1001
1002 if (!initialized_) initialize();
1003
1004 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1005
1006 // logicals
1007 bool i_is_Charge = data.is_Charge;
1008 bool i_is_Dipole = data.is_Dipole;
1009
1010 if (summationMethod_ == esm_REACTION_FIELD) {
1011 if (i_is_Dipole) {
1012 mu1 = data.dipole_moment;
1013 preVal = pre22_ * preRF2_ * mu1 * mu1;
1014 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1015
1016 // The self-correction term adds into the reaction field vector
1017 Vector3d uz_i = sdat.eFrame->getColumn(2);
1018 Vector3d ei = preVal * uz_i;
1019
1020 // This looks very wrong. A vector crossed with itself is zero.
1021 *(sdat.t) -= cross(uz_i, ei);
1022 }
1023 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1024 if (i_is_Charge) {
1025 chg1 = data.fixedCharge;
1026 if (screeningMethod_ == DAMPED) {
1027 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1028 } else {
1029 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1030 }
1031 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1032 }
1033 }
1034 }
1035
1036 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1037 // This seems to work moderately well as a default. There's no
1038 // inherent scale for 1/r interactions that we can standardize.
1039 // 12 angstroms seems to be a reasonably good guess for most
1040 // cases.
1041 return 12.0;
1042 }
1043 }

Properties

Name Value
svn:eol-style native