1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Electrostatic.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
#include "types/FixedChargeAdapter.hpp" |
51 |
#include "types/MultipoleAdapter.hpp" |
52 |
#include "io/Globals.hpp" |
53 |
|
54 |
namespace OpenMD { |
55 |
|
56 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
57 |
forceField_(NULL), info_(NULL), |
58 |
haveCutoffRadius_(false), |
59 |
haveDampingAlpha_(false), |
60 |
haveDielectric_(false), |
61 |
haveElectroSpline_(false) |
62 |
{} |
63 |
|
64 |
void Electrostatic::initialize() { |
65 |
|
66 |
Globals* simParams_ = info_->getSimParams(); |
67 |
|
68 |
summationMap_["HARD"] = esm_HARD; |
69 |
summationMap_["NONE"] = esm_HARD; |
70 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
71 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
72 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
73 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
74 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
75 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
76 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
77 |
screeningMap_["DAMPED"] = DAMPED; |
78 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
79 |
|
80 |
// these prefactors convert the multipole interactions into kcal / mol |
81 |
// all were computed assuming distances are measured in angstroms |
82 |
// Charge-Charge, assuming charges are measured in electrons |
83 |
pre11_ = 332.0637778; |
84 |
// Charge-Dipole, assuming charges are measured in electrons, and |
85 |
// dipoles are measured in debyes |
86 |
pre12_ = 69.13373; |
87 |
// Dipole-Dipole, assuming dipoles are measured in debyes |
88 |
pre22_ = 14.39325; |
89 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
90 |
// quadrupoles are measured in 10^-26 esu cm^2 |
91 |
// This unit is also known affectionately as an esu centi-barn. |
92 |
pre14_ = 69.13373; |
93 |
|
94 |
// conversions for the simulation box dipole moment |
95 |
chargeToC_ = 1.60217733e-19; |
96 |
angstromToM_ = 1.0e-10; |
97 |
debyeToCm_ = 3.33564095198e-30; |
98 |
|
99 |
// number of points for electrostatic splines |
100 |
np_ = 100; |
101 |
|
102 |
// variables to handle different summation methods for long-range |
103 |
// electrostatics: |
104 |
summationMethod_ = esm_HARD; |
105 |
screeningMethod_ = UNDAMPED; |
106 |
dielectric_ = 1.0; |
107 |
one_third_ = 1.0 / 3.0; |
108 |
|
109 |
// check the summation method: |
110 |
if (simParams_->haveElectrostaticSummationMethod()) { |
111 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
112 |
toUpper(myMethod); |
113 |
map<string, ElectrostaticSummationMethod>::iterator i; |
114 |
i = summationMap_.find(myMethod); |
115 |
if ( i != summationMap_.end() ) { |
116 |
summationMethod_ = (*i).second; |
117 |
} else { |
118 |
// throw error |
119 |
sprintf( painCave.errMsg, |
120 |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
121 |
"\t(Input file specified %s .)\n" |
122 |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
123 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
124 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
125 |
painCave.isFatal = 1; |
126 |
simError(); |
127 |
} |
128 |
} else { |
129 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
130 |
if (simParams_->haveCutoffMethod()){ |
131 |
string myMethod = simParams_->getCutoffMethod(); |
132 |
toUpper(myMethod); |
133 |
map<string, ElectrostaticSummationMethod>::iterator i; |
134 |
i = summationMap_.find(myMethod); |
135 |
if ( i != summationMap_.end() ) { |
136 |
summationMethod_ = (*i).second; |
137 |
} |
138 |
} |
139 |
} |
140 |
|
141 |
if (summationMethod_ == esm_REACTION_FIELD) { |
142 |
if (!simParams_->haveDielectric()) { |
143 |
// throw warning |
144 |
sprintf( painCave.errMsg, |
145 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
146 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
147 |
painCave.isFatal = 0; |
148 |
painCave.severity = OPENMD_INFO; |
149 |
simError(); |
150 |
} else { |
151 |
dielectric_ = simParams_->getDielectric(); |
152 |
} |
153 |
haveDielectric_ = true; |
154 |
} |
155 |
|
156 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
157 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
158 |
toUpper(myScreen); |
159 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
160 |
i = screeningMap_.find(myScreen); |
161 |
if ( i != screeningMap_.end()) { |
162 |
screeningMethod_ = (*i).second; |
163 |
} else { |
164 |
sprintf( painCave.errMsg, |
165 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
166 |
"\t(Input file specified %s .)\n" |
167 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
168 |
"or \"damped\".\n", myScreen.c_str() ); |
169 |
painCave.isFatal = 1; |
170 |
simError(); |
171 |
} |
172 |
} |
173 |
|
174 |
// check to make sure a cutoff value has been set: |
175 |
if (!haveCutoffRadius_) { |
176 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
177 |
"Cutoff value!\n"); |
178 |
painCave.severity = OPENMD_ERROR; |
179 |
painCave.isFatal = 1; |
180 |
simError(); |
181 |
} |
182 |
|
183 |
if (screeningMethod_ == DAMPED) { |
184 |
if (!simParams_->haveDampingAlpha()) { |
185 |
// first set a cutoff dependent alpha value |
186 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
187 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
188 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
189 |
|
190 |
// throw warning |
191 |
sprintf( painCave.errMsg, |
192 |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
193 |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
194 |
dampingAlpha_, cutoffRadius_); |
195 |
painCave.severity = OPENMD_INFO; |
196 |
painCave.isFatal = 0; |
197 |
simError(); |
198 |
} else { |
199 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
200 |
} |
201 |
haveDampingAlpha_ = true; |
202 |
} |
203 |
|
204 |
// find all of the Electrostatic atom Types: |
205 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
206 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
207 |
AtomType* at; |
208 |
|
209 |
for (at = atomTypes->beginType(i); at != NULL; |
210 |
at = atomTypes->nextType(i)) { |
211 |
|
212 |
if (at->isElectrostatic()) |
213 |
addType(at); |
214 |
} |
215 |
|
216 |
|
217 |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
218 |
rcuti_ = 1.0 / cutoffRadius_; |
219 |
rcuti2_ = rcuti_ * rcuti_; |
220 |
rcuti3_ = rcuti2_ * rcuti_; |
221 |
rcuti4_ = rcuti2_ * rcuti2_; |
222 |
|
223 |
if (screeningMethod_ == DAMPED) { |
224 |
|
225 |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
226 |
alpha4_ = alpha2_ * alpha2_; |
227 |
alpha6_ = alpha4_ * alpha2_; |
228 |
alpha8_ = alpha4_ * alpha4_; |
229 |
|
230 |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
231 |
invRootPi_ = 0.56418958354775628695; |
232 |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
233 |
|
234 |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
235 |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
236 |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
237 |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
238 |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
239 |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
240 |
} else { |
241 |
c1c_ = rcuti_; |
242 |
c2c_ = c1c_ * rcuti_; |
243 |
c3c_ = 3.0 * c2c_ * rcuti_; |
244 |
c4c_ = 5.0 * c3c_ * rcuti2_; |
245 |
c5c_ = 7.0 * c4c_ * rcuti2_; |
246 |
c6c_ = 9.0 * c5c_ * rcuti2_; |
247 |
} |
248 |
|
249 |
if (summationMethod_ == esm_REACTION_FIELD) { |
250 |
preRF_ = (dielectric_ - 1.0) / |
251 |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
252 |
preRF2_ = 2.0 * preRF_; |
253 |
} |
254 |
|
255 |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
256 |
// have charged atoms longer than the cutoffRadius away from each |
257 |
// other. Splining may not be the best choice here. Direct calls |
258 |
// to erfc might be preferrable. |
259 |
|
260 |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
261 |
RealType rval; |
262 |
vector<RealType> rvals; |
263 |
vector<RealType> yvals; |
264 |
for (int i = 0; i < np_; i++) { |
265 |
rval = RealType(i) * dx; |
266 |
rvals.push_back(rval); |
267 |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
268 |
} |
269 |
erfcSpline_ = new CubicSpline(); |
270 |
erfcSpline_->addPoints(rvals, yvals); |
271 |
haveElectroSpline_ = true; |
272 |
|
273 |
initialized_ = true; |
274 |
} |
275 |
|
276 |
void Electrostatic::addType(AtomType* atomType){ |
277 |
|
278 |
ElectrostaticAtomData electrostaticAtomData; |
279 |
electrostaticAtomData.is_Charge = false; |
280 |
electrostaticAtomData.is_Dipole = false; |
281 |
electrostaticAtomData.is_SplitDipole = false; |
282 |
electrostaticAtomData.is_Quadrupole = false; |
283 |
|
284 |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
285 |
|
286 |
if (fca.isFixedCharge()) { |
287 |
electrostaticAtomData.is_Charge = true; |
288 |
electrostaticAtomData.charge = fca.getCharge(); |
289 |
} |
290 |
|
291 |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
292 |
if (ma.isMultipole()) { |
293 |
if (ma.isDipole()) { |
294 |
electrostaticAtomData.is_Dipole = true; |
295 |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
296 |
} |
297 |
if (ma.isSplitDipole()) { |
298 |
electrostaticAtomData.is_SplitDipole = true; |
299 |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
300 |
} |
301 |
if (ma.isQuadrupole()) { |
302 |
// Quadrupoles in OpenMD are set as the diagonal elements |
303 |
// of the diagonalized traceless quadrupole moment tensor. |
304 |
// The column vectors of the unitary matrix that diagonalizes |
305 |
// the quadrupole moment tensor become the eFrame (or the |
306 |
// electrostatic version of the body-fixed frame. |
307 |
electrostaticAtomData.is_Quadrupole = true; |
308 |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
309 |
} |
310 |
} |
311 |
|
312 |
|
313 |
pair<map<int,AtomType*>::iterator,bool> ret; |
314 |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
315 |
atomType) ); |
316 |
if (ret.second == false) { |
317 |
sprintf( painCave.errMsg, |
318 |
"Electrostatic already had a previous entry with ident %d\n", |
319 |
atomType->getIdent() ); |
320 |
painCave.severity = OPENMD_INFO; |
321 |
painCave.isFatal = 0; |
322 |
simError(); |
323 |
} |
324 |
|
325 |
ElectrostaticMap[atomType] = electrostaticAtomData; |
326 |
return; |
327 |
} |
328 |
|
329 |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
330 |
cutoffRadius_ = rCut; |
331 |
rrf_ = cutoffRadius_; |
332 |
haveCutoffRadius_ = true; |
333 |
} |
334 |
|
335 |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
336 |
rt_ = rSwitch; |
337 |
} |
338 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
339 |
summationMethod_ = esm; |
340 |
} |
341 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
342 |
screeningMethod_ = sm; |
343 |
} |
344 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
345 |
dampingAlpha_ = alpha; |
346 |
haveDampingAlpha_ = true; |
347 |
} |
348 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
349 |
dielectric_ = dielectric; |
350 |
haveDielectric_ = true; |
351 |
} |
352 |
|
353 |
void Electrostatic::calcForce(InteractionData &idat) { |
354 |
|
355 |
// utility variables. Should clean these up and use the Vector3d and |
356 |
// Mat3x3d to replace as many as we can in future versions: |
357 |
|
358 |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
359 |
RealType qxx_i, qyy_i, qzz_i; |
360 |
RealType qxx_j, qyy_j, qzz_j; |
361 |
RealType cx_i, cy_i, cz_i; |
362 |
RealType cx_j, cy_j, cz_j; |
363 |
RealType cx2, cy2, cz2; |
364 |
RealType ct_i, ct_j, ct_ij, a1; |
365 |
RealType riji, ri, ri2, ri3, ri4; |
366 |
RealType pref, vterm, epot, dudr; |
367 |
RealType vpair(0.0); |
368 |
RealType scale, sc2; |
369 |
RealType pot_term, preVal, rfVal; |
370 |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
371 |
RealType preSw, preSwSc; |
372 |
RealType c1, c2, c3, c4; |
373 |
RealType erfcVal(1.0), derfcVal(0.0); |
374 |
RealType BigR; |
375 |
RealType two(2.0), three(3.0); |
376 |
|
377 |
Vector3d Q_i, Q_j; |
378 |
Vector3d ux_i, uy_i, uz_i; |
379 |
Vector3d ux_j, uy_j, uz_j; |
380 |
Vector3d dudux_i, duduy_i, duduz_i; |
381 |
Vector3d dudux_j, duduy_j, duduz_j; |
382 |
Vector3d rhatdot2, rhatc4; |
383 |
Vector3d dVdr; |
384 |
|
385 |
// variables for indirect (reaction field) interactions for excluded pairs: |
386 |
RealType indirect_Pot(0.0); |
387 |
RealType indirect_vpair(0.0); |
388 |
Vector3d indirect_dVdr(V3Zero); |
389 |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
390 |
|
391 |
pair<RealType, RealType> res; |
392 |
|
393 |
if (!initialized_) initialize(); |
394 |
|
395 |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
396 |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
397 |
|
398 |
// some variables we'll need independent of electrostatic type: |
399 |
|
400 |
riji = 1.0 / *(idat.rij) ; |
401 |
Vector3d rhat = *(idat.d) * riji; |
402 |
|
403 |
// logicals |
404 |
|
405 |
bool i_is_Charge = data1.is_Charge; |
406 |
bool i_is_Dipole = data1.is_Dipole; |
407 |
bool i_is_SplitDipole = data1.is_SplitDipole; |
408 |
bool i_is_Quadrupole = data1.is_Quadrupole; |
409 |
|
410 |
bool j_is_Charge = data2.is_Charge; |
411 |
bool j_is_Dipole = data2.is_Dipole; |
412 |
bool j_is_SplitDipole = data2.is_SplitDipole; |
413 |
bool j_is_Quadrupole = data2.is_Quadrupole; |
414 |
|
415 |
if (i_is_Charge) { |
416 |
q_i = data1.charge; |
417 |
if (idat.excluded) { |
418 |
*(idat.skippedCharge2) += q_i; |
419 |
} |
420 |
} |
421 |
|
422 |
if (i_is_Dipole) { |
423 |
mu_i = data1.dipole_moment; |
424 |
uz_i = idat.eFrame1->getColumn(2); |
425 |
|
426 |
ct_i = dot(uz_i, rhat); |
427 |
|
428 |
if (i_is_SplitDipole) |
429 |
d_i = data1.split_dipole_distance; |
430 |
|
431 |
duduz_i = V3Zero; |
432 |
} |
433 |
|
434 |
if (i_is_Quadrupole) { |
435 |
Q_i = data1.quadrupole_moments; |
436 |
qxx_i = Q_i.x(); |
437 |
qyy_i = Q_i.y(); |
438 |
qzz_i = Q_i.z(); |
439 |
|
440 |
ux_i = idat.eFrame1->getColumn(0); |
441 |
uy_i = idat.eFrame1->getColumn(1); |
442 |
uz_i = idat.eFrame1->getColumn(2); |
443 |
|
444 |
cx_i = dot(ux_i, rhat); |
445 |
cy_i = dot(uy_i, rhat); |
446 |
cz_i = dot(uz_i, rhat); |
447 |
|
448 |
dudux_i = V3Zero; |
449 |
duduy_i = V3Zero; |
450 |
duduz_i = V3Zero; |
451 |
} |
452 |
|
453 |
if (j_is_Charge) { |
454 |
q_j = data2.charge; |
455 |
if (idat.excluded) { |
456 |
*(idat.skippedCharge1) += q_j; |
457 |
} |
458 |
} |
459 |
|
460 |
|
461 |
if (j_is_Dipole) { |
462 |
mu_j = data2.dipole_moment; |
463 |
uz_j = idat.eFrame2->getColumn(2); |
464 |
|
465 |
ct_j = dot(uz_j, rhat); |
466 |
|
467 |
if (j_is_SplitDipole) |
468 |
d_j = data2.split_dipole_distance; |
469 |
|
470 |
duduz_j = V3Zero; |
471 |
} |
472 |
|
473 |
if (j_is_Quadrupole) { |
474 |
Q_j = data2.quadrupole_moments; |
475 |
qxx_j = Q_j.x(); |
476 |
qyy_j = Q_j.y(); |
477 |
qzz_j = Q_j.z(); |
478 |
|
479 |
ux_j = idat.eFrame2->getColumn(0); |
480 |
uy_j = idat.eFrame2->getColumn(1); |
481 |
uz_j = idat.eFrame2->getColumn(2); |
482 |
|
483 |
cx_j = dot(ux_j, rhat); |
484 |
cy_j = dot(uy_j, rhat); |
485 |
cz_j = dot(uz_j, rhat); |
486 |
|
487 |
dudux_j = V3Zero; |
488 |
duduy_j = V3Zero; |
489 |
duduz_j = V3Zero; |
490 |
} |
491 |
|
492 |
epot = 0.0; |
493 |
dVdr = V3Zero; |
494 |
|
495 |
if (i_is_Charge) { |
496 |
|
497 |
if (j_is_Charge) { |
498 |
if (screeningMethod_ == DAMPED) { |
499 |
// assemble the damping variables |
500 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
501 |
//erfcVal = res.first; |
502 |
//derfcVal = res.second; |
503 |
|
504 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
505 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
506 |
|
507 |
c1 = erfcVal * riji; |
508 |
c2 = (-derfcVal + c1) * riji; |
509 |
} else { |
510 |
c1 = riji; |
511 |
c2 = c1 * riji; |
512 |
} |
513 |
|
514 |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
515 |
|
516 |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
517 |
vterm = preVal * (c1 - c1c_); |
518 |
dudr = - *(idat.sw) * preVal * c2; |
519 |
|
520 |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
521 |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
522 |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
523 |
|
524 |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
525 |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
526 |
|
527 |
vterm = preVal * ( riji + rfVal ); |
528 |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
529 |
|
530 |
// if this is an excluded pair, there are still indirect |
531 |
// interactions via the reaction field we must worry about: |
532 |
|
533 |
if (idat.excluded) { |
534 |
indirect_vpair += preVal * rfVal; |
535 |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
536 |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
537 |
} |
538 |
|
539 |
} else { |
540 |
|
541 |
vterm = preVal * riji * erfcVal; |
542 |
dudr = - *(idat.sw) * preVal * c2; |
543 |
|
544 |
} |
545 |
|
546 |
vpair += vterm; |
547 |
epot += *(idat.sw) * vterm; |
548 |
dVdr += dudr * rhat; |
549 |
} |
550 |
|
551 |
if (j_is_Dipole) { |
552 |
// pref is used by all the possible methods |
553 |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
554 |
preSw = *(idat.sw) * pref; |
555 |
|
556 |
if (summationMethod_ == esm_REACTION_FIELD) { |
557 |
ri2 = riji * riji; |
558 |
ri3 = ri2 * riji; |
559 |
|
560 |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
561 |
vpair += vterm; |
562 |
epot += *(idat.sw) * vterm; |
563 |
|
564 |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
565 |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
566 |
|
567 |
// Even if we excluded this pair from direct interactions, |
568 |
// we still have the reaction-field-mediated charge-dipole |
569 |
// interaction: |
570 |
|
571 |
if (idat.excluded) { |
572 |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
573 |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
574 |
indirect_dVdr += preSw * preRF2_ * uz_j; |
575 |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
576 |
} |
577 |
|
578 |
} else { |
579 |
// determine the inverse r used if we have split dipoles |
580 |
if (j_is_SplitDipole) { |
581 |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
582 |
ri = 1.0 / BigR; |
583 |
scale = *(idat.rij) * ri; |
584 |
} else { |
585 |
ri = riji; |
586 |
scale = 1.0; |
587 |
} |
588 |
|
589 |
sc2 = scale * scale; |
590 |
|
591 |
if (screeningMethod_ == DAMPED) { |
592 |
// assemble the damping variables |
593 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
594 |
//erfcVal = res.first; |
595 |
//derfcVal = res.second; |
596 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
597 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
598 |
c1 = erfcVal * ri; |
599 |
c2 = (-derfcVal + c1) * ri; |
600 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
601 |
} else { |
602 |
c1 = ri; |
603 |
c2 = c1 * ri; |
604 |
c3 = 3.0 * c2 * ri; |
605 |
} |
606 |
|
607 |
c2ri = c2 * ri; |
608 |
|
609 |
// calculate the potential |
610 |
pot_term = scale * c2; |
611 |
vterm = -pref * ct_j * pot_term; |
612 |
vpair += vterm; |
613 |
epot += *(idat.sw) * vterm; |
614 |
|
615 |
// calculate derivatives for forces and torques |
616 |
|
617 |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
618 |
duduz_j += -preSw * pot_term * rhat; |
619 |
|
620 |
} |
621 |
} |
622 |
|
623 |
if (j_is_Quadrupole) { |
624 |
// first precalculate some necessary variables |
625 |
cx2 = cx_j * cx_j; |
626 |
cy2 = cy_j * cy_j; |
627 |
cz2 = cz_j * cz_j; |
628 |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
629 |
|
630 |
if (screeningMethod_ == DAMPED) { |
631 |
// assemble the damping variables |
632 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
633 |
//erfcVal = res.first; |
634 |
//derfcVal = res.second; |
635 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
636 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
637 |
c1 = erfcVal * riji; |
638 |
c2 = (-derfcVal + c1) * riji; |
639 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
640 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
641 |
} else { |
642 |
c1 = riji; |
643 |
c2 = c1 * riji; |
644 |
c3 = 3.0 * c2 * riji; |
645 |
c4 = 5.0 * c3 * riji * riji; |
646 |
} |
647 |
|
648 |
// precompute variables for convenience |
649 |
preSw = *(idat.sw) * pref; |
650 |
c2ri = c2 * riji; |
651 |
c3ri = c3 * riji; |
652 |
c4rij = c4 * *(idat.rij) ; |
653 |
rhatdot2 = two * rhat * c3; |
654 |
rhatc4 = rhat * c4rij; |
655 |
|
656 |
// calculate the potential |
657 |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
658 |
qyy_j * (cy2*c3 - c2ri) + |
659 |
qzz_j * (cz2*c3 - c2ri) ); |
660 |
vterm = pref * pot_term; |
661 |
vpair += vterm; |
662 |
epot += *(idat.sw) * vterm; |
663 |
|
664 |
// calculate derivatives for the forces and torques |
665 |
|
666 |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
667 |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
668 |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
669 |
|
670 |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
671 |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
672 |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
673 |
} |
674 |
} |
675 |
|
676 |
if (i_is_Dipole) { |
677 |
|
678 |
if (j_is_Charge) { |
679 |
// variables used by all the methods |
680 |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
681 |
preSw = *(idat.sw) * pref; |
682 |
|
683 |
if (summationMethod_ == esm_REACTION_FIELD) { |
684 |
|
685 |
ri2 = riji * riji; |
686 |
ri3 = ri2 * riji; |
687 |
|
688 |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
689 |
vpair += vterm; |
690 |
epot += *(idat.sw) * vterm; |
691 |
|
692 |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
693 |
|
694 |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
695 |
|
696 |
// Even if we excluded this pair from direct interactions, |
697 |
// we still have the reaction-field-mediated charge-dipole |
698 |
// interaction: |
699 |
|
700 |
if (idat.excluded) { |
701 |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
702 |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
703 |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
704 |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
705 |
} |
706 |
|
707 |
} else { |
708 |
|
709 |
// determine inverse r if we are using split dipoles |
710 |
if (i_is_SplitDipole) { |
711 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
712 |
ri = 1.0 / BigR; |
713 |
scale = *(idat.rij) * ri; |
714 |
} else { |
715 |
ri = riji; |
716 |
scale = 1.0; |
717 |
} |
718 |
|
719 |
sc2 = scale * scale; |
720 |
|
721 |
if (screeningMethod_ == DAMPED) { |
722 |
// assemble the damping variables |
723 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
724 |
//erfcVal = res.first; |
725 |
//derfcVal = res.second; |
726 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
727 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
728 |
c1 = erfcVal * ri; |
729 |
c2 = (-derfcVal + c1) * ri; |
730 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
731 |
} else { |
732 |
c1 = ri; |
733 |
c2 = c1 * ri; |
734 |
c3 = 3.0 * c2 * ri; |
735 |
} |
736 |
|
737 |
c2ri = c2 * ri; |
738 |
|
739 |
// calculate the potential |
740 |
pot_term = c2 * scale; |
741 |
vterm = pref * ct_i * pot_term; |
742 |
vpair += vterm; |
743 |
epot += *(idat.sw) * vterm; |
744 |
|
745 |
// calculate derivatives for the forces and torques |
746 |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
747 |
duduz_i += preSw * pot_term * rhat; |
748 |
} |
749 |
} |
750 |
|
751 |
if (j_is_Dipole) { |
752 |
// variables used by all methods |
753 |
ct_ij = dot(uz_i, uz_j); |
754 |
|
755 |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
756 |
preSw = *(idat.sw) * pref; |
757 |
|
758 |
if (summationMethod_ == esm_REACTION_FIELD) { |
759 |
ri2 = riji * riji; |
760 |
ri3 = ri2 * riji; |
761 |
ri4 = ri2 * ri2; |
762 |
|
763 |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
764 |
preRF2_ * ct_ij ); |
765 |
vpair += vterm; |
766 |
epot += *(idat.sw) * vterm; |
767 |
|
768 |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
769 |
|
770 |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
771 |
|
772 |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
773 |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
774 |
|
775 |
if (idat.excluded) { |
776 |
indirect_vpair += - pref * preRF2_ * ct_ij; |
777 |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
778 |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
779 |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
780 |
} |
781 |
|
782 |
} else { |
783 |
|
784 |
if (i_is_SplitDipole) { |
785 |
if (j_is_SplitDipole) { |
786 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
787 |
} else { |
788 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
789 |
} |
790 |
ri = 1.0 / BigR; |
791 |
scale = *(idat.rij) * ri; |
792 |
} else { |
793 |
if (j_is_SplitDipole) { |
794 |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
795 |
ri = 1.0 / BigR; |
796 |
scale = *(idat.rij) * ri; |
797 |
} else { |
798 |
ri = riji; |
799 |
scale = 1.0; |
800 |
} |
801 |
} |
802 |
if (screeningMethod_ == DAMPED) { |
803 |
// assemble damping variables |
804 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
805 |
//erfcVal = res.first; |
806 |
//derfcVal = res.second; |
807 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
808 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
809 |
c1 = erfcVal * ri; |
810 |
c2 = (-derfcVal + c1) * ri; |
811 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
812 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
813 |
} else { |
814 |
c1 = ri; |
815 |
c2 = c1 * ri; |
816 |
c3 = 3.0 * c2 * ri; |
817 |
c4 = 5.0 * c3 * ri * ri; |
818 |
} |
819 |
|
820 |
// precompute variables for convenience |
821 |
sc2 = scale * scale; |
822 |
cti3 = ct_i * sc2 * c3; |
823 |
ctj3 = ct_j * sc2 * c3; |
824 |
ctidotj = ct_i * ct_j * sc2; |
825 |
preSwSc = preSw * scale; |
826 |
c2ri = c2 * ri; |
827 |
c3ri = c3 * ri; |
828 |
c4rij = c4 * *(idat.rij) ; |
829 |
|
830 |
// calculate the potential |
831 |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
832 |
vterm = pref * pot_term; |
833 |
vpair += vterm; |
834 |
epot += *(idat.sw) * vterm; |
835 |
|
836 |
// calculate derivatives for the forces and torques |
837 |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
838 |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
839 |
|
840 |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
841 |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
842 |
} |
843 |
} |
844 |
} |
845 |
|
846 |
if (i_is_Quadrupole) { |
847 |
if (j_is_Charge) { |
848 |
// precompute some necessary variables |
849 |
cx2 = cx_i * cx_i; |
850 |
cy2 = cy_i * cy_i; |
851 |
cz2 = cz_i * cz_i; |
852 |
|
853 |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
854 |
|
855 |
if (screeningMethod_ == DAMPED) { |
856 |
// assemble the damping variables |
857 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
858 |
//erfcVal = res.first; |
859 |
//derfcVal = res.second; |
860 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
861 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
862 |
c1 = erfcVal * riji; |
863 |
c2 = (-derfcVal + c1) * riji; |
864 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
865 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
866 |
} else { |
867 |
c1 = riji; |
868 |
c2 = c1 * riji; |
869 |
c3 = 3.0 * c2 * riji; |
870 |
c4 = 5.0 * c3 * riji * riji; |
871 |
} |
872 |
|
873 |
// precompute some variables for convenience |
874 |
preSw = *(idat.sw) * pref; |
875 |
c2ri = c2 * riji; |
876 |
c3ri = c3 * riji; |
877 |
c4rij = c4 * *(idat.rij) ; |
878 |
rhatdot2 = two * rhat * c3; |
879 |
rhatc4 = rhat * c4rij; |
880 |
|
881 |
// calculate the potential |
882 |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
883 |
qyy_i * (cy2 * c3 - c2ri) + |
884 |
qzz_i * (cz2 * c3 - c2ri) ); |
885 |
|
886 |
vterm = pref * pot_term; |
887 |
vpair += vterm; |
888 |
epot += *(idat.sw) * vterm; |
889 |
|
890 |
// calculate the derivatives for the forces and torques |
891 |
|
892 |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
893 |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
894 |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
895 |
|
896 |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
897 |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
898 |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
899 |
} |
900 |
} |
901 |
|
902 |
|
903 |
if (!idat.excluded) { |
904 |
*(idat.vpair) += vpair; |
905 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
906 |
*(idat.f1) += dVdr; |
907 |
|
908 |
if (i_is_Dipole || i_is_Quadrupole) |
909 |
*(idat.t1) -= cross(uz_i, duduz_i); |
910 |
if (i_is_Quadrupole) { |
911 |
*(idat.t1) -= cross(ux_i, dudux_i); |
912 |
*(idat.t1) -= cross(uy_i, duduy_i); |
913 |
} |
914 |
|
915 |
if (j_is_Dipole || j_is_Quadrupole) |
916 |
*(idat.t2) -= cross(uz_j, duduz_j); |
917 |
if (j_is_Quadrupole) { |
918 |
*(idat.t2) -= cross(uz_j, dudux_j); |
919 |
*(idat.t2) -= cross(uz_j, duduy_j); |
920 |
} |
921 |
|
922 |
} else { |
923 |
|
924 |
// only accumulate the forces and torques resulting from the |
925 |
// indirect reaction field terms. |
926 |
|
927 |
*(idat.vpair) += indirect_vpair; |
928 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
929 |
*(idat.f1) += indirect_dVdr; |
930 |
|
931 |
if (i_is_Dipole) |
932 |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
933 |
if (j_is_Dipole) |
934 |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
935 |
} |
936 |
|
937 |
|
938 |
return; |
939 |
} |
940 |
|
941 |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
942 |
RealType mu1, preVal, chg1, self; |
943 |
|
944 |
if (!initialized_) initialize(); |
945 |
|
946 |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
947 |
|
948 |
// logicals |
949 |
bool i_is_Charge = data.is_Charge; |
950 |
bool i_is_Dipole = data.is_Dipole; |
951 |
|
952 |
if (summationMethod_ == esm_REACTION_FIELD) { |
953 |
if (i_is_Dipole) { |
954 |
mu1 = data.dipole_moment; |
955 |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
956 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
957 |
|
958 |
// The self-correction term adds into the reaction field vector |
959 |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
960 |
Vector3d ei = preVal * uz_i; |
961 |
|
962 |
// This looks very wrong. A vector crossed with itself is zero. |
963 |
*(sdat.t) -= cross(uz_i, ei); |
964 |
} |
965 |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
966 |
if (i_is_Charge) { |
967 |
chg1 = data.charge; |
968 |
if (screeningMethod_ == DAMPED) { |
969 |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
970 |
} else { |
971 |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
972 |
} |
973 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
974 |
} |
975 |
} |
976 |
} |
977 |
|
978 |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
979 |
// This seems to work moderately well as a default. There's no |
980 |
// inherent scale for 1/r interactions that we can standardize. |
981 |
// 12 angstroms seems to be a reasonably good guess for most |
982 |
// cases. |
983 |
return 12.0; |
984 |
} |
985 |
} |