ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1613
Committed: Thu Aug 18 20:18:19 2011 UTC (13 years, 8 months ago) by gezelter
File size: 36492 byte(s)
Log Message:
Fixed a parallel bug in computing exclude lists.
Added file versioning information in MD files.
Still tracking down cutoff group bugs.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/Electrostatic.hpp"
47 #include "utils/simError.h"
48 #include "types/NonBondedInteractionType.hpp"
49 #include "types/DirectionalAtomType.hpp"
50 #include "io/Globals.hpp"
51
52 namespace OpenMD {
53
54 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55 forceField_(NULL), info_(NULL),
56 haveCutoffRadius_(false),
57 haveDampingAlpha_(false),
58 haveDielectric_(false),
59 haveElectroSpline_(false)
60 {}
61
62 void Electrostatic::initialize() {
63
64 Globals* simParams_ = info_->getSimParams();
65
66 summationMap_["HARD"] = esm_HARD;
67 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
68 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
69 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
70 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
71 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
72 summationMap_["EWALD_PME"] = esm_EWALD_PME;
73 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
74 screeningMap_["DAMPED"] = DAMPED;
75 screeningMap_["UNDAMPED"] = UNDAMPED;
76
77 // these prefactors convert the multipole interactions into kcal / mol
78 // all were computed assuming distances are measured in angstroms
79 // Charge-Charge, assuming charges are measured in electrons
80 pre11_ = 332.0637778;
81 // Charge-Dipole, assuming charges are measured in electrons, and
82 // dipoles are measured in debyes
83 pre12_ = 69.13373;
84 // Dipole-Dipole, assuming dipoles are measured in debyes
85 pre22_ = 14.39325;
86 // Charge-Quadrupole, assuming charges are measured in electrons, and
87 // quadrupoles are measured in 10^-26 esu cm^2
88 // This unit is also known affectionately as an esu centi-barn.
89 pre14_ = 69.13373;
90
91 // conversions for the simulation box dipole moment
92 chargeToC_ = 1.60217733e-19;
93 angstromToM_ = 1.0e-10;
94 debyeToCm_ = 3.33564095198e-30;
95
96 // number of points for electrostatic splines
97 np_ = 100;
98
99 // variables to handle different summation methods for long-range
100 // electrostatics:
101 summationMethod_ = esm_HARD;
102 screeningMethod_ = UNDAMPED;
103 dielectric_ = 1.0;
104 one_third_ = 1.0 / 3.0;
105
106 // check the summation method:
107 if (simParams_->haveElectrostaticSummationMethod()) {
108 string myMethod = simParams_->getElectrostaticSummationMethod();
109 toUpper(myMethod);
110 map<string, ElectrostaticSummationMethod>::iterator i;
111 i = summationMap_.find(myMethod);
112 if ( i != summationMap_.end() ) {
113 summationMethod_ = (*i).second;
114 } else {
115 // throw error
116 sprintf( painCave.errMsg,
117 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
118 "\t(Input file specified %s .)\n"
119 "\telectrostaticSummationMethod must be one of: \"none\",\n"
120 "\t\"shifted_potential\", \"shifted_force\", or \n"
121 "\t\"reaction_field\".\n", myMethod.c_str() );
122 painCave.isFatal = 1;
123 simError();
124 }
125 } else {
126 // set ElectrostaticSummationMethod to the cutoffMethod:
127 if (simParams_->haveCutoffMethod()){
128 string myMethod = simParams_->getCutoffMethod();
129 toUpper(myMethod);
130 map<string, ElectrostaticSummationMethod>::iterator i;
131 i = summationMap_.find(myMethod);
132 if ( i != summationMap_.end() ) {
133 summationMethod_ = (*i).second;
134 }
135 }
136 }
137
138 if (summationMethod_ == esm_REACTION_FIELD) {
139 if (!simParams_->haveDielectric()) {
140 // throw warning
141 sprintf( painCave.errMsg,
142 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
143 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
144 painCave.isFatal = 0;
145 painCave.severity = OPENMD_INFO;
146 simError();
147 } else {
148 dielectric_ = simParams_->getDielectric();
149 }
150 haveDielectric_ = true;
151 }
152
153 if (simParams_->haveElectrostaticScreeningMethod()) {
154 string myScreen = simParams_->getElectrostaticScreeningMethod();
155 toUpper(myScreen);
156 map<string, ElectrostaticScreeningMethod>::iterator i;
157 i = screeningMap_.find(myScreen);
158 if ( i != screeningMap_.end()) {
159 screeningMethod_ = (*i).second;
160 } else {
161 sprintf( painCave.errMsg,
162 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
163 "\t(Input file specified %s .)\n"
164 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
165 "or \"damped\".\n", myScreen.c_str() );
166 painCave.isFatal = 1;
167 simError();
168 }
169 }
170
171 // check to make sure a cutoff value has been set:
172 if (!haveCutoffRadius_) {
173 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
174 "Cutoff value!\n");
175 painCave.severity = OPENMD_ERROR;
176 painCave.isFatal = 1;
177 simError();
178 }
179
180 if (screeningMethod_ == DAMPED) {
181 if (!simParams_->haveDampingAlpha()) {
182 // first set a cutoff dependent alpha value
183 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
184 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
185 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
186
187 // throw warning
188 sprintf( painCave.errMsg,
189 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
190 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
191 dampingAlpha_, cutoffRadius_);
192 painCave.severity = OPENMD_INFO;
193 painCave.isFatal = 0;
194 simError();
195 } else {
196 dampingAlpha_ = simParams_->getDampingAlpha();
197 }
198 haveDampingAlpha_ = true;
199 }
200
201 // find all of the Electrostatic atom Types:
202 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
203 ForceField::AtomTypeContainer::MapTypeIterator i;
204 AtomType* at;
205
206 for (at = atomTypes->beginType(i); at != NULL;
207 at = atomTypes->nextType(i)) {
208
209 if (at->isElectrostatic())
210 addType(at);
211 }
212
213
214 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
215 rcuti_ = 1.0 / cutoffRadius_;
216 rcuti2_ = rcuti_ * rcuti_;
217 rcuti3_ = rcuti2_ * rcuti_;
218 rcuti4_ = rcuti2_ * rcuti2_;
219
220 if (screeningMethod_ == DAMPED) {
221
222 alpha2_ = dampingAlpha_ * dampingAlpha_;
223 alpha4_ = alpha2_ * alpha2_;
224 alpha6_ = alpha4_ * alpha2_;
225 alpha8_ = alpha4_ * alpha4_;
226
227 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
228 invRootPi_ = 0.56418958354775628695;
229 alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
230
231 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
232 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
233 c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
234 c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
235 c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
236 c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
237 } else {
238 c1c_ = rcuti_;
239 c2c_ = c1c_ * rcuti_;
240 c3c_ = 3.0 * c2c_ * rcuti_;
241 c4c_ = 5.0 * c3c_ * rcuti2_;
242 c5c_ = 7.0 * c4c_ * rcuti2_;
243 c6c_ = 9.0 * c5c_ * rcuti2_;
244 }
245
246 if (summationMethod_ == esm_REACTION_FIELD) {
247 preRF_ = (dielectric_ - 1.0) /
248 ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
249 preRF2_ = 2.0 * preRF_;
250 }
251
252 // Add a 2 angstrom safety window to deal with cutoffGroups that
253 // have charged atoms longer than the cutoffRadius away from each
254 // other. Splining may not be the best choice here. Direct calls
255 // to erfc might be preferrable.
256
257 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
258 RealType rval;
259 vector<RealType> rvals;
260 vector<RealType> yvals;
261 for (int i = 0; i < np_; i++) {
262 rval = RealType(i) * dx;
263 rvals.push_back(rval);
264 yvals.push_back(erfc(dampingAlpha_ * rval));
265 }
266 erfcSpline_ = new CubicSpline();
267 erfcSpline_->addPoints(rvals, yvals);
268 haveElectroSpline_ = true;
269
270 initialized_ = true;
271 }
272
273 void Electrostatic::addType(AtomType* atomType){
274
275 ElectrostaticAtomData electrostaticAtomData;
276 electrostaticAtomData.is_Charge = false;
277 electrostaticAtomData.is_Dipole = false;
278 electrostaticAtomData.is_SplitDipole = false;
279 electrostaticAtomData.is_Quadrupole = false;
280
281 if (atomType->isCharge()) {
282 GenericData* data = atomType->getPropertyByName("Charge");
283
284 if (data == NULL) {
285 sprintf( painCave.errMsg, "Electrostatic::addType could not find "
286 "Charge\n"
287 "\tparameters for atomType %s.\n",
288 atomType->getName().c_str());
289 painCave.severity = OPENMD_ERROR;
290 painCave.isFatal = 1;
291 simError();
292 }
293
294 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
295 if (doubleData == NULL) {
296 sprintf( painCave.errMsg,
297 "Electrostatic::addType could not convert GenericData to "
298 "Charge for\n"
299 "\tatom type %s\n", atomType->getName().c_str());
300 painCave.severity = OPENMD_ERROR;
301 painCave.isFatal = 1;
302 simError();
303 }
304 electrostaticAtomData.is_Charge = true;
305 electrostaticAtomData.charge = doubleData->getData();
306 }
307
308 if (atomType->isDirectional()) {
309 DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
310
311 if (daType->isDipole()) {
312 GenericData* data = daType->getPropertyByName("Dipole");
313
314 if (data == NULL) {
315 sprintf( painCave.errMsg,
316 "Electrostatic::addType could not find Dipole\n"
317 "\tparameters for atomType %s.\n",
318 daType->getName().c_str());
319 painCave.severity = OPENMD_ERROR;
320 painCave.isFatal = 1;
321 simError();
322 }
323
324 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
325 if (doubleData == NULL) {
326 sprintf( painCave.errMsg,
327 "Electrostatic::addType could not convert GenericData to "
328 "Dipole Moment\n"
329 "\tfor atom type %s\n", daType->getName().c_str());
330 painCave.severity = OPENMD_ERROR;
331 painCave.isFatal = 1;
332 simError();
333 }
334 electrostaticAtomData.is_Dipole = true;
335 electrostaticAtomData.dipole_moment = doubleData->getData();
336 }
337
338 if (daType->isSplitDipole()) {
339 GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
340
341 if (data == NULL) {
342 sprintf(painCave.errMsg,
343 "Electrostatic::addType could not find SplitDipoleDistance\n"
344 "\tparameter for atomType %s.\n",
345 daType->getName().c_str());
346 painCave.severity = OPENMD_ERROR;
347 painCave.isFatal = 1;
348 simError();
349 }
350
351 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
352 if (doubleData == NULL) {
353 sprintf( painCave.errMsg,
354 "Electrostatic::addType could not convert GenericData to "
355 "SplitDipoleDistance for\n"
356 "\tatom type %s\n", daType->getName().c_str());
357 painCave.severity = OPENMD_ERROR;
358 painCave.isFatal = 1;
359 simError();
360 }
361 electrostaticAtomData.is_SplitDipole = true;
362 electrostaticAtomData.split_dipole_distance = doubleData->getData();
363 }
364
365 if (daType->isQuadrupole()) {
366 GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
367
368 if (data == NULL) {
369 sprintf( painCave.errMsg,
370 "Electrostatic::addType could not find QuadrupoleMoments\n"
371 "\tparameter for atomType %s.\n",
372 daType->getName().c_str());
373 painCave.severity = OPENMD_ERROR;
374 painCave.isFatal = 1;
375 simError();
376 }
377
378 // Quadrupoles in OpenMD are set as the diagonal elements
379 // of the diagonalized traceless quadrupole moment tensor.
380 // The column vectors of the unitary matrix that diagonalizes
381 // the quadrupole moment tensor become the eFrame (or the
382 // electrostatic version of the body-fixed frame.
383
384 Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
385 if (v3dData == NULL) {
386 sprintf( painCave.errMsg,
387 "Electrostatic::addType could not convert GenericData to "
388 "Quadrupole Moments for\n"
389 "\tatom type %s\n", daType->getName().c_str());
390 painCave.severity = OPENMD_ERROR;
391 painCave.isFatal = 1;
392 simError();
393 }
394 electrostaticAtomData.is_Quadrupole = true;
395 electrostaticAtomData.quadrupole_moments = v3dData->getData();
396 }
397 }
398
399 AtomTypeProperties atp = atomType->getATP();
400
401 pair<map<int,AtomType*>::iterator,bool> ret;
402 ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
403 if (ret.second == false) {
404 sprintf( painCave.errMsg,
405 "Electrostatic already had a previous entry with ident %d\n",
406 atp.ident);
407 painCave.severity = OPENMD_INFO;
408 painCave.isFatal = 0;
409 simError();
410 }
411
412 ElectrostaticMap[atomType] = electrostaticAtomData;
413 return;
414 }
415
416 void Electrostatic::setCutoffRadius( RealType rCut ) {
417 cutoffRadius_ = rCut;
418 rrf_ = cutoffRadius_;
419 haveCutoffRadius_ = true;
420 }
421
422 void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
423 rt_ = rSwitch;
424 }
425 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
426 summationMethod_ = esm;
427 }
428 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
429 screeningMethod_ = sm;
430 }
431 void Electrostatic::setDampingAlpha( RealType alpha ) {
432 dampingAlpha_ = alpha;
433 haveDampingAlpha_ = true;
434 }
435 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
436 dielectric_ = dielectric;
437 haveDielectric_ = true;
438 }
439
440 void Electrostatic::calcForce(InteractionData &idat) {
441
442 // utility variables. Should clean these up and use the Vector3d and
443 // Mat3x3d to replace as many as we can in future versions:
444
445 RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
446 RealType qxx_i, qyy_i, qzz_i;
447 RealType qxx_j, qyy_j, qzz_j;
448 RealType cx_i, cy_i, cz_i;
449 RealType cx_j, cy_j, cz_j;
450 RealType cx2, cy2, cz2;
451 RealType ct_i, ct_j, ct_ij, a1;
452 RealType riji, ri, ri2, ri3, ri4;
453 RealType pref, vterm, epot, dudr;
454 RealType vpair(0.0);
455 RealType scale, sc2;
456 RealType pot_term, preVal, rfVal;
457 RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
458 RealType preSw, preSwSc;
459 RealType c1, c2, c3, c4;
460 RealType erfcVal(1.0), derfcVal(0.0);
461 RealType BigR;
462
463 Vector3d Q_i, Q_j;
464 Vector3d ux_i, uy_i, uz_i;
465 Vector3d ux_j, uy_j, uz_j;
466 Vector3d dudux_i, duduy_i, duduz_i;
467 Vector3d dudux_j, duduy_j, duduz_j;
468 Vector3d rhatdot2, rhatc4;
469 Vector3d dVdr;
470
471 // variables for indirect (reaction field) interactions for excluded pairs:
472 RealType indirect_Pot(0.0);
473 RealType indirect_vpair(0.0);
474 Vector3d indirect_dVdr(V3Zero);
475 Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
476
477 pair<RealType, RealType> res;
478
479 if (!initialized_) initialize();
480
481 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
482 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
483
484 // some variables we'll need independent of electrostatic type:
485
486 riji = 1.0 / *(idat.rij) ;
487 Vector3d rhat = *(idat.d) * riji;
488
489 // logicals
490
491 bool i_is_Charge = data1.is_Charge;
492 bool i_is_Dipole = data1.is_Dipole;
493 bool i_is_SplitDipole = data1.is_SplitDipole;
494 bool i_is_Quadrupole = data1.is_Quadrupole;
495
496 bool j_is_Charge = data2.is_Charge;
497 bool j_is_Dipole = data2.is_Dipole;
498 bool j_is_SplitDipole = data2.is_SplitDipole;
499 bool j_is_Quadrupole = data2.is_Quadrupole;
500
501 if (i_is_Charge) {
502 q_i = data1.charge;
503 if (idat.excluded) {
504 *(idat.skippedCharge2) += q_i;
505 }
506 }
507
508 if (i_is_Dipole) {
509 mu_i = data1.dipole_moment;
510 uz_i = idat.eFrame1->getColumn(2);
511
512 ct_i = dot(uz_i, rhat);
513
514 if (i_is_SplitDipole)
515 d_i = data1.split_dipole_distance;
516
517 duduz_i = V3Zero;
518 }
519
520 if (i_is_Quadrupole) {
521 Q_i = data1.quadrupole_moments;
522 qxx_i = Q_i.x();
523 qyy_i = Q_i.y();
524 qzz_i = Q_i.z();
525
526 ux_i = idat.eFrame1->getColumn(0);
527 uy_i = idat.eFrame1->getColumn(1);
528 uz_i = idat.eFrame1->getColumn(2);
529
530 cx_i = dot(ux_i, rhat);
531 cy_i = dot(uy_i, rhat);
532 cz_i = dot(uz_i, rhat);
533
534 dudux_i = V3Zero;
535 duduy_i = V3Zero;
536 duduz_i = V3Zero;
537 }
538
539 if (j_is_Charge) {
540 q_j = data2.charge;
541 if (idat.excluded) {
542 *(idat.skippedCharge1) += q_j;
543 }
544 }
545
546
547 if (j_is_Dipole) {
548 mu_j = data2.dipole_moment;
549 uz_j = idat.eFrame2->getColumn(2);
550
551 ct_j = dot(uz_j, rhat);
552
553 if (j_is_SplitDipole)
554 d_j = data2.split_dipole_distance;
555
556 duduz_j = V3Zero;
557 }
558
559 if (j_is_Quadrupole) {
560 Q_j = data2.quadrupole_moments;
561 qxx_j = Q_j.x();
562 qyy_j = Q_j.y();
563 qzz_j = Q_j.z();
564
565 ux_j = idat.eFrame2->getColumn(0);
566 uy_j = idat.eFrame2->getColumn(1);
567 uz_j = idat.eFrame2->getColumn(2);
568
569 cx_j = dot(ux_j, rhat);
570 cy_j = dot(uy_j, rhat);
571 cz_j = dot(uz_j, rhat);
572
573 dudux_j = V3Zero;
574 duduy_j = V3Zero;
575 duduz_j = V3Zero;
576 }
577
578 epot = 0.0;
579 dVdr = V3Zero;
580
581 if (i_is_Charge) {
582
583 if (j_is_Charge) {
584 if (screeningMethod_ == DAMPED) {
585 // assemble the damping variables
586 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
587 erfcVal = res.first;
588 derfcVal = res.second;
589 c1 = erfcVal * riji;
590 c2 = (-derfcVal + c1) * riji;
591 } else {
592 c1 = riji;
593 c2 = c1 * riji;
594 }
595
596 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
597
598 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
599 vterm = preVal * (c1 - c1c_);
600 dudr = - *(idat.sw) * preVal * c2;
601
602 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
603 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
604 dudr = *(idat.sw) * preVal * (c2c_ - c2);
605
606 } else if (summationMethod_ == esm_REACTION_FIELD) {
607 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
608
609 vterm = preVal * ( riji + rfVal );
610 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
611
612 // if this is an excluded pair, there are still indirect
613 // interactions via the reaction field we must worry about:
614
615 if (idat.excluded) {
616 indirect_vpair += preVal * rfVal;
617 indirect_Pot += *(idat.sw) * preVal * rfVal;
618 indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat;
619 }
620
621 } else {
622
623 vterm = preVal * riji * erfcVal;
624 dudr = - *(idat.sw) * preVal * c2;
625
626 }
627
628 vpair += vterm;
629 epot += *(idat.sw) * vterm;
630 dVdr += dudr * rhat;
631 }
632
633 if (j_is_Dipole) {
634 // pref is used by all the possible methods
635 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
636 preSw = *(idat.sw) * pref;
637
638 if (summationMethod_ == esm_REACTION_FIELD) {
639 ri2 = riji * riji;
640 ri3 = ri2 * riji;
641
642 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
643 vpair += vterm;
644 epot += *(idat.sw) * vterm;
645
646 dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
647 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
648
649 // Even if we excluded this pair from direct interactions,
650 // we still have the reaction-field-mediated charge-dipole
651 // interaction:
652
653 if (idat.excluded) {
654 indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
655 indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
656 indirect_dVdr += preSw * preRF2_ * uz_j;
657 indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
658 }
659
660 } else {
661 // determine the inverse r used if we have split dipoles
662 if (j_is_SplitDipole) {
663 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
664 ri = 1.0 / BigR;
665 scale = *(idat.rij) * ri;
666 } else {
667 ri = riji;
668 scale = 1.0;
669 }
670
671 sc2 = scale * scale;
672
673 if (screeningMethod_ == DAMPED) {
674 // assemble the damping variables
675 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
676 erfcVal = res.first;
677 derfcVal = res.second;
678 c1 = erfcVal * ri;
679 c2 = (-derfcVal + c1) * ri;
680 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
681 } else {
682 c1 = ri;
683 c2 = c1 * ri;
684 c3 = 3.0 * c2 * ri;
685 }
686
687 c2ri = c2 * ri;
688
689 // calculate the potential
690 pot_term = scale * c2;
691 vterm = -pref * ct_j * pot_term;
692 vpair += vterm;
693 epot += *(idat.sw) * vterm;
694
695 // calculate derivatives for forces and torques
696
697 dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
698 duduz_j += -preSw * pot_term * rhat;
699
700 }
701 }
702
703 if (j_is_Quadrupole) {
704 // first precalculate some necessary variables
705 cx2 = cx_j * cx_j;
706 cy2 = cy_j * cy_j;
707 cz2 = cz_j * cz_j;
708 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
709
710 if (screeningMethod_ == DAMPED) {
711 // assemble the damping variables
712 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
713 erfcVal = res.first;
714 derfcVal = res.second;
715 c1 = erfcVal * riji;
716 c2 = (-derfcVal + c1) * riji;
717 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
718 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
719 } else {
720 c1 = riji;
721 c2 = c1 * riji;
722 c3 = 3.0 * c2 * riji;
723 c4 = 5.0 * c3 * riji * riji;
724 }
725
726 // precompute variables for convenience
727 preSw = *(idat.sw) * pref;
728 c2ri = c2 * riji;
729 c3ri = c3 * riji;
730 c4rij = c4 * *(idat.rij) ;
731 rhatdot2 = 2.0 * rhat * c3;
732 rhatc4 = rhat * c4rij;
733
734 // calculate the potential
735 pot_term = ( qxx_j * (cx2*c3 - c2ri) +
736 qyy_j * (cy2*c3 - c2ri) +
737 qzz_j * (cz2*c3 - c2ri) );
738 vterm = pref * pot_term;
739 vpair += vterm;
740 epot += *(idat.sw) * vterm;
741
742 // calculate derivatives for the forces and torques
743
744 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
745 qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
746 qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
747
748 dudux_j += preSw * qxx_j * cx_j * rhatdot2;
749 duduy_j += preSw * qyy_j * cy_j * rhatdot2;
750 duduz_j += preSw * qzz_j * cz_j * rhatdot2;
751 }
752 }
753
754 if (i_is_Dipole) {
755
756 if (j_is_Charge) {
757 // variables used by all the methods
758 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
759 preSw = *(idat.sw) * pref;
760
761 if (summationMethod_ == esm_REACTION_FIELD) {
762
763 ri2 = riji * riji;
764 ri3 = ri2 * riji;
765
766 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
767 vpair += vterm;
768 epot += *(idat.sw) * vterm;
769
770 dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
771
772 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
773
774 // Even if we excluded this pair from direct interactions,
775 // we still have the reaction-field-mediated charge-dipole
776 // interaction:
777
778 if (idat.excluded) {
779 indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
780 indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
781 indirect_dVdr += -preSw * preRF2_ * uz_i;
782 indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
783 }
784
785 } else {
786
787 // determine inverse r if we are using split dipoles
788 if (i_is_SplitDipole) {
789 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
790 ri = 1.0 / BigR;
791 scale = *(idat.rij) * ri;
792 } else {
793 ri = riji;
794 scale = 1.0;
795 }
796
797 sc2 = scale * scale;
798
799 if (screeningMethod_ == DAMPED) {
800 // assemble the damping variables
801 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
802 erfcVal = res.first;
803 derfcVal = res.second;
804 c1 = erfcVal * ri;
805 c2 = (-derfcVal + c1) * ri;
806 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
807 } else {
808 c1 = ri;
809 c2 = c1 * ri;
810 c3 = 3.0 * c2 * ri;
811 }
812
813 c2ri = c2 * ri;
814
815 // calculate the potential
816 pot_term = c2 * scale;
817 vterm = pref * ct_i * pot_term;
818 vpair += vterm;
819 epot += *(idat.sw) * vterm;
820
821 // calculate derivatives for the forces and torques
822 dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
823 duduz_i += preSw * pot_term * rhat;
824 }
825 }
826
827 if (j_is_Dipole) {
828 // variables used by all methods
829 ct_ij = dot(uz_i, uz_j);
830
831 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
832 preSw = *(idat.sw) * pref;
833
834 if (summationMethod_ == esm_REACTION_FIELD) {
835 ri2 = riji * riji;
836 ri3 = ri2 * riji;
837 ri4 = ri2 * ri2;
838
839 vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
840 preRF2_ * ct_ij );
841 vpair += vterm;
842 epot += *(idat.sw) * vterm;
843
844 a1 = 5.0 * ct_i * ct_j - ct_ij;
845
846 dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
847
848 duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
849 duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
850
851 if (idat.excluded) {
852 indirect_vpair += - pref * preRF2_ * ct_ij;
853 indirect_Pot += - preSw * preRF2_ * ct_ij;
854 indirect_duduz_i += -preSw * preRF2_ * uz_j;
855 indirect_duduz_j += -preSw * preRF2_ * uz_i;
856 }
857
858 } else {
859
860 if (i_is_SplitDipole) {
861 if (j_is_SplitDipole) {
862 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
863 } else {
864 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
865 }
866 ri = 1.0 / BigR;
867 scale = *(idat.rij) * ri;
868 } else {
869 if (j_is_SplitDipole) {
870 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
871 ri = 1.0 / BigR;
872 scale = *(idat.rij) * ri;
873 } else {
874 ri = riji;
875 scale = 1.0;
876 }
877 }
878 if (screeningMethod_ == DAMPED) {
879 // assemble damping variables
880 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
881 erfcVal = res.first;
882 derfcVal = res.second;
883 c1 = erfcVal * ri;
884 c2 = (-derfcVal + c1) * ri;
885 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
886 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
887 } else {
888 c1 = ri;
889 c2 = c1 * ri;
890 c3 = 3.0 * c2 * ri;
891 c4 = 5.0 * c3 * ri * ri;
892 }
893
894 // precompute variables for convenience
895 sc2 = scale * scale;
896 cti3 = ct_i * sc2 * c3;
897 ctj3 = ct_j * sc2 * c3;
898 ctidotj = ct_i * ct_j * sc2;
899 preSwSc = preSw * scale;
900 c2ri = c2 * ri;
901 c3ri = c3 * ri;
902 c4rij = c4 * *(idat.rij) ;
903
904 // calculate the potential
905 pot_term = (ct_ij * c2ri - ctidotj * c3);
906 vterm = pref * pot_term;
907 vpair += vterm;
908 epot += *(idat.sw) * vterm;
909
910 // calculate derivatives for the forces and torques
911 dVdr += preSwSc * ( ctidotj * rhat * c4rij -
912 (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
913
914 duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
915 duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
916 }
917 }
918 }
919
920 if (i_is_Quadrupole) {
921 if (j_is_Charge) {
922 // precompute some necessary variables
923 cx2 = cx_i * cx_i;
924 cy2 = cy_i * cy_i;
925 cz2 = cz_i * cz_i;
926
927 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
928
929 if (screeningMethod_ == DAMPED) {
930 // assemble the damping variables
931 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
932 erfcVal = res.first;
933 derfcVal = res.second;
934 c1 = erfcVal * riji;
935 c2 = (-derfcVal + c1) * riji;
936 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
937 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
938 } else {
939 c1 = riji;
940 c2 = c1 * riji;
941 c3 = 3.0 * c2 * riji;
942 c4 = 5.0 * c3 * riji * riji;
943 }
944
945 // precompute some variables for convenience
946 preSw = *(idat.sw) * pref;
947 c2ri = c2 * riji;
948 c3ri = c3 * riji;
949 c4rij = c4 * *(idat.rij) ;
950 rhatdot2 = 2.0 * rhat * c3;
951 rhatc4 = rhat * c4rij;
952
953 // calculate the potential
954 pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
955 qyy_i * (cy2 * c3 - c2ri) +
956 qzz_i * (cz2 * c3 - c2ri) );
957
958 vterm = pref * pot_term;
959 vpair += vterm;
960 epot += *(idat.sw) * vterm;
961
962 // calculate the derivatives for the forces and torques
963
964 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
965 qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
966 qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
967
968 dudux_i += preSw * qxx_i * cx_i * rhatdot2;
969 duduy_i += preSw * qyy_i * cy_i * rhatdot2;
970 duduz_i += preSw * qzz_i * cz_i * rhatdot2;
971 }
972 }
973
974
975 if (!idat.excluded) {
976 *(idat.vpair) += vpair;
977 (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
978 *(idat.f1) += dVdr;
979
980 if (i_is_Dipole || i_is_Quadrupole)
981 *(idat.t1) -= cross(uz_i, duduz_i);
982 if (i_is_Quadrupole) {
983 *(idat.t1) -= cross(ux_i, dudux_i);
984 *(idat.t1) -= cross(uy_i, duduy_i);
985 }
986
987 if (j_is_Dipole || j_is_Quadrupole)
988 *(idat.t2) -= cross(uz_j, duduz_j);
989 if (j_is_Quadrupole) {
990 *(idat.t2) -= cross(uz_j, dudux_j);
991 *(idat.t2) -= cross(uz_j, duduy_j);
992 }
993
994 } else {
995
996 // only accumulate the forces and torques resulting from the
997 // indirect reaction field terms.
998 *(idat.vpair) += indirect_vpair;
999 (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1000 *(idat.f1) += indirect_dVdr;
1001
1002 if (i_is_Dipole)
1003 *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1004 if (j_is_Dipole)
1005 *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1006 }
1007
1008
1009 return;
1010 }
1011
1012 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1013 RealType mu1, preVal, chg1, self;
1014
1015 if (!initialized_) initialize();
1016
1017 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1018
1019 // logicals
1020 bool i_is_Charge = data.is_Charge;
1021 bool i_is_Dipole = data.is_Dipole;
1022
1023 if (summationMethod_ == esm_REACTION_FIELD) {
1024 if (i_is_Dipole) {
1025 mu1 = data.dipole_moment;
1026 preVal = pre22_ * preRF2_ * mu1 * mu1;
1027 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1028
1029 // The self-correction term adds into the reaction field vector
1030 Vector3d uz_i = sdat.eFrame->getColumn(2);
1031 Vector3d ei = preVal * uz_i;
1032
1033 // This looks very wrong. A vector crossed with itself is zero.
1034 *(sdat.t) -= cross(uz_i, ei);
1035 }
1036 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1037 if (i_is_Charge) {
1038 chg1 = data.charge;
1039 if (screeningMethod_ == DAMPED) {
1040 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1041 } else {
1042 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1043 }
1044 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1045 }
1046 }
1047 }
1048
1049 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1050 // This seems to work moderately well as a default. There's no
1051 // inherent scale for 1/r interactions that we can standardize.
1052 // 12 angstroms seems to be a reasonably good guess for most
1053 // cases.
1054 return 12.0;
1055 }
1056 }

Properties

Name Value
svn:eol-style native