ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1587
Committed: Fri Jul 8 20:25:32 2011 UTC (13 years, 10 months ago) by gezelter
File size: 39529 byte(s)
Log Message:
Fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/Electrostatic.hpp"
47 #include "utils/simError.h"
48 #include "types/NonBondedInteractionType.hpp"
49 #include "types/DirectionalAtomType.hpp"
50 #include "io/Globals.hpp"
51
52 namespace OpenMD {
53
54 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55 forceField_(NULL), info_(NULL),
56 haveCutoffRadius_(false),
57 haveDampingAlpha_(false),
58 haveDielectric_(false),
59 haveElectroSpline_(false)
60 {}
61
62 void Electrostatic::initialize() {
63
64 Globals* simParams_ = info_->getSimParams();
65
66 summationMap_["HARD"] = esm_HARD;
67 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
68 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
69 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
70 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
71 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
72 summationMap_["EWALD_PME"] = esm_EWALD_PME;
73 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
74 screeningMap_["DAMPED"] = DAMPED;
75 screeningMap_["UNDAMPED"] = UNDAMPED;
76
77 // these prefactors convert the multipole interactions into kcal / mol
78 // all were computed assuming distances are measured in angstroms
79 // Charge-Charge, assuming charges are measured in electrons
80 pre11_ = 332.0637778;
81 // Charge-Dipole, assuming charges are measured in electrons, and
82 // dipoles are measured in debyes
83 pre12_ = 69.13373;
84 // Dipole-Dipole, assuming dipoles are measured in debyes
85 pre22_ = 14.39325;
86 // Charge-Quadrupole, assuming charges are measured in electrons, and
87 // quadrupoles are measured in 10^-26 esu cm^2
88 // This unit is also known affectionately as an esu centi-barn.
89 pre14_ = 69.13373;
90
91 // conversions for the simulation box dipole moment
92 chargeToC_ = 1.60217733e-19;
93 angstromToM_ = 1.0e-10;
94 debyeToCm_ = 3.33564095198e-30;
95
96 // number of points for electrostatic splines
97 np_ = 100;
98
99 // variables to handle different summation methods for long-range
100 // electrostatics:
101 summationMethod_ = esm_HARD;
102 screeningMethod_ = UNDAMPED;
103 dielectric_ = 1.0;
104 one_third_ = 1.0 / 3.0;
105
106 // check the summation method:
107 if (simParams_->haveElectrostaticSummationMethod()) {
108 string myMethod = simParams_->getElectrostaticSummationMethod();
109 toUpper(myMethod);
110 map<string, ElectrostaticSummationMethod>::iterator i;
111 i = summationMap_.find(myMethod);
112 if ( i != summationMap_.end() ) {
113 summationMethod_ = (*i).second;
114 } else {
115 // throw error
116 sprintf( painCave.errMsg,
117 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
118 "\t(Input file specified %s .)\n"
119 "\telectrostaticSummationMethod must be one of: \"none\",\n"
120 "\t\"shifted_potential\", \"shifted_force\", or \n"
121 "\t\"reaction_field\".\n", myMethod.c_str() );
122 painCave.isFatal = 1;
123 simError();
124 }
125 } else {
126 // set ElectrostaticSummationMethod to the cutoffMethod:
127 if (simParams_->haveCutoffMethod()){
128 string myMethod = simParams_->getCutoffMethod();
129 toUpper(myMethod);
130 map<string, ElectrostaticSummationMethod>::iterator i;
131 i = summationMap_.find(myMethod);
132 if ( i != summationMap_.end() ) {
133 summationMethod_ = (*i).second;
134 }
135 }
136 }
137
138 if (summationMethod_ == esm_REACTION_FIELD) {
139 if (!simParams_->haveDielectric()) {
140 // throw warning
141 sprintf( painCave.errMsg,
142 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
143 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
144 painCave.isFatal = 0;
145 painCave.severity = OPENMD_INFO;
146 simError();
147 } else {
148 dielectric_ = simParams_->getDielectric();
149 }
150 haveDielectric_ = true;
151 }
152
153 if (simParams_->haveElectrostaticScreeningMethod()) {
154 string myScreen = simParams_->getElectrostaticScreeningMethod();
155 toUpper(myScreen);
156 map<string, ElectrostaticScreeningMethod>::iterator i;
157 i = screeningMap_.find(myScreen);
158 if ( i != screeningMap_.end()) {
159 screeningMethod_ = (*i).second;
160 } else {
161 sprintf( painCave.errMsg,
162 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
163 "\t(Input file specified %s .)\n"
164 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
165 "or \"damped\".\n", myScreen.c_str() );
166 painCave.isFatal = 1;
167 simError();
168 }
169 }
170
171 // check to make sure a cutoff value has been set:
172 if (!haveCutoffRadius_) {
173 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
174 "Cutoff value!\n");
175 painCave.severity = OPENMD_ERROR;
176 painCave.isFatal = 1;
177 simError();
178 }
179
180 if (screeningMethod_ == DAMPED) {
181 if (!simParams_->haveDampingAlpha()) {
182 // first set a cutoff dependent alpha value
183 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
184 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
185 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
186
187 // throw warning
188 sprintf( painCave.errMsg,
189 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
190 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
191 dampingAlpha_, cutoffRadius_);
192 painCave.severity = OPENMD_INFO;
193 painCave.isFatal = 0;
194 simError();
195 } else {
196 dampingAlpha_ = simParams_->getDampingAlpha();
197 }
198 haveDampingAlpha_ = true;
199 }
200
201 // find all of the Electrostatic atom Types:
202 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
203 ForceField::AtomTypeContainer::MapTypeIterator i;
204 AtomType* at;
205
206 for (at = atomTypes->beginType(i); at != NULL;
207 at = atomTypes->nextType(i)) {
208
209 if (at->isElectrostatic())
210 addType(at);
211 }
212
213
214 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
215 rcuti_ = 1.0 / cutoffRadius_;
216 rcuti2_ = rcuti_ * rcuti_;
217 rcuti3_ = rcuti2_ * rcuti_;
218 rcuti4_ = rcuti2_ * rcuti2_;
219
220 if (screeningMethod_ == DAMPED) {
221
222 alpha2_ = dampingAlpha_ * dampingAlpha_;
223 alpha4_ = alpha2_ * alpha2_;
224 alpha6_ = alpha4_ * alpha2_;
225 alpha8_ = alpha4_ * alpha4_;
226
227 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
228 invRootPi_ = 0.56418958354775628695;
229 alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
230
231 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
232 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
233 c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
234 c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
235 c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
236 c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
237 } else {
238 c1c_ = rcuti_;
239 c2c_ = c1c_ * rcuti_;
240 c3c_ = 3.0 * c2c_ * rcuti_;
241 c4c_ = 5.0 * c3c_ * rcuti2_;
242 c5c_ = 7.0 * c4c_ * rcuti2_;
243 c6c_ = 9.0 * c5c_ * rcuti2_;
244 }
245
246 if (summationMethod_ == esm_REACTION_FIELD) {
247 preRF_ = (dielectric_ - 1.0) /
248 ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
249 preRF2_ = 2.0 * preRF_;
250 }
251
252 RealType dx = cutoffRadius_ / RealType(np_ - 1);
253 RealType rval;
254 vector<RealType> rvals;
255 vector<RealType> yvals;
256 for (int i = 0; i < np_; i++) {
257 rval = RealType(i) * dx;
258 rvals.push_back(rval);
259 yvals.push_back(erfc(dampingAlpha_ * rval));
260 }
261 erfcSpline_ = new CubicSpline();
262 erfcSpline_->addPoints(rvals, yvals);
263 haveElectroSpline_ = true;
264
265 initialized_ = true;
266 }
267
268 void Electrostatic::addType(AtomType* atomType){
269
270 ElectrostaticAtomData electrostaticAtomData;
271 electrostaticAtomData.is_Charge = false;
272 electrostaticAtomData.is_Dipole = false;
273 electrostaticAtomData.is_SplitDipole = false;
274 electrostaticAtomData.is_Quadrupole = false;
275
276 if (atomType->isCharge()) {
277 GenericData* data = atomType->getPropertyByName("Charge");
278
279 if (data == NULL) {
280 sprintf( painCave.errMsg, "Electrostatic::addType could not find "
281 "Charge\n"
282 "\tparameters for atomType %s.\n",
283 atomType->getName().c_str());
284 painCave.severity = OPENMD_ERROR;
285 painCave.isFatal = 1;
286 simError();
287 }
288
289 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
290 if (doubleData == NULL) {
291 sprintf( painCave.errMsg,
292 "Electrostatic::addType could not convert GenericData to "
293 "Charge for\n"
294 "\tatom type %s\n", atomType->getName().c_str());
295 painCave.severity = OPENMD_ERROR;
296 painCave.isFatal = 1;
297 simError();
298 }
299 electrostaticAtomData.is_Charge = true;
300 electrostaticAtomData.charge = doubleData->getData();
301 }
302
303 if (atomType->isDirectional()) {
304 DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
305
306 if (daType->isDipole()) {
307 GenericData* data = daType->getPropertyByName("Dipole");
308
309 if (data == NULL) {
310 sprintf( painCave.errMsg,
311 "Electrostatic::addType could not find Dipole\n"
312 "\tparameters for atomType %s.\n",
313 daType->getName().c_str());
314 painCave.severity = OPENMD_ERROR;
315 painCave.isFatal = 1;
316 simError();
317 }
318
319 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
320 if (doubleData == NULL) {
321 sprintf( painCave.errMsg,
322 "Electrostatic::addType could not convert GenericData to "
323 "Dipole Moment\n"
324 "\tfor atom type %s\n", daType->getName().c_str());
325 painCave.severity = OPENMD_ERROR;
326 painCave.isFatal = 1;
327 simError();
328 }
329 electrostaticAtomData.is_Dipole = true;
330 electrostaticAtomData.dipole_moment = doubleData->getData();
331 }
332
333 if (daType->isSplitDipole()) {
334 GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
335
336 if (data == NULL) {
337 sprintf(painCave.errMsg,
338 "Electrostatic::addType could not find SplitDipoleDistance\n"
339 "\tparameter for atomType %s.\n",
340 daType->getName().c_str());
341 painCave.severity = OPENMD_ERROR;
342 painCave.isFatal = 1;
343 simError();
344 }
345
346 DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
347 if (doubleData == NULL) {
348 sprintf( painCave.errMsg,
349 "Electrostatic::addType could not convert GenericData to "
350 "SplitDipoleDistance for\n"
351 "\tatom type %s\n", daType->getName().c_str());
352 painCave.severity = OPENMD_ERROR;
353 painCave.isFatal = 1;
354 simError();
355 }
356 electrostaticAtomData.is_SplitDipole = true;
357 electrostaticAtomData.split_dipole_distance = doubleData->getData();
358 }
359
360 if (daType->isQuadrupole()) {
361 GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
362
363 if (data == NULL) {
364 sprintf( painCave.errMsg,
365 "Electrostatic::addType could not find QuadrupoleMoments\n"
366 "\tparameter for atomType %s.\n",
367 daType->getName().c_str());
368 painCave.severity = OPENMD_ERROR;
369 painCave.isFatal = 1;
370 simError();
371 }
372
373 // Quadrupoles in OpenMD are set as the diagonal elements
374 // of the diagonalized traceless quadrupole moment tensor.
375 // The column vectors of the unitary matrix that diagonalizes
376 // the quadrupole moment tensor become the eFrame (or the
377 // electrostatic version of the body-fixed frame.
378
379 Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
380 if (v3dData == NULL) {
381 sprintf( painCave.errMsg,
382 "Electrostatic::addType could not convert GenericData to "
383 "Quadrupole Moments for\n"
384 "\tatom type %s\n", daType->getName().c_str());
385 painCave.severity = OPENMD_ERROR;
386 painCave.isFatal = 1;
387 simError();
388 }
389 electrostaticAtomData.is_Quadrupole = true;
390 electrostaticAtomData.quadrupole_moments = v3dData->getData();
391 }
392 }
393
394 AtomTypeProperties atp = atomType->getATP();
395
396 pair<map<int,AtomType*>::iterator,bool> ret;
397 ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
398 if (ret.second == false) {
399 sprintf( painCave.errMsg,
400 "Electrostatic already had a previous entry with ident %d\n",
401 atp.ident);
402 painCave.severity = OPENMD_INFO;
403 painCave.isFatal = 0;
404 simError();
405 }
406
407 ElectrostaticMap[atomType] = electrostaticAtomData;
408 return;
409 }
410
411 void Electrostatic::setCutoffRadius( RealType rCut ) {
412 cutoffRadius_ = rCut;
413 rrf_ = cutoffRadius_;
414 haveCutoffRadius_ = true;
415 }
416
417 void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
418 rt_ = rSwitch;
419 }
420 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
421 summationMethod_ = esm;
422 }
423 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
424 screeningMethod_ = sm;
425 }
426 void Electrostatic::setDampingAlpha( RealType alpha ) {
427 dampingAlpha_ = alpha;
428 haveDampingAlpha_ = true;
429 }
430 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
431 dielectric_ = dielectric;
432 haveDielectric_ = true;
433 }
434
435 void Electrostatic::calcForce(InteractionData &idat) {
436
437 // utility variables. Should clean these up and use the Vector3d and
438 // Mat3x3d to replace as many as we can in future versions:
439
440 RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
441 RealType qxx_i, qyy_i, qzz_i;
442 RealType qxx_j, qyy_j, qzz_j;
443 RealType cx_i, cy_i, cz_i;
444 RealType cx_j, cy_j, cz_j;
445 RealType cx2, cy2, cz2;
446 RealType ct_i, ct_j, ct_ij, a1;
447 RealType riji, ri, ri2, ri3, ri4;
448 RealType pref, vterm, epot, dudr;
449 RealType vpair(0.0);
450 RealType scale, sc2;
451 RealType pot_term, preVal, rfVal;
452 RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
453 RealType preSw, preSwSc;
454 RealType c1, c2, c3, c4;
455 RealType erfcVal(1.0), derfcVal(0.0);
456 RealType BigR;
457
458 Vector3d Q_i, Q_j;
459 Vector3d ux_i, uy_i, uz_i;
460 Vector3d ux_j, uy_j, uz_j;
461 Vector3d dudux_i, duduy_i, duduz_i;
462 Vector3d dudux_j, duduy_j, duduz_j;
463 Vector3d rhatdot2, rhatc4;
464 Vector3d dVdr;
465
466 // variables for indirect (reaction field) interactions for excluded pairs:
467 RealType indirect_Pot(0.0);
468 RealType indirect_vpair(0.0);
469 Vector3d indirect_dVdr(V3Zero);
470 Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
471
472 pair<RealType, RealType> res;
473
474 if (!initialized_) initialize();
475
476 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
477 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
478
479 // some variables we'll need independent of electrostatic type:
480
481 riji = 1.0 / *(idat.rij) ;
482 Vector3d rhat = *(idat.d) * riji;
483
484 // logicals
485
486 bool i_is_Charge = data1.is_Charge;
487 bool i_is_Dipole = data1.is_Dipole;
488 bool i_is_SplitDipole = data1.is_SplitDipole;
489 bool i_is_Quadrupole = data1.is_Quadrupole;
490
491 bool j_is_Charge = data2.is_Charge;
492 bool j_is_Dipole = data2.is_Dipole;
493 bool j_is_SplitDipole = data2.is_SplitDipole;
494 bool j_is_Quadrupole = data2.is_Quadrupole;
495
496 if (i_is_Charge) {
497 q_i = data1.charge;
498 if (idat.excluded) {
499 *(idat.skippedCharge2) += q_i;
500 }
501 }
502
503 if (i_is_Dipole) {
504 mu_i = data1.dipole_moment;
505 uz_i = idat.eFrame1->getColumn(2);
506
507 ct_i = dot(uz_i, rhat);
508
509 if (i_is_SplitDipole)
510 d_i = data1.split_dipole_distance;
511
512 duduz_i = V3Zero;
513 }
514
515 if (i_is_Quadrupole) {
516 Q_i = data1.quadrupole_moments;
517 qxx_i = Q_i.x();
518 qyy_i = Q_i.y();
519 qzz_i = Q_i.z();
520
521 ux_i = idat.eFrame1->getColumn(0);
522 uy_i = idat.eFrame1->getColumn(1);
523 uz_i = idat.eFrame1->getColumn(2);
524
525 cx_i = dot(ux_i, rhat);
526 cy_i = dot(uy_i, rhat);
527 cz_i = dot(uz_i, rhat);
528
529 dudux_i = V3Zero;
530 duduy_i = V3Zero;
531 duduz_i = V3Zero;
532 }
533
534 if (j_is_Charge) {
535 q_j = data2.charge;
536 if (idat.excluded) {
537 *(idat.skippedCharge1) += q_j;
538 }
539 }
540
541
542 if (j_is_Dipole) {
543 mu_j = data2.dipole_moment;
544 uz_j = idat.eFrame2->getColumn(2);
545
546 ct_j = dot(uz_j, rhat);
547
548 if (j_is_SplitDipole)
549 d_j = data2.split_dipole_distance;
550
551 duduz_j = V3Zero;
552 }
553
554 if (j_is_Quadrupole) {
555 Q_j = data2.quadrupole_moments;
556 qxx_j = Q_j.x();
557 qyy_j = Q_j.y();
558 qzz_j = Q_j.z();
559
560 ux_j = idat.eFrame2->getColumn(0);
561 uy_j = idat.eFrame2->getColumn(1);
562 uz_j = idat.eFrame2->getColumn(2);
563
564 cx_j = dot(ux_j, rhat);
565 cy_j = dot(uy_j, rhat);
566 cz_j = dot(uz_j, rhat);
567
568 dudux_j = V3Zero;
569 duduy_j = V3Zero;
570 duduz_j = V3Zero;
571 }
572
573 epot = 0.0;
574 dVdr = V3Zero;
575
576 if (i_is_Charge) {
577
578 if (j_is_Charge) {
579 if (screeningMethod_ == DAMPED) {
580 // assemble the damping variables
581 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 erfcVal = res.first;
583 derfcVal = res.second;
584 c1 = erfcVal * riji;
585 c2 = (-derfcVal + c1) * riji;
586 } else {
587 c1 = riji;
588 c2 = c1 * riji;
589 }
590
591 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
592
593 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
594 vterm = preVal * (c1 - c1c_);
595 dudr = - *(idat.sw) * preVal * c2;
596
597 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
598 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
599 dudr = *(idat.sw) * preVal * (c2c_ - c2);
600
601 } else if (summationMethod_ == esm_REACTION_FIELD) {
602 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
603
604 vterm = preVal * ( riji + rfVal );
605 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
606
607 // if this is an excluded pair, there are still indirect
608 // interactions via the reaction field we must worry about:
609
610 if (idat.excluded) {
611 indirect_vpair += preVal * rfVal;
612 indirect_Pot += *(idat.sw) * preVal * rfVal;
613 indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat;
614 }
615
616 } else {
617
618 vterm = preVal * riji * erfcVal;
619 dudr = - *(idat.sw) * preVal * c2;
620
621 }
622
623 vpair += vterm;
624 epot += *(idat.sw) * vterm;
625 dVdr += dudr * rhat;
626 }
627
628 if (j_is_Dipole) {
629 // pref is used by all the possible methods
630 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
631 preSw = *(idat.sw) * pref;
632
633 if (summationMethod_ == esm_REACTION_FIELD) {
634 ri2 = riji * riji;
635 ri3 = ri2 * riji;
636
637 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
638 vpair += vterm;
639 epot += *(idat.sw) * vterm;
640
641 dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
642 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
643
644 // Even if we excluded this pair from direct interactions,
645 // we still have the reaction-field-mediated charge-dipole
646 // interaction:
647
648 if (idat.excluded) {
649 indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
650 indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
651 indirect_dVdr += preSw * preRF2_ * uz_j;
652 indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
653 }
654
655 } else {
656 // determine the inverse r used if we have split dipoles
657 if (j_is_SplitDipole) {
658 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
659 ri = 1.0 / BigR;
660 scale = *(idat.rij) * ri;
661 } else {
662 ri = riji;
663 scale = 1.0;
664 }
665
666 sc2 = scale * scale;
667
668 if (screeningMethod_ == DAMPED) {
669 // assemble the damping variables
670 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
671 erfcVal = res.first;
672 derfcVal = res.second;
673 c1 = erfcVal * ri;
674 c2 = (-derfcVal + c1) * ri;
675 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
676 } else {
677 c1 = ri;
678 c2 = c1 * ri;
679 c3 = 3.0 * c2 * ri;
680 }
681
682 c2ri = c2 * ri;
683
684 // calculate the potential
685 pot_term = scale * c2;
686 vterm = -pref * ct_j * pot_term;
687 vpair += vterm;
688 epot += *(idat.sw) * vterm;
689
690 // calculate derivatives for forces and torques
691
692 dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
693 duduz_j += -preSw * pot_term * rhat;
694
695 }
696 }
697
698 if (j_is_Quadrupole) {
699 // first precalculate some necessary variables
700 cx2 = cx_j * cx_j;
701 cy2 = cy_j * cy_j;
702 cz2 = cz_j * cz_j;
703 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
704
705 if (screeningMethod_ == DAMPED) {
706 // assemble the damping variables
707 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
708 erfcVal = res.first;
709 derfcVal = res.second;
710 c1 = erfcVal * riji;
711 c2 = (-derfcVal + c1) * riji;
712 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
713 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
714 } else {
715 c1 = riji;
716 c2 = c1 * riji;
717 c3 = 3.0 * c2 * riji;
718 c4 = 5.0 * c3 * riji * riji;
719 }
720
721 // precompute variables for convenience
722 preSw = *(idat.sw) * pref;
723 c2ri = c2 * riji;
724 c3ri = c3 * riji;
725 c4rij = c4 * *(idat.rij) ;
726 rhatdot2 = 2.0 * rhat * c3;
727 rhatc4 = rhat * c4rij;
728
729 // calculate the potential
730 pot_term = ( qxx_j * (cx2*c3 - c2ri) +
731 qyy_j * (cy2*c3 - c2ri) +
732 qzz_j * (cz2*c3 - c2ri) );
733 vterm = pref * pot_term;
734 vpair += vterm;
735 epot += *(idat.sw) * vterm;
736
737 // calculate derivatives for the forces and torques
738
739 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
740 qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
741 qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
742
743 dudux_j += preSw * qxx_j * cx_j * rhatdot2;
744 duduy_j += preSw * qyy_j * cy_j * rhatdot2;
745 duduz_j += preSw * qzz_j * cz_j * rhatdot2;
746 }
747 }
748
749 if (i_is_Dipole) {
750
751 if (j_is_Charge) {
752 // variables used by all the methods
753 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
754 preSw = *(idat.sw) * pref;
755
756 if (summationMethod_ == esm_REACTION_FIELD) {
757
758 ri2 = riji * riji;
759 ri3 = ri2 * riji;
760
761 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
762 vpair += vterm;
763 epot += *(idat.sw) * vterm;
764
765 dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
766
767 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
768
769 // Even if we excluded this pair from direct interactions,
770 // we still have the reaction-field-mediated charge-dipole
771 // interaction:
772
773 if (idat.excluded) {
774 indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
775 indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
776 indirect_dVdr += -preSw * preRF2_ * uz_i;
777 indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
778 }
779
780 } else {
781
782 // determine inverse r if we are using split dipoles
783 if (i_is_SplitDipole) {
784 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
785 ri = 1.0 / BigR;
786 scale = *(idat.rij) * ri;
787 } else {
788 ri = riji;
789 scale = 1.0;
790 }
791
792 sc2 = scale * scale;
793
794 if (screeningMethod_ == DAMPED) {
795 // assemble the damping variables
796 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
797 erfcVal = res.first;
798 derfcVal = res.second;
799 c1 = erfcVal * ri;
800 c2 = (-derfcVal + c1) * ri;
801 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
802 } else {
803 c1 = ri;
804 c2 = c1 * ri;
805 c3 = 3.0 * c2 * ri;
806 }
807
808 c2ri = c2 * ri;
809
810 // calculate the potential
811 pot_term = c2 * scale;
812 vterm = pref * ct_i * pot_term;
813 vpair += vterm;
814 epot += *(idat.sw) * vterm;
815
816 // calculate derivatives for the forces and torques
817 dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
818 duduz_i += preSw * pot_term * rhat;
819 }
820 }
821
822 if (j_is_Dipole) {
823 // variables used by all methods
824 ct_ij = dot(uz_i, uz_j);
825
826 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
827 preSw = *(idat.sw) * pref;
828
829 if (summationMethod_ == esm_REACTION_FIELD) {
830 ri2 = riji * riji;
831 ri3 = ri2 * riji;
832 ri4 = ri2 * ri2;
833
834 vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
835 preRF2_ * ct_ij );
836 vpair += vterm;
837 epot += *(idat.sw) * vterm;
838
839 a1 = 5.0 * ct_i * ct_j - ct_ij;
840
841 dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
842
843 duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
844 duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
845
846 if (idat.excluded) {
847 indirect_vpair += - pref * preRF2_ * ct_ij;
848 indirect_Pot += - preSw * preRF2_ * ct_ij;
849 indirect_duduz_i += -preSw * preRF2_ * uz_j;
850 indirect_duduz_j += -preSw * preRF2_ * uz_i;
851 }
852
853 } else {
854
855 if (i_is_SplitDipole) {
856 if (j_is_SplitDipole) {
857 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
858 } else {
859 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
860 }
861 ri = 1.0 / BigR;
862 scale = *(idat.rij) * ri;
863 } else {
864 if (j_is_SplitDipole) {
865 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
866 ri = 1.0 / BigR;
867 scale = *(idat.rij) * ri;
868 } else {
869 ri = riji;
870 scale = 1.0;
871 }
872 }
873 if (screeningMethod_ == DAMPED) {
874 // assemble damping variables
875 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
876 erfcVal = res.first;
877 derfcVal = res.second;
878 c1 = erfcVal * ri;
879 c2 = (-derfcVal + c1) * ri;
880 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
881 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
882 } else {
883 c1 = ri;
884 c2 = c1 * ri;
885 c3 = 3.0 * c2 * ri;
886 c4 = 5.0 * c3 * ri * ri;
887 }
888
889 // precompute variables for convenience
890 sc2 = scale * scale;
891 cti3 = ct_i * sc2 * c3;
892 ctj3 = ct_j * sc2 * c3;
893 ctidotj = ct_i * ct_j * sc2;
894 preSwSc = preSw * scale;
895 c2ri = c2 * ri;
896 c3ri = c3 * ri;
897 c4rij = c4 * *(idat.rij) ;
898
899 // calculate the potential
900 pot_term = (ct_ij * c2ri - ctidotj * c3);
901 vterm = pref * pot_term;
902 vpair += vterm;
903 epot += *(idat.sw) * vterm;
904
905 // calculate derivatives for the forces and torques
906 dVdr += preSwSc * ( ctidotj * rhat * c4rij -
907 (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
908
909 duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
910 duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
911 }
912 }
913 }
914
915 if (i_is_Quadrupole) {
916 if (j_is_Charge) {
917 // precompute some necessary variables
918 cx2 = cx_i * cx_i;
919 cy2 = cy_i * cy_i;
920 cz2 = cz_i * cz_i;
921
922 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
923
924 if (screeningMethod_ == DAMPED) {
925 // assemble the damping variables
926 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
927 erfcVal = res.first;
928 derfcVal = res.second;
929 c1 = erfcVal * riji;
930 c2 = (-derfcVal + c1) * riji;
931 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
932 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
933 } else {
934 c1 = riji;
935 c2 = c1 * riji;
936 c3 = 3.0 * c2 * riji;
937 c4 = 5.0 * c3 * riji * riji;
938 }
939
940 // precompute some variables for convenience
941 preSw = *(idat.sw) * pref;
942 c2ri = c2 * riji;
943 c3ri = c3 * riji;
944 c4rij = c4 * *(idat.rij) ;
945 rhatdot2 = 2.0 * rhat * c3;
946 rhatc4 = rhat * c4rij;
947
948 // calculate the potential
949 pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
950 qyy_i * (cy2 * c3 - c2ri) +
951 qzz_i * (cz2 * c3 - c2ri) );
952
953 vterm = pref * pot_term;
954 vpair += vterm;
955 epot += *(idat.sw) * vterm;
956
957 // calculate the derivatives for the forces and torques
958
959 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
960 qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
961 qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
962
963 dudux_i += preSw * qxx_i * cx_i * rhatdot2;
964 duduy_i += preSw * qyy_i * cy_i * rhatdot2;
965 duduz_i += preSw * qzz_i * cz_i * rhatdot2;
966 }
967 }
968
969
970 if (!idat.excluded) {
971 *(idat.vpair) += vpair;
972 (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
973 *(idat.f1) += dVdr;
974
975 if (i_is_Dipole || i_is_Quadrupole)
976 *(idat.t1) -= cross(uz_i, duduz_i);
977 if (i_is_Quadrupole) {
978 *(idat.t1) -= cross(ux_i, dudux_i);
979 *(idat.t1) -= cross(uy_i, duduy_i);
980 }
981
982 if (j_is_Dipole || j_is_Quadrupole)
983 *(idat.t2) -= cross(uz_j, duduz_j);
984 if (j_is_Quadrupole) {
985 *(idat.t2) -= cross(uz_j, dudux_j);
986 *(idat.t2) -= cross(uz_j, duduy_j);
987 }
988
989 } else {
990
991 // only accumulate the forces and torques resulting from the
992 // indirect reaction field terms.
993 *(idat.vpair) += indirect_vpair;
994 (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
995 *(idat.f1) += indirect_dVdr;
996
997 if (i_is_Dipole)
998 *(idat.t1) -= cross(uz_i, indirect_duduz_i);
999 if (j_is_Dipole)
1000 *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1001 }
1002
1003
1004 return;
1005 }
1006
1007 void Electrostatic::calcSkipCorrection(InteractionData &idat) {
1008
1009 if (!initialized_) initialize();
1010
1011 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
1012 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
1013
1014 // logicals
1015
1016 bool i_is_Charge = data1.is_Charge;
1017 bool i_is_Dipole = data1.is_Dipole;
1018
1019 bool j_is_Charge = data2.is_Charge;
1020 bool j_is_Dipole = data2.is_Dipole;
1021
1022 RealType q_i, q_j;
1023
1024 // The skippedCharge computation is needed by the real-space
1025 // cutoff methods (i.e. shifted force and shifted potential)
1026
1027 if (i_is_Charge) {
1028 q_i = data1.charge;
1029 *(idat.skippedCharge2) += q_i;
1030 }
1031
1032 if (j_is_Charge) {
1033 q_j = data2.charge;
1034 *(idat.skippedCharge1) += q_j;
1035 }
1036
1037 // the rest of this function should only be necessary for reaction field.
1038
1039 if (summationMethod_ == esm_REACTION_FIELD) {
1040 RealType riji, ri2, ri3;
1041 RealType mu_i, ct_i;
1042 RealType mu_j, ct_j;
1043 RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
1044 Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
1045
1046 // some variables we'll need independent of electrostatic type:
1047
1048 riji = 1.0 / *(idat.rij) ;
1049 rhat = *(idat.d) * riji;
1050
1051 if (i_is_Dipole) {
1052 mu_i = data1.dipole_moment;
1053 uz_i = idat.eFrame1->getColumn(2);
1054 ct_i = dot(uz_i, rhat);
1055 duduz_i = V3Zero;
1056 }
1057
1058 if (j_is_Dipole) {
1059 mu_j = data2.dipole_moment;
1060 uz_j = idat.eFrame2->getColumn(2);
1061 ct_j = dot(uz_j, rhat);
1062 duduz_j = V3Zero;
1063 }
1064
1065 if (i_is_Charge) {
1066 if (j_is_Charge) {
1067 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
1068 rfVal = preRF_ * *(idat.rij) * *(idat.rij) ;
1069 vterm = preVal * rfVal;
1070 myPot += *(idat.sw) * vterm;
1071 dudr = *(idat.sw) * preVal * 2.0 * rfVal * riji;
1072 dVdr += dudr * rhat;
1073 }
1074
1075 if (j_is_Dipole) {
1076 ri2 = riji * riji;
1077 ri3 = ri2 * riji;
1078 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
1079 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
1080 myPot += *(idat.sw) * vterm;
1081 dVdr += - *(idat.sw) * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1082 duduz_j += - *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij) );
1083 }
1084 }
1085 if (i_is_Dipole) {
1086 if (j_is_Charge) {
1087 ri2 = riji * riji;
1088 ri3 = ri2 * riji;
1089 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
1090 vterm = - pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
1091 myPot += *(idat.sw) * vterm;
1092 dVdr += *(idat.sw) * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
1093 duduz_i += *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij));
1094 }
1095 }
1096
1097 // accumulate the forces and torques resulting from the self term
1098 (*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot;
1099 *(idat.f1) += dVdr;
1100
1101 if (i_is_Dipole)
1102 *(idat.t1) -= cross(uz_i, duduz_i);
1103 if (j_is_Dipole)
1104 *(idat.t2) -= cross(uz_j, duduz_j);
1105 }
1106 }
1107
1108 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1109 RealType mu1, preVal, chg1, self;
1110
1111 if (!initialized_) initialize();
1112
1113 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1114
1115 // logicals
1116 bool i_is_Charge = data.is_Charge;
1117 bool i_is_Dipole = data.is_Dipole;
1118
1119 if (summationMethod_ == esm_REACTION_FIELD) {
1120 if (i_is_Dipole) {
1121 mu1 = data.dipole_moment;
1122 preVal = pre22_ * preRF2_ * mu1 * mu1;
1123 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1124
1125 // The self-correction term adds into the reaction field vector
1126 Vector3d uz_i = sdat.eFrame->getColumn(2);
1127 Vector3d ei = preVal * uz_i;
1128
1129 // This looks very wrong. A vector crossed with itself is zero.
1130 *(sdat.t) -= cross(uz_i, ei);
1131 }
1132 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1133 if (i_is_Charge) {
1134 chg1 = data.charge;
1135 if (screeningMethod_ == DAMPED) {
1136 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1137 } else {
1138 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1139 }
1140 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1141 }
1142 }
1143 }
1144
1145 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1146 // This seems to work moderately well as a default. There's no
1147 // inherent scale for 1/r interactions that we can standardize.
1148 // 12 angstroms seems to be a reasonably good guess for most
1149 // cases.
1150 return 12.0;
1151 }
1152 }

Properties

Name Value
svn:eol-style native