1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/Electrostatic.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "types/NonBondedInteractionType.hpp" |
49 |
#include "types/DirectionalAtomType.hpp" |
50 |
#include "io/Globals.hpp" |
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
forceField_(NULL) {} |
56 |
|
57 |
void Electrostatic::initialize() { |
58 |
|
59 |
Globals* simParams_; |
60 |
|
61 |
summationMap_["HARD"] = esm_HARD; |
62 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
63 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
64 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
65 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
66 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
67 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
68 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
69 |
screeningMap_["DAMPED"] = DAMPED; |
70 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
71 |
|
72 |
// these prefactors convert the multipole interactions into kcal / mol |
73 |
// all were computed assuming distances are measured in angstroms |
74 |
// Charge-Charge, assuming charges are measured in electrons |
75 |
pre11_ = 332.0637778; |
76 |
// Charge-Dipole, assuming charges are measured in electrons, and |
77 |
// dipoles are measured in debyes |
78 |
pre12_ = 69.13373; |
79 |
// Dipole-Dipole, assuming dipoles are measured in debyes |
80 |
pre22_ = 14.39325; |
81 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
82 |
// quadrupoles are measured in 10^-26 esu cm^2 |
83 |
// This unit is also known affectionately as an esu centi-barn. |
84 |
pre14_ = 69.13373; |
85 |
|
86 |
// conversions for the simulation box dipole moment |
87 |
chargeToC_ = 1.60217733e-19; |
88 |
angstromToM_ = 1.0e-10; |
89 |
debyeToCm_ = 3.33564095198e-30; |
90 |
|
91 |
// number of points for electrostatic splines |
92 |
np_ = 100; |
93 |
|
94 |
// variables to handle different summation methods for long-range |
95 |
// electrostatics: |
96 |
summationMethod_ = esm_HARD; |
97 |
screeningMethod_ = UNDAMPED; |
98 |
dielectric_ = 1.0; |
99 |
one_third_ = 1.0 / 3.0; |
100 |
haveCutoffRadius_ = false; |
101 |
haveDampingAlpha_ = false; |
102 |
haveDielectric_ = false; |
103 |
haveElectroSpline_ = false; |
104 |
|
105 |
// check the summation method: |
106 |
if (simParams_->haveElectrostaticSummationMethod()) { |
107 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
108 |
toUpper(myMethod); |
109 |
map<string, ElectrostaticSummationMethod>::iterator i; |
110 |
i = summationMap_.find(myMethod); |
111 |
if ( i != summationMap_.end() ) { |
112 |
summationMethod_ = (*i).second; |
113 |
} else { |
114 |
// throw error |
115 |
sprintf( painCave.errMsg, |
116 |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
117 |
"\t(Input file specified %s .)\n" |
118 |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
119 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
120 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
121 |
painCave.isFatal = 1; |
122 |
simError(); |
123 |
} |
124 |
} else { |
125 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
126 |
if (simParams_->haveCutoffMethod()){ |
127 |
string myMethod = simParams_->getCutoffMethod(); |
128 |
toUpper(myMethod); |
129 |
map<string, ElectrostaticSummationMethod>::iterator i; |
130 |
i = summationMap_.find(myMethod); |
131 |
if ( i != summationMap_.end() ) { |
132 |
summationMethod_ = (*i).second; |
133 |
} |
134 |
} |
135 |
} |
136 |
|
137 |
if (summationMethod_ == esm_REACTION_FIELD) { |
138 |
if (!simParams_->haveDielectric()) { |
139 |
// throw warning |
140 |
sprintf( painCave.errMsg, |
141 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
142 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
143 |
painCave.isFatal = 0; |
144 |
painCave.severity = OPENMD_INFO; |
145 |
simError(); |
146 |
} else { |
147 |
dielectric_ = simParams_->getDielectric(); |
148 |
} |
149 |
haveDielectric_ = true; |
150 |
} |
151 |
|
152 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
153 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
154 |
toUpper(myScreen); |
155 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
156 |
i = screeningMap_.find(myScreen); |
157 |
if ( i != screeningMap_.end()) { |
158 |
screeningMethod_ = (*i).second; |
159 |
} else { |
160 |
sprintf( painCave.errMsg, |
161 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
162 |
"\t(Input file specified %s .)\n" |
163 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
164 |
"or \"damped\".\n", myScreen.c_str() ); |
165 |
painCave.isFatal = 1; |
166 |
simError(); |
167 |
} |
168 |
} |
169 |
|
170 |
// check to make sure a cutoff value has been set: |
171 |
if (!haveCutoffRadius_) { |
172 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
173 |
"Cutoff value!\n"); |
174 |
painCave.severity = OPENMD_ERROR; |
175 |
painCave.isFatal = 1; |
176 |
simError(); |
177 |
} |
178 |
|
179 |
if (screeningMethod_ == DAMPED) { |
180 |
if (!simParams_->haveDampingAlpha()) { |
181 |
// first set a cutoff dependent alpha value |
182 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
183 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
184 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
185 |
|
186 |
// throw warning |
187 |
sprintf( painCave.errMsg, |
188 |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
189 |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
190 |
dampingAlpha_, cutoffRadius_); |
191 |
painCave.severity = OPENMD_INFO; |
192 |
painCave.isFatal = 0; |
193 |
simError(); |
194 |
} else { |
195 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
196 |
} |
197 |
haveDampingAlpha_ = true; |
198 |
} |
199 |
|
200 |
// find all of the Electrostatic atom Types: |
201 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
202 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
203 |
AtomType* at; |
204 |
|
205 |
for (at = atomTypes->beginType(i); at != NULL; |
206 |
at = atomTypes->nextType(i)) { |
207 |
|
208 |
if (at->isElectrostatic()) |
209 |
addType(at); |
210 |
} |
211 |
|
212 |
|
213 |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
214 |
rcuti_ = 1.0 / cutoffRadius_; |
215 |
rcuti2_ = rcuti_ * rcuti_; |
216 |
rcuti3_ = rcuti2_ * rcuti_; |
217 |
rcuti4_ = rcuti2_ * rcuti2_; |
218 |
|
219 |
if (screeningMethod_ == DAMPED) { |
220 |
|
221 |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
222 |
alpha4_ = alpha2_ * alpha2_; |
223 |
alpha6_ = alpha4_ * alpha2_; |
224 |
alpha8_ = alpha4_ * alpha4_; |
225 |
|
226 |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
227 |
invRootPi_ = 0.56418958354775628695; |
228 |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
229 |
|
230 |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
231 |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
232 |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
233 |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
234 |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
235 |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
236 |
} else { |
237 |
c1c_ = rcuti_; |
238 |
c2c_ = c1c_ * rcuti_; |
239 |
c3c_ = 3.0 * c2c_ * rcuti_; |
240 |
c4c_ = 5.0 * c3c_ * rcuti2_; |
241 |
c5c_ = 7.0 * c4c_ * rcuti2_; |
242 |
c6c_ = 9.0 * c5c_ * rcuti2_; |
243 |
} |
244 |
|
245 |
if (summationMethod_ == esm_REACTION_FIELD) { |
246 |
preRF_ = (dielectric_ - 1.0) / |
247 |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
248 |
preRF2_ = 2.0 * preRF_; |
249 |
} |
250 |
|
251 |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
252 |
RealType rval; |
253 |
vector<RealType> rvals; |
254 |
vector<RealType> yvals; |
255 |
for (int i = 0; i < np_; i++) { |
256 |
rval = RealType(i) * dx; |
257 |
rvals.push_back(rval); |
258 |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
259 |
} |
260 |
erfcSpline_ = new CubicSpline(); |
261 |
erfcSpline_->addPoints(rvals, yvals); |
262 |
haveElectroSpline_ = true; |
263 |
|
264 |
initialized_ = true; |
265 |
} |
266 |
|
267 |
void Electrostatic::addType(AtomType* atomType){ |
268 |
|
269 |
ElectrostaticAtomData electrostaticAtomData; |
270 |
electrostaticAtomData.is_Charge = false; |
271 |
electrostaticAtomData.is_Dipole = false; |
272 |
electrostaticAtomData.is_SplitDipole = false; |
273 |
electrostaticAtomData.is_Quadrupole = false; |
274 |
|
275 |
if (atomType->isCharge()) { |
276 |
GenericData* data = atomType->getPropertyByName("Charge"); |
277 |
|
278 |
if (data == NULL) { |
279 |
sprintf( painCave.errMsg, "Electrostatic::addType could not find " |
280 |
"Charge\n" |
281 |
"\tparameters for atomType %s.\n", |
282 |
atomType->getName().c_str()); |
283 |
painCave.severity = OPENMD_ERROR; |
284 |
painCave.isFatal = 1; |
285 |
simError(); |
286 |
} |
287 |
|
288 |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
289 |
if (doubleData == NULL) { |
290 |
sprintf( painCave.errMsg, |
291 |
"Electrostatic::addType could not convert GenericData to " |
292 |
"Charge for\n" |
293 |
"\tatom type %s\n", atomType->getName().c_str()); |
294 |
painCave.severity = OPENMD_ERROR; |
295 |
painCave.isFatal = 1; |
296 |
simError(); |
297 |
} |
298 |
electrostaticAtomData.is_Charge = true; |
299 |
electrostaticAtomData.charge = doubleData->getData(); |
300 |
} |
301 |
|
302 |
if (atomType->isDirectional()) { |
303 |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
304 |
|
305 |
if (daType->isDipole()) { |
306 |
GenericData* data = daType->getPropertyByName("Dipole"); |
307 |
|
308 |
if (data == NULL) { |
309 |
sprintf( painCave.errMsg, |
310 |
"Electrostatic::addType could not find Dipole\n" |
311 |
"\tparameters for atomType %s.\n", |
312 |
daType->getName().c_str()); |
313 |
painCave.severity = OPENMD_ERROR; |
314 |
painCave.isFatal = 1; |
315 |
simError(); |
316 |
} |
317 |
|
318 |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
319 |
if (doubleData == NULL) { |
320 |
sprintf( painCave.errMsg, |
321 |
"Electrostatic::addType could not convert GenericData to " |
322 |
"Dipole Moment\n" |
323 |
"\tfor atom type %s\n", daType->getName().c_str()); |
324 |
painCave.severity = OPENMD_ERROR; |
325 |
painCave.isFatal = 1; |
326 |
simError(); |
327 |
} |
328 |
electrostaticAtomData.is_Dipole = true; |
329 |
electrostaticAtomData.dipole_moment = doubleData->getData(); |
330 |
} |
331 |
|
332 |
if (daType->isSplitDipole()) { |
333 |
GenericData* data = daType->getPropertyByName("SplitDipoleDistance"); |
334 |
|
335 |
if (data == NULL) { |
336 |
sprintf(painCave.errMsg, |
337 |
"Electrostatic::addType could not find SplitDipoleDistance\n" |
338 |
"\tparameter for atomType %s.\n", |
339 |
daType->getName().c_str()); |
340 |
painCave.severity = OPENMD_ERROR; |
341 |
painCave.isFatal = 1; |
342 |
simError(); |
343 |
} |
344 |
|
345 |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
346 |
if (doubleData == NULL) { |
347 |
sprintf( painCave.errMsg, |
348 |
"Electrostatic::addType could not convert GenericData to " |
349 |
"SplitDipoleDistance for\n" |
350 |
"\tatom type %s\n", daType->getName().c_str()); |
351 |
painCave.severity = OPENMD_ERROR; |
352 |
painCave.isFatal = 1; |
353 |
simError(); |
354 |
} |
355 |
electrostaticAtomData.is_SplitDipole = true; |
356 |
electrostaticAtomData.split_dipole_distance = doubleData->getData(); |
357 |
} |
358 |
|
359 |
if (daType->isQuadrupole()) { |
360 |
GenericData* data = daType->getPropertyByName("QuadrupoleMoments"); |
361 |
|
362 |
if (data == NULL) { |
363 |
sprintf( painCave.errMsg, |
364 |
"Electrostatic::addType could not find QuadrupoleMoments\n" |
365 |
"\tparameter for atomType %s.\n", |
366 |
daType->getName().c_str()); |
367 |
painCave.severity = OPENMD_ERROR; |
368 |
painCave.isFatal = 1; |
369 |
simError(); |
370 |
} |
371 |
|
372 |
// Quadrupoles in OpenMD are set as the diagonal elements |
373 |
// of the diagonalized traceless quadrupole moment tensor. |
374 |
// The column vectors of the unitary matrix that diagonalizes |
375 |
// the quadrupole moment tensor become the eFrame (or the |
376 |
// electrostatic version of the body-fixed frame. |
377 |
|
378 |
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
379 |
if (v3dData == NULL) { |
380 |
sprintf( painCave.errMsg, |
381 |
"Electrostatic::addType could not convert GenericData to " |
382 |
"Quadrupole Moments for\n" |
383 |
"\tatom type %s\n", daType->getName().c_str()); |
384 |
painCave.severity = OPENMD_ERROR; |
385 |
painCave.isFatal = 1; |
386 |
simError(); |
387 |
} |
388 |
electrostaticAtomData.is_Quadrupole = true; |
389 |
electrostaticAtomData.quadrupole_moments = v3dData->getData(); |
390 |
} |
391 |
} |
392 |
|
393 |
AtomTypeProperties atp = atomType->getATP(); |
394 |
|
395 |
pair<map<int,AtomType*>::iterator,bool> ret; |
396 |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) ); |
397 |
if (ret.second == false) { |
398 |
sprintf( painCave.errMsg, |
399 |
"Electrostatic already had a previous entry with ident %d\n", |
400 |
atp.ident); |
401 |
painCave.severity = OPENMD_INFO; |
402 |
painCave.isFatal = 0; |
403 |
simError(); |
404 |
} |
405 |
|
406 |
ElectrostaticMap[atomType] = electrostaticAtomData; |
407 |
return; |
408 |
} |
409 |
|
410 |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
411 |
RealType theRSW ) { |
412 |
cutoffRadius_ = theECR; |
413 |
rrf_ = cutoffRadius_; |
414 |
rt_ = theRSW; |
415 |
haveCutoffRadius_ = true; |
416 |
} |
417 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
418 |
summationMethod_ = esm; |
419 |
} |
420 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
421 |
screeningMethod_ = sm; |
422 |
} |
423 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
424 |
dampingAlpha_ = alpha; |
425 |
haveDampingAlpha_ = true; |
426 |
} |
427 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
428 |
dielectric_ = dielectric; |
429 |
haveDielectric_ = true; |
430 |
} |
431 |
|
432 |
void Electrostatic::calcForce(InteractionData idat) { |
433 |
|
434 |
// utility variables. Should clean these up and use the Vector3d and |
435 |
// Mat3x3d to replace as many as we can in future versions: |
436 |
|
437 |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
438 |
RealType qxx_i, qyy_i, qzz_i; |
439 |
RealType qxx_j, qyy_j, qzz_j; |
440 |
RealType cx_i, cy_i, cz_i; |
441 |
RealType cx_j, cy_j, cz_j; |
442 |
RealType cx2, cy2, cz2; |
443 |
RealType ct_i, ct_j, ct_ij, a1; |
444 |
RealType riji, ri, ri2, ri3, ri4; |
445 |
RealType pref, vterm, epot, dudr; |
446 |
RealType scale, sc2; |
447 |
RealType pot_term, preVal, rfVal; |
448 |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
449 |
RealType preSw, preSwSc; |
450 |
RealType c1, c2, c3, c4; |
451 |
RealType erfcVal, derfcVal; |
452 |
RealType BigR; |
453 |
|
454 |
Vector3d Q_i, Q_j; |
455 |
Vector3d ux_i, uy_i, uz_i; |
456 |
Vector3d ux_j, uy_j, uz_j; |
457 |
Vector3d dudux_i, duduy_i, duduz_i; |
458 |
Vector3d dudux_j, duduy_j, duduz_j; |
459 |
Vector3d rhatdot2, rhatc4; |
460 |
Vector3d dVdr; |
461 |
|
462 |
pair<RealType, RealType> res; |
463 |
|
464 |
if (!initialized_) initialize(); |
465 |
|
466 |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
467 |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
468 |
|
469 |
// some variables we'll need independent of electrostatic type: |
470 |
|
471 |
riji = 1.0 / idat.rij; |
472 |
Vector3d rhat = idat.d * riji; |
473 |
|
474 |
// logicals |
475 |
|
476 |
bool i_is_Charge = data1.is_Charge; |
477 |
bool i_is_Dipole = data1.is_Dipole; |
478 |
bool i_is_SplitDipole = data1.is_SplitDipole; |
479 |
bool i_is_Quadrupole = data1.is_Quadrupole; |
480 |
|
481 |
bool j_is_Charge = data2.is_Charge; |
482 |
bool j_is_Dipole = data2.is_Dipole; |
483 |
bool j_is_SplitDipole = data2.is_SplitDipole; |
484 |
bool j_is_Quadrupole = data2.is_Quadrupole; |
485 |
|
486 |
if (i_is_Charge) |
487 |
q_i = data1.charge; |
488 |
|
489 |
if (i_is_Dipole) { |
490 |
mu_i = data1.dipole_moment; |
491 |
uz_i = idat.eFrame1.getColumn(2); |
492 |
|
493 |
ct_i = dot(uz_i, rhat); |
494 |
|
495 |
if (i_is_SplitDipole) |
496 |
d_i = data1.split_dipole_distance; |
497 |
|
498 |
duduz_i = V3Zero; |
499 |
} |
500 |
|
501 |
if (i_is_Quadrupole) { |
502 |
Q_i = data1.quadrupole_moments; |
503 |
qxx_i = Q_i.x(); |
504 |
qyy_i = Q_i.y(); |
505 |
qzz_i = Q_i.z(); |
506 |
|
507 |
ux_i = idat.eFrame1.getColumn(0); |
508 |
uy_i = idat.eFrame1.getColumn(1); |
509 |
uz_i = idat.eFrame1.getColumn(2); |
510 |
|
511 |
cx_i = dot(ux_i, rhat); |
512 |
cy_i = dot(uy_i, rhat); |
513 |
cz_i = dot(uz_i, rhat); |
514 |
|
515 |
dudux_i = V3Zero; |
516 |
duduy_i = V3Zero; |
517 |
duduz_i = V3Zero; |
518 |
} |
519 |
|
520 |
if (j_is_Charge) |
521 |
q_j = data2.charge; |
522 |
|
523 |
if (j_is_Dipole) { |
524 |
mu_j = data2.dipole_moment; |
525 |
uz_j = idat.eFrame2.getColumn(2); |
526 |
|
527 |
ct_j = dot(uz_j, rhat); |
528 |
|
529 |
if (j_is_SplitDipole) |
530 |
d_j = data2.split_dipole_distance; |
531 |
|
532 |
duduz_j = V3Zero; |
533 |
} |
534 |
|
535 |
if (j_is_Quadrupole) { |
536 |
Q_j = data2.quadrupole_moments; |
537 |
qxx_j = Q_j.x(); |
538 |
qyy_j = Q_j.y(); |
539 |
qzz_j = Q_j.z(); |
540 |
|
541 |
ux_j = idat.eFrame2.getColumn(0); |
542 |
uy_j = idat.eFrame2.getColumn(1); |
543 |
uz_j = idat.eFrame2.getColumn(2); |
544 |
|
545 |
cx_j = dot(ux_j, rhat); |
546 |
cy_j = dot(uy_j, rhat); |
547 |
cz_j = dot(uz_j, rhat); |
548 |
|
549 |
dudux_j = V3Zero; |
550 |
duduy_j = V3Zero; |
551 |
duduz_j = V3Zero; |
552 |
} |
553 |
|
554 |
epot = 0.0; |
555 |
dVdr = V3Zero; |
556 |
|
557 |
if (i_is_Charge) { |
558 |
|
559 |
if (j_is_Charge) { |
560 |
if (screeningMethod_ == DAMPED) { |
561 |
// assemble the damping variables |
562 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
563 |
erfcVal = res.first; |
564 |
derfcVal = res.second; |
565 |
c1 = erfcVal * riji; |
566 |
c2 = (-derfcVal + c1) * riji; |
567 |
} else { |
568 |
c1 = riji; |
569 |
c2 = c1 * riji; |
570 |
} |
571 |
|
572 |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
573 |
|
574 |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
575 |
vterm = preVal * (c1 - c1c_); |
576 |
dudr = -idat.sw * preVal * c2; |
577 |
|
578 |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
579 |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - cutoffRadius_) ); |
580 |
dudr = idat.sw * preVal * (c2c_ - c2); |
581 |
|
582 |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
583 |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
584 |
vterm = preVal * ( riji + rfVal ); |
585 |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
586 |
|
587 |
} else { |
588 |
vterm = preVal * riji * erfcVal; |
589 |
|
590 |
dudr = - idat.sw * preVal * c2; |
591 |
|
592 |
} |
593 |
|
594 |
idat.vpair += vterm; |
595 |
epot += idat.sw * vterm; |
596 |
|
597 |
dVdr += dudr * rhat; |
598 |
} |
599 |
|
600 |
if (j_is_Dipole) { |
601 |
// pref is used by all the possible methods |
602 |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
603 |
preSw = idat.sw * pref; |
604 |
|
605 |
if (summationMethod_ == esm_REACTION_FIELD) { |
606 |
ri2 = riji * riji; |
607 |
ri3 = ri2 * riji; |
608 |
|
609 |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
610 |
idat.vpair += vterm; |
611 |
epot += idat.sw * vterm; |
612 |
|
613 |
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
614 |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
615 |
|
616 |
} else { |
617 |
// determine the inverse r used if we have split dipoles |
618 |
if (j_is_SplitDipole) { |
619 |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
620 |
ri = 1.0 / BigR; |
621 |
scale = idat.rij * ri; |
622 |
} else { |
623 |
ri = riji; |
624 |
scale = 1.0; |
625 |
} |
626 |
|
627 |
sc2 = scale * scale; |
628 |
|
629 |
if (screeningMethod_ == DAMPED) { |
630 |
// assemble the damping variables |
631 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
632 |
erfcVal = res.first; |
633 |
derfcVal = res.second; |
634 |
c1 = erfcVal * ri; |
635 |
c2 = (-derfcVal + c1) * ri; |
636 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
637 |
} else { |
638 |
c1 = ri; |
639 |
c2 = c1 * ri; |
640 |
c3 = 3.0 * c2 * ri; |
641 |
} |
642 |
|
643 |
c2ri = c2 * ri; |
644 |
|
645 |
// calculate the potential |
646 |
pot_term = scale * c2; |
647 |
vterm = -pref * ct_j * pot_term; |
648 |
idat.vpair += vterm; |
649 |
epot += idat.sw * vterm; |
650 |
|
651 |
// calculate derivatives for forces and torques |
652 |
|
653 |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
654 |
duduz_j += -preSw * pot_term * rhat; |
655 |
|
656 |
} |
657 |
} |
658 |
|
659 |
if (j_is_Quadrupole) { |
660 |
// first precalculate some necessary variables |
661 |
cx2 = cx_j * cx_j; |
662 |
cy2 = cy_j * cy_j; |
663 |
cz2 = cz_j * cz_j; |
664 |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
665 |
|
666 |
if (screeningMethod_ == DAMPED) { |
667 |
// assemble the damping variables |
668 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
669 |
erfcVal = res.first; |
670 |
derfcVal = res.second; |
671 |
c1 = erfcVal * riji; |
672 |
c2 = (-derfcVal + c1) * riji; |
673 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
674 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
675 |
} else { |
676 |
c1 = riji; |
677 |
c2 = c1 * riji; |
678 |
c3 = 3.0 * c2 * riji; |
679 |
c4 = 5.0 * c3 * riji * riji; |
680 |
} |
681 |
|
682 |
// precompute variables for convenience |
683 |
preSw = idat.sw * pref; |
684 |
c2ri = c2 * riji; |
685 |
c3ri = c3 * riji; |
686 |
c4rij = c4 * idat.rij; |
687 |
rhatdot2 = 2.0 * rhat * c3; |
688 |
rhatc4 = rhat * c4rij; |
689 |
|
690 |
// calculate the potential |
691 |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
692 |
qyy_j * (cy2*c3 - c2ri) + |
693 |
qzz_j * (cz2*c3 - c2ri) ); |
694 |
vterm = pref * pot_term; |
695 |
idat.vpair += vterm; |
696 |
epot += idat.sw * vterm; |
697 |
|
698 |
// calculate derivatives for the forces and torques |
699 |
|
700 |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) + |
701 |
qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) + |
702 |
qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri)); |
703 |
|
704 |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
705 |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
706 |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
707 |
} |
708 |
} |
709 |
|
710 |
if (i_is_Dipole) { |
711 |
|
712 |
if (j_is_Charge) { |
713 |
// variables used by all the methods |
714 |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
715 |
preSw = idat.sw * pref; |
716 |
|
717 |
if (summationMethod_ == esm_REACTION_FIELD) { |
718 |
|
719 |
ri2 = riji * riji; |
720 |
ri3 = ri2 * riji; |
721 |
|
722 |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
723 |
idat.vpair += vterm; |
724 |
epot += idat.sw * vterm; |
725 |
|
726 |
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
727 |
|
728 |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
729 |
|
730 |
} else { |
731 |
|
732 |
// determine inverse r if we are using split dipoles |
733 |
if (i_is_SplitDipole) { |
734 |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
735 |
ri = 1.0 / BigR; |
736 |
scale = idat.rij * ri; |
737 |
} else { |
738 |
ri = riji; |
739 |
scale = 1.0; |
740 |
} |
741 |
|
742 |
sc2 = scale * scale; |
743 |
|
744 |
if (screeningMethod_ == DAMPED) { |
745 |
// assemble the damping variables |
746 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
747 |
erfcVal = res.first; |
748 |
derfcVal = res.second; |
749 |
c1 = erfcVal * ri; |
750 |
c2 = (-derfcVal + c1) * ri; |
751 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
752 |
} else { |
753 |
c1 = ri; |
754 |
c2 = c1 * ri; |
755 |
c3 = 3.0 * c2 * ri; |
756 |
} |
757 |
|
758 |
c2ri = c2 * ri; |
759 |
|
760 |
// calculate the potential |
761 |
pot_term = c2 * scale; |
762 |
vterm = pref * ct_i * pot_term; |
763 |
idat.vpair += vterm; |
764 |
epot += idat.sw * vterm; |
765 |
|
766 |
// calculate derivatives for the forces and torques |
767 |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
768 |
duduz_i += preSw * pot_term * rhat; |
769 |
} |
770 |
} |
771 |
|
772 |
if (j_is_Dipole) { |
773 |
// variables used by all methods |
774 |
ct_ij = dot(uz_i, uz_j); |
775 |
|
776 |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
777 |
preSw = idat.sw * pref; |
778 |
|
779 |
if (summationMethod_ == esm_REACTION_FIELD) { |
780 |
ri2 = riji * riji; |
781 |
ri3 = ri2 * riji; |
782 |
ri4 = ri2 * ri2; |
783 |
|
784 |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
785 |
preRF2_ * ct_ij ); |
786 |
idat.vpair += vterm; |
787 |
epot += idat.sw * vterm; |
788 |
|
789 |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
790 |
|
791 |
dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
792 |
|
793 |
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
794 |
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
795 |
|
796 |
} else { |
797 |
|
798 |
if (i_is_SplitDipole) { |
799 |
if (j_is_SplitDipole) { |
800 |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
801 |
} else { |
802 |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
803 |
} |
804 |
ri = 1.0 / BigR; |
805 |
scale = idat.rij * ri; |
806 |
} else { |
807 |
if (j_is_SplitDipole) { |
808 |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
809 |
ri = 1.0 / BigR; |
810 |
scale = idat.rij * ri; |
811 |
} else { |
812 |
ri = riji; |
813 |
scale = 1.0; |
814 |
} |
815 |
} |
816 |
if (screeningMethod_ == DAMPED) { |
817 |
// assemble damping variables |
818 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
819 |
erfcVal = res.first; |
820 |
derfcVal = res.second; |
821 |
c1 = erfcVal * ri; |
822 |
c2 = (-derfcVal + c1) * ri; |
823 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
824 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
825 |
} else { |
826 |
c1 = ri; |
827 |
c2 = c1 * ri; |
828 |
c3 = 3.0 * c2 * ri; |
829 |
c4 = 5.0 * c3 * ri * ri; |
830 |
} |
831 |
|
832 |
// precompute variables for convenience |
833 |
sc2 = scale * scale; |
834 |
cti3 = ct_i * sc2 * c3; |
835 |
ctj3 = ct_j * sc2 * c3; |
836 |
ctidotj = ct_i * ct_j * sc2; |
837 |
preSwSc = preSw * scale; |
838 |
c2ri = c2 * ri; |
839 |
c3ri = c3 * ri; |
840 |
c4rij = c4 * idat.rij; |
841 |
|
842 |
// calculate the potential |
843 |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
844 |
vterm = pref * pot_term; |
845 |
idat.vpair += vterm; |
846 |
epot += idat.sw * vterm; |
847 |
|
848 |
// calculate derivatives for the forces and torques |
849 |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
850 |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
851 |
|
852 |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
853 |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
854 |
} |
855 |
} |
856 |
} |
857 |
|
858 |
if (i_is_Quadrupole) { |
859 |
if (j_is_Charge) { |
860 |
// precompute some necessary variables |
861 |
cx2 = cx_i * cx_i; |
862 |
cy2 = cy_i * cy_i; |
863 |
cz2 = cz_i * cz_i; |
864 |
|
865 |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
866 |
|
867 |
if (screeningMethod_ == DAMPED) { |
868 |
// assemble the damping variables |
869 |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
870 |
erfcVal = res.first; |
871 |
derfcVal = res.second; |
872 |
c1 = erfcVal * riji; |
873 |
c2 = (-derfcVal + c1) * riji; |
874 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
875 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
876 |
} else { |
877 |
c1 = riji; |
878 |
c2 = c1 * riji; |
879 |
c3 = 3.0 * c2 * riji; |
880 |
c4 = 5.0 * c3 * riji * riji; |
881 |
} |
882 |
|
883 |
// precompute some variables for convenience |
884 |
preSw = idat.sw * pref; |
885 |
c2ri = c2 * riji; |
886 |
c3ri = c3 * riji; |
887 |
c4rij = c4 * idat.rij; |
888 |
rhatdot2 = 2.0 * rhat * c3; |
889 |
rhatc4 = rhat * c4rij; |
890 |
|
891 |
// calculate the potential |
892 |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
893 |
qyy_i * (cy2 * c3 - c2ri) + |
894 |
qzz_i * (cz2 * c3 - c2ri) ); |
895 |
|
896 |
vterm = pref * pot_term; |
897 |
idat.vpair += vterm; |
898 |
epot += idat.sw * vterm; |
899 |
|
900 |
// calculate the derivatives for the forces and torques |
901 |
|
902 |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) + |
903 |
qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) + |
904 |
qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri)); |
905 |
|
906 |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
907 |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
908 |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
909 |
} |
910 |
} |
911 |
|
912 |
idat.pot += epot; |
913 |
idat.f1 += dVdr; |
914 |
|
915 |
if (i_is_Dipole || i_is_Quadrupole) |
916 |
idat.t1 -= cross(uz_i, duduz_i); |
917 |
if (i_is_Quadrupole) { |
918 |
idat.t1 -= cross(ux_i, dudux_i); |
919 |
idat.t1 -= cross(uy_i, duduy_i); |
920 |
} |
921 |
|
922 |
if (j_is_Dipole || j_is_Quadrupole) |
923 |
idat.t2 -= cross(uz_j, duduz_j); |
924 |
if (j_is_Quadrupole) { |
925 |
idat.t2 -= cross(uz_j, dudux_j); |
926 |
idat.t2 -= cross(uz_j, duduy_j); |
927 |
} |
928 |
|
929 |
return; |
930 |
} |
931 |
|
932 |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
933 |
|
934 |
if (!initialized_) initialize(); |
935 |
|
936 |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
937 |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
938 |
|
939 |
// logicals |
940 |
|
941 |
bool i_is_Charge = data1.is_Charge; |
942 |
bool i_is_Dipole = data1.is_Dipole; |
943 |
|
944 |
bool j_is_Charge = data2.is_Charge; |
945 |
bool j_is_Dipole = data2.is_Dipole; |
946 |
|
947 |
RealType q_i, q_j; |
948 |
|
949 |
// The skippedCharge computation is needed by the real-space cutoff methods |
950 |
// (i.e. shifted force and shifted potential) |
951 |
|
952 |
if (i_is_Charge) { |
953 |
q_i = data1.charge; |
954 |
skdat.skippedCharge2 += q_i; |
955 |
} |
956 |
|
957 |
if (j_is_Charge) { |
958 |
q_j = data2.charge; |
959 |
skdat.skippedCharge1 += q_j; |
960 |
} |
961 |
|
962 |
// the rest of this function should only be necessary for reaction field. |
963 |
|
964 |
if (summationMethod_ == esm_REACTION_FIELD) { |
965 |
RealType riji, ri2, ri3; |
966 |
RealType q_i, mu_i, ct_i; |
967 |
RealType q_j, mu_j, ct_j; |
968 |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
969 |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
970 |
|
971 |
// some variables we'll need independent of electrostatic type: |
972 |
|
973 |
riji = 1.0 / skdat.rij; |
974 |
rhat = skdat.d * riji; |
975 |
|
976 |
if (i_is_Dipole) { |
977 |
mu_i = data1.dipole_moment; |
978 |
uz_i = skdat.eFrame1.getColumn(2); |
979 |
ct_i = dot(uz_i, rhat); |
980 |
duduz_i = V3Zero; |
981 |
} |
982 |
|
983 |
if (j_is_Dipole) { |
984 |
mu_j = data2.dipole_moment; |
985 |
uz_j = skdat.eFrame2.getColumn(2); |
986 |
ct_j = dot(uz_j, rhat); |
987 |
duduz_j = V3Zero; |
988 |
} |
989 |
|
990 |
if (i_is_Charge) { |
991 |
if (j_is_Charge) { |
992 |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
993 |
rfVal = preRF_ * skdat.rij * skdat.rij; |
994 |
vterm = preVal * rfVal; |
995 |
myPot += skdat.sw * vterm; |
996 |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
997 |
dVdr += dudr * rhat; |
998 |
} |
999 |
|
1000 |
if (j_is_Dipole) { |
1001 |
ri2 = riji * riji; |
1002 |
ri3 = ri2 * riji; |
1003 |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
1004 |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
1005 |
myPot += skdat.sw * vterm; |
1006 |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1007 |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1008 |
} |
1009 |
} |
1010 |
if (i_is_Dipole) { |
1011 |
if (j_is_Charge) { |
1012 |
ri2 = riji * riji; |
1013 |
ri3 = ri2 * riji; |
1014 |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
1015 |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
1016 |
myPot += skdat.sw * vterm; |
1017 |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1018 |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1019 |
} |
1020 |
} |
1021 |
|
1022 |
// accumulate the forces and torques resulting from the self term |
1023 |
skdat.pot += myPot; |
1024 |
skdat.f1 += dVdr; |
1025 |
|
1026 |
if (i_is_Dipole) |
1027 |
skdat.t1 -= cross(uz_i, duduz_i); |
1028 |
if (j_is_Dipole) |
1029 |
skdat.t2 -= cross(uz_j, duduz_j); |
1030 |
} |
1031 |
} |
1032 |
|
1033 |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
1034 |
RealType mu1, preVal, chg1, self; |
1035 |
|
1036 |
if (!initialized_) initialize(); |
1037 |
|
1038 |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
1039 |
|
1040 |
// logicals |
1041 |
|
1042 |
bool i_is_Charge = data.is_Charge; |
1043 |
bool i_is_Dipole = data.is_Dipole; |
1044 |
|
1045 |
if (summationMethod_ == esm_REACTION_FIELD) { |
1046 |
if (i_is_Dipole) { |
1047 |
mu1 = data.dipole_moment; |
1048 |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1049 |
scdat.pot -= 0.5 * preVal; |
1050 |
|
1051 |
// The self-correction term adds into the reaction field vector |
1052 |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
1053 |
Vector3d ei = preVal * uz_i; |
1054 |
|
1055 |
// This looks very wrong. A vector crossed with itself is zero. |
1056 |
scdat.t -= cross(uz_i, ei); |
1057 |
} |
1058 |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1059 |
if (i_is_Charge) { |
1060 |
chg1 = data.charge; |
1061 |
if (screeningMethod_ == DAMPED) { |
1062 |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1063 |
} else { |
1064 |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1065 |
} |
1066 |
scdat.pot += self; |
1067 |
} |
1068 |
} |
1069 |
} |
1070 |
|
1071 |
RealType Electrostatic::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
1072 |
// This seems to work moderately well as a default. There's no |
1073 |
// inherent scale for 1/r interactions that we can standardize. |
1074 |
// 12 angstroms seems to be a reasonably good guess for most |
1075 |
// cases. |
1076 |
return 12.0; |
1077 |
} |
1078 |
} |