ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1808
Committed: Mon Oct 22 20:42:10 2012 UTC (12 years, 6 months ago) by gezelter
File size: 38737 byte(s)
Log Message:
A bug fix in the electric field for the new electrostatic code.  Also comment fixes for Doxygen 

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1502 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1767 #include "math/erfc.hpp"
57 gezelter 1787 #include "math/SquareMatrix.hpp"
58 gezelter 1502
59     namespace OpenMD {
60    
61     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
62 gezelter 1587 forceField_(NULL), info_(NULL),
63     haveCutoffRadius_(false),
64     haveDampingAlpha_(false),
65     haveDielectric_(false),
66 gezelter 1787 haveElectroSplines_(false)
67 gezelter 1587 {}
68 gezelter 1502
69     void Electrostatic::initialize() {
70 gezelter 1587
71 gezelter 1584 Globals* simParams_ = info_->getSimParams();
72 gezelter 1535
73 gezelter 1528 summationMap_["HARD"] = esm_HARD;
74 gezelter 1616 summationMap_["NONE"] = esm_HARD;
75 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
77     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
78     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
79     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
80     summationMap_["EWALD_PME"] = esm_EWALD_PME;
81     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
82     screeningMap_["DAMPED"] = DAMPED;
83     screeningMap_["UNDAMPED"] = UNDAMPED;
84    
85 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
86     // all were computed assuming distances are measured in angstroms
87     // Charge-Charge, assuming charges are measured in electrons
88     pre11_ = 332.0637778;
89     // Charge-Dipole, assuming charges are measured in electrons, and
90     // dipoles are measured in debyes
91     pre12_ = 69.13373;
92 gezelter 1787 // Dipole-Dipole, assuming dipoles are measured in Debye
93 gezelter 1502 pre22_ = 14.39325;
94     // Charge-Quadrupole, assuming charges are measured in electrons, and
95     // quadrupoles are measured in 10^-26 esu cm^2
96 gezelter 1787 // This unit is also known affectionately as an esu centibarn.
97 gezelter 1502 pre14_ = 69.13373;
98 gezelter 1787 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99     // quadrupoles in esu centibarns:
100     pre24_ = 14.39325;
101     // Quadrupole-Quadrupole, assuming esu centibarns:
102     pre44_ = 14.39325;
103    
104 gezelter 1502 // conversions for the simulation box dipole moment
105     chargeToC_ = 1.60217733e-19;
106     angstromToM_ = 1.0e-10;
107     debyeToCm_ = 3.33564095198e-30;
108    
109     // number of points for electrostatic splines
110     np_ = 100;
111    
112     // variables to handle different summation methods for long-range
113     // electrostatics:
114 gezelter 1528 summationMethod_ = esm_HARD;
115 gezelter 1502 screeningMethod_ = UNDAMPED;
116     dielectric_ = 1.0;
117    
118 gezelter 1528 // check the summation method:
119     if (simParams_->haveElectrostaticSummationMethod()) {
120     string myMethod = simParams_->getElectrostaticSummationMethod();
121     toUpper(myMethod);
122     map<string, ElectrostaticSummationMethod>::iterator i;
123     i = summationMap_.find(myMethod);
124     if ( i != summationMap_.end() ) {
125     summationMethod_ = (*i).second;
126     } else {
127     // throw error
128     sprintf( painCave.errMsg,
129 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
130 gezelter 1528 "\t(Input file specified %s .)\n"
131 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
132 gezelter 1528 "\t\"shifted_potential\", \"shifted_force\", or \n"
133     "\t\"reaction_field\".\n", myMethod.c_str() );
134     painCave.isFatal = 1;
135     simError();
136     }
137     } else {
138     // set ElectrostaticSummationMethod to the cutoffMethod:
139     if (simParams_->haveCutoffMethod()){
140     string myMethod = simParams_->getCutoffMethod();
141     toUpper(myMethod);
142     map<string, ElectrostaticSummationMethod>::iterator i;
143     i = summationMap_.find(myMethod);
144     if ( i != summationMap_.end() ) {
145     summationMethod_ = (*i).second;
146     }
147     }
148     }
149    
150     if (summationMethod_ == esm_REACTION_FIELD) {
151     if (!simParams_->haveDielectric()) {
152     // throw warning
153     sprintf( painCave.errMsg,
154     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
155     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
156     painCave.isFatal = 0;
157     painCave.severity = OPENMD_INFO;
158     simError();
159     } else {
160     dielectric_ = simParams_->getDielectric();
161     }
162     haveDielectric_ = true;
163     }
164    
165     if (simParams_->haveElectrostaticScreeningMethod()) {
166     string myScreen = simParams_->getElectrostaticScreeningMethod();
167     toUpper(myScreen);
168     map<string, ElectrostaticScreeningMethod>::iterator i;
169     i = screeningMap_.find(myScreen);
170     if ( i != screeningMap_.end()) {
171     screeningMethod_ = (*i).second;
172     } else {
173     sprintf( painCave.errMsg,
174     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
175     "\t(Input file specified %s .)\n"
176     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
177     "or \"damped\".\n", myScreen.c_str() );
178     painCave.isFatal = 1;
179     simError();
180     }
181     }
182    
183     // check to make sure a cutoff value has been set:
184     if (!haveCutoffRadius_) {
185     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
186     "Cutoff value!\n");
187     painCave.severity = OPENMD_ERROR;
188     painCave.isFatal = 1;
189     simError();
190     }
191    
192     if (screeningMethod_ == DAMPED) {
193     if (!simParams_->haveDampingAlpha()) {
194     // first set a cutoff dependent alpha value
195     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
196     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
197     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
198    
199     // throw warning
200     sprintf( painCave.errMsg,
201 gezelter 1750 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202     "\tinput file. A default value of %f (1/ang) will be used for the\n"
203     "\tcutoff of %f (ang).\n",
204 gezelter 1528 dampingAlpha_, cutoffRadius_);
205     painCave.severity = OPENMD_INFO;
206     painCave.isFatal = 0;
207     simError();
208     } else {
209     dampingAlpha_ = simParams_->getDampingAlpha();
210     }
211     haveDampingAlpha_ = true;
212     }
213    
214 gezelter 1502 // find all of the Electrostatic atom Types:
215     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
216     ForceField::AtomTypeContainer::MapTypeIterator i;
217     AtomType* at;
218 gezelter 1528
219 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
220     at = atomTypes->nextType(i)) {
221    
222     if (at->isElectrostatic())
223     addType(at);
224 gezelter 1787 }
225    
226     if (summationMethod_ == esm_REACTION_FIELD) {
227     preRF_ = (dielectric_ - 1.0) /
228     ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229 gezelter 1502 }
230    
231 gezelter 1787 RealType b0c, b1c, b2c, b3c, b4c, b5c;
232     RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233     RealType a2, expTerm, invArootPi;
234    
235     RealType r = cutoffRadius_;
236     RealType r2 = r * r;
237 gezelter 1502
238 gezelter 1787 if (screeningMethod_ == DAMPED) {
239     a2 = dampingAlpha_ * dampingAlpha_;
240     invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
241     expTerm = exp(-a2 * r2);
242     // values of Smith's B_l functions at the cutoff radius:
243     b0c = erfc(dampingAlpha_ * r) / r;
244     b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
245     b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246     b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247     b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248     b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249     selfMult_ = b0c + 2.0 * a2 * invArootPi;
250 gezelter 1502 } else {
251 gezelter 1787 a2 = 0.0;
252     b0c = 1.0 / r;
253     b1c = ( b0c) / r2;
254     b2c = (3.0 * b1c) / r2;
255     b3c = (5.0 * b2c) / r2;
256     b4c = (7.0 * b3c) / r2;
257     b5c = (9.0 * b4c) / r2;
258     selfMult_ = b0c;
259 gezelter 1502 }
260 gezelter 1787
261     // higher derivatives of B_0 at the cutoff radius:
262     db0c_1 = -r * b1c;
263     db0c_2 = -b1c + r2 * b2c;
264     db0c_3 = 3.0*r*b2c - r2*r*b3c;
265     db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
266     db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267 gezelter 1528
268 gezelter 1787 // working variables for the splines:
269     RealType ri, ri2;
270     RealType b0, b1, b2, b3, b4, b5;
271     RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272     RealType f0;
273     RealType g0, g1, g2, g3, g4;
274     RealType h1, h2, h3, h4;
275     RealType s2, s3, s4;
276     RealType t3, t4;
277     RealType u4;
278    
279     // working variables for Taylor expansion:
280     RealType rmRc, rmRc2, rmRc3, rmRc4;
281    
282 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
283     // have charged atoms longer than the cutoffRadius away from each
284 gezelter 1787 // other. Splining is almost certainly the best choice here.
285     // Direct calls to erfc would be preferrable if it is a very fast
286     // implementation.
287 gezelter 1613
288 gezelter 1787 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
289    
290     // Storage vectors for the computed functions
291     vector<RealType> rv;
292     vector<RealType> v01v, v02v;
293     vector<RealType> v11v, v12v, v13v;
294     vector<RealType> v21v, v22v, v23v, v24v;
295     vector<RealType> v31v, v32v, v33v, v34v, v35v;
296     vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
297    
298     for (int i = 1; i < np_ + 1; i++) {
299     r = RealType(i) * dx;
300     rv.push_back(r);
301    
302     ri = 1.0 / r;
303     ri2 = ri * ri;
304    
305     r2 = r * r;
306     expTerm = exp(-a2 * r2);
307    
308     // Taylor expansion factors (no need for factorials this way):
309     rmRc = r - cutoffRadius_;
310     rmRc2 = rmRc * rmRc / 2.0;
311     rmRc3 = rmRc2 * rmRc / 3.0;
312     rmRc4 = rmRc3 * rmRc / 4.0;
313    
314     // values of Smith's B_l functions at r:
315     if (screeningMethod_ == DAMPED) {
316     b0 = erfc(dampingAlpha_ * r) * ri;
317     b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
318     b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
319     b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
320     b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
321     b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
322     } else {
323     b0 = ri;
324     b1 = ( b0) * ri2;
325     b2 = (3.0 * b1) * ri2;
326     b3 = (5.0 * b2) * ri2;
327     b4 = (7.0 * b3) * ri2;
328     b5 = (9.0 * b4) * ri2;
329     }
330    
331     // higher derivatives of B_0 at r:
332     db0_1 = -r * b1;
333     db0_2 = -b1 + r2 * b2;
334     db0_3 = 3.0*r*b2 - r2*r*b3;
335     db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
336     db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
337    
338    
339     switch (summationMethod_) {
340     case esm_SHIFTED_FORCE:
341     f0 = b0 - b0c - rmRc*db0c_1;
342    
343     g0 = db0_1 - db0c_1;
344     g1 = g0 - rmRc *db0c_2;
345     g2 = g1 - rmRc2*db0c_3;
346     g3 = g2 - rmRc3*db0c_4;
347     g4 = g3 - rmRc4*db0c_5;
348    
349     h1 = db0_2 - db0c_2;
350     h2 = h1 - rmRc *db0c_3;
351     h3 = h2 - rmRc2*db0c_4;
352     h4 = h3 - rmRc3*db0c_5;
353    
354     s2 = db0_3 - db0c_3;
355     s3 = s2 - rmRc *db0c_4;
356     s4 = s3 - rmRc2*db0c_5;
357    
358     t3 = db0_4 - db0c_4;
359     t4 = t3 - rmRc *db0c_5;
360    
361     u4 = db0_5 - db0c_5;
362     break;
363    
364     case esm_SHIFTED_POTENTIAL:
365     f0 = b0 - b0c;
366    
367     g0 = db0_1;
368     g1 = db0_1 - db0c_1;
369     g2 = g1 - rmRc *db0c_2;
370     g3 = g2 - rmRc2*db0c_3;
371     g4 = g3 - rmRc3*db0c_4;
372    
373     h1 = db0_2;
374     h2 = db0_2 - db0c_2;
375     h3 = h2 - rmRc *db0c_3;
376     h4 = h3 - rmRc2*db0c_4;
377    
378     s2 = db0_3;
379     s3 = db0_3 - db0c_3;
380     s4 = s3 - rmRc *db0c_4;
381    
382     t3 = db0_4;
383     t4 = db0_4 - db0c_4;
384    
385     u4 = db0_5;
386     break;
387    
388     case esm_SWITCHING_FUNCTION:
389     case esm_HARD:
390     f0 = b0;
391    
392     g0 = db0_1;
393     g1 = g0;
394     g2 = g1;
395     g3 = g2;
396     g4 = g3;
397    
398     h1 = db0_2;
399     h2 = h1;
400     h3 = h2;
401     h4 = h3;
402    
403     s2 = db0_3;
404     s3 = s2;
405     s4 = s3;
406    
407     t3 = db0_4;
408     t4 = t3;
409    
410     u4 = db0_5;
411     break;
412    
413     case esm_REACTION_FIELD:
414    
415     // following DL_POLY's lead for shifting the image charge potential:
416     f0 = b0 + preRF_ * r2
417     - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
418    
419     g0 = db0_1 + preRF_ * 2.0 * r;
420     g1 = g0;
421     g2 = g1;
422     g3 = g2;
423     g4 = g3;
424    
425     h1 = db0_2 + preRF_ * 2.0;
426     h2 = h1;
427     h3 = h2;
428     h4 = h3;
429    
430     s2 = db0_3;
431     s3 = s2;
432     s4 = s3;
433    
434     t3 = db0_4;
435     t4 = t3;
436    
437     u4 = db0_5;
438     break;
439    
440     case esm_EWALD_FULL:
441     case esm_EWALD_PME:
442     case esm_EWALD_SPME:
443     default :
444     map<string, ElectrostaticSummationMethod>::iterator i;
445     std::string meth;
446     for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
447     if ((*i).second == summationMethod_) meth = (*i).first;
448     }
449     sprintf( painCave.errMsg,
450     "Electrostatic::initialize: electrostaticSummationMethod %s \n"
451     "\thas not been implemented yet. Please select one of:\n"
452     "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
453     meth.c_str() );
454     painCave.isFatal = 1;
455     simError();
456     break;
457     }
458    
459     v01 = f0;
460     v02 = g0;
461    
462     v11 = g1;
463     v12 = g1 * ri;
464     v13 = h1 - v12;
465    
466     v21 = g2 * ri;
467     v22 = h2 - v21;
468     v23 = v22 * ri;
469     v24 = s2 - 3.0*v23;
470    
471     v31 = (h3 - g3 * ri) * ri;
472     v32 = s3 - 3.0*v31;
473     v33 = v31 * ri;
474     v34 = v32 * ri;
475     v35 = t3 - 6.0*v34 - 3.0*v33;
476    
477     v41 = (h4 - g4 * ri) * ri2;
478     v42 = s4 * ri - 3.0*v41;
479     v43 = t4 - 6.0*v42 - 3.0*v41;
480     v44 = v42 * ri;
481     v45 = v43 * ri;
482     v46 = u4 - 10.0*v45 - 15.0*v44;
483    
484     // Add these computed values to the storage vectors for spline creation:
485     v01v.push_back(v01);
486     v02v.push_back(v02);
487    
488     v11v.push_back(v11);
489     v12v.push_back(v12);
490     v13v.push_back(v13);
491    
492     v21v.push_back(v21);
493     v22v.push_back(v22);
494     v23v.push_back(v23);
495     v24v.push_back(v24);
496    
497     v31v.push_back(v31);
498     v32v.push_back(v32);
499     v33v.push_back(v33);
500     v34v.push_back(v34);
501     v35v.push_back(v35);
502    
503     v41v.push_back(v41);
504     v42v.push_back(v42);
505     v43v.push_back(v43);
506     v44v.push_back(v44);
507     v45v.push_back(v45);
508     v46v.push_back(v46);
509 gezelter 1502 }
510    
511 gezelter 1787 // construct the spline structures and fill them with the values we've
512     // computed:
513    
514     v01s = new CubicSpline();
515     v01s->addPoints(rv, v01v);
516     v02s = new CubicSpline();
517     v02s->addPoints(rv, v02v);
518    
519     v11s = new CubicSpline();
520     v11s->addPoints(rv, v11v);
521     v12s = new CubicSpline();
522     v12s->addPoints(rv, v12v);
523     v13s = new CubicSpline();
524     v13s->addPoints(rv, v13v);
525    
526     v21s = new CubicSpline();
527     v21s->addPoints(rv, v21v);
528     v22s = new CubicSpline();
529     v22s->addPoints(rv, v22v);
530     v23s = new CubicSpline();
531     v23s->addPoints(rv, v23v);
532     v24s = new CubicSpline();
533     v24s->addPoints(rv, v24v);
534    
535     v31s = new CubicSpline();
536     v31s->addPoints(rv, v31v);
537     v32s = new CubicSpline();
538     v32s->addPoints(rv, v32v);
539     v33s = new CubicSpline();
540     v33s->addPoints(rv, v33v);
541     v34s = new CubicSpline();
542     v34s->addPoints(rv, v34v);
543     v35s = new CubicSpline();
544     v35s->addPoints(rv, v35v);
545    
546     v41s = new CubicSpline();
547     v41s->addPoints(rv, v41v);
548     v42s = new CubicSpline();
549     v42s->addPoints(rv, v42v);
550     v43s = new CubicSpline();
551     v43s->addPoints(rv, v43v);
552     v44s = new CubicSpline();
553     v44s->addPoints(rv, v44v);
554     v45s = new CubicSpline();
555     v45s->addPoints(rv, v45v);
556     v46s = new CubicSpline();
557     v46s->addPoints(rv, v46v);
558    
559     haveElectroSplines_ = true;
560    
561 gezelter 1502 initialized_ = true;
562     }
563    
564     void Electrostatic::addType(AtomType* atomType){
565    
566     ElectrostaticAtomData electrostaticAtomData;
567     electrostaticAtomData.is_Charge = false;
568     electrostaticAtomData.is_Dipole = false;
569     electrostaticAtomData.is_Quadrupole = false;
570 gezelter 1723 electrostaticAtomData.is_Fluctuating = false;
571 gezelter 1502
572 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
573 gezelter 1502
574 gezelter 1710 if (fca.isFixedCharge()) {
575 gezelter 1502 electrostaticAtomData.is_Charge = true;
576 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
577 gezelter 1502 }
578    
579 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
580     if (ma.isMultipole()) {
581     if (ma.isDipole()) {
582 gezelter 1502 electrostaticAtomData.is_Dipole = true;
583 gezelter 1787 electrostaticAtomData.dipole = ma.getDipole();
584 gezelter 1502 }
585 gezelter 1710 if (ma.isQuadrupole()) {
586 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
587 gezelter 1787 electrostaticAtomData.quadrupole = ma.getQuadrupole();
588 gezelter 1502 }
589     }
590    
591 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
592 gezelter 1502
593 gezelter 1718 if (fqa.isFluctuatingCharge()) {
594 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
595     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
596     electrostaticAtomData.hardness = fqa.getHardness();
597     electrostaticAtomData.slaterN = fqa.getSlaterN();
598     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
599 gezelter 1718 }
600    
601 gezelter 1502 pair<map<int,AtomType*>::iterator,bool> ret;
602 gezelter 1710 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
603     atomType) );
604 gezelter 1502 if (ret.second == false) {
605     sprintf( painCave.errMsg,
606     "Electrostatic already had a previous entry with ident %d\n",
607 gezelter 1710 atomType->getIdent() );
608 gezelter 1502 painCave.severity = OPENMD_INFO;
609     painCave.isFatal = 0;
610     simError();
611     }
612    
613 gezelter 1718 ElectrostaticMap[atomType] = electrostaticAtomData;
614    
615     // Now, iterate over all known types and add to the mixing map:
616    
617     map<AtomType*, ElectrostaticAtomData>::iterator it;
618     for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
619     AtomType* atype2 = (*it).first;
620 gezelter 1720 ElectrostaticAtomData eaData2 = (*it).second;
621     if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
622 gezelter 1718
623     RealType a = electrostaticAtomData.slaterZeta;
624 gezelter 1720 RealType b = eaData2.slaterZeta;
625 gezelter 1718 int m = electrostaticAtomData.slaterN;
626 gezelter 1720 int n = eaData2.slaterN;
627 gezelter 1718
628     // Create the spline of the coulombic integral for s-type
629     // Slater orbitals. Add a 2 angstrom safety window to deal
630     // with cutoffGroups that have charged atoms longer than the
631     // cutoffRadius away from each other.
632    
633 gezelter 1720 RealType rval;
634 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
635     vector<RealType> rvals;
636 gezelter 1787 vector<RealType> Jvals;
637     // don't start at i = 0, as rval = 0 is undefined for the
638     // slater overlap integrals.
639 gezelter 1761 for (int i = 1; i < np_+1; i++) {
640 gezelter 1718 rval = RealType(i) * dr;
641     rvals.push_back(rval);
642 gezelter 1787 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
643     PhysicalConstants::angstromToBohr ) *
644     PhysicalConstants::hartreeToKcal );
645 gezelter 1718 }
646    
647 gezelter 1787 CubicSpline* J = new CubicSpline();
648     J->addPoints(rvals, Jvals);
649    
650 gezelter 1718 pair<AtomType*, AtomType*> key1, key2;
651     key1 = make_pair(atomType, atype2);
652     key2 = make_pair(atype2, atomType);
653    
654 gezelter 1787 Jij[key1] = J;
655     Jij[key2] = J;
656 gezelter 1718 }
657     }
658    
659 gezelter 1502 return;
660     }
661    
662 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
663     cutoffRadius_ = rCut;
664 gezelter 1528 haveCutoffRadius_ = true;
665 gezelter 1502 }
666 gezelter 1584
667 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
668     summationMethod_ = esm;
669     }
670     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
671     screeningMethod_ = sm;
672     }
673     void Electrostatic::setDampingAlpha( RealType alpha ) {
674     dampingAlpha_ = alpha;
675     haveDampingAlpha_ = true;
676     }
677     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
678     dielectric_ = dielectric;
679     haveDielectric_ = true;
680     }
681    
682 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
683 gezelter 1502
684 gezelter 1787 RealType C_a, C_b; // Charges
685     Vector3d D_a, D_b; // Dipoles (space-fixed)
686     Mat3x3d Q_a, Q_b; // Quadrupoles (space-fixed)
687 gezelter 1502
688 gezelter 1787 RealType ri, ri2, ri3, ri4; // Distance utility scalars
689     RealType rdDa, rdDb; // Dipole utility scalars
690     Vector3d rxDa, rxDb; // Dipole utility vectors
691     RealType rdQar, rdQbr, trQa, trQb; // Quadrupole utility scalars
692     Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr; // Quadrupole utility vectors
693     RealType pref;
694 gezelter 1502
695 gezelter 1787 RealType DadDb, trQaQb, DadQbr, DbdQar; // Cross-interaction scalars
696     Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
697     Vector3d rQaQb, QaQbr, QaxQb;
698     Mat3x3d QaQb; // Cross-interaction matrices
699 gezelter 1502
700 gezelter 1787 RealType U(0.0); // Potential
701     Vector3d F(0.0); // Force
702     Vector3d Ta(0.0); // Torque on site a
703     Vector3d Tb(0.0); // Torque on site b
704     Vector3d Ea(0.0); // Electric field at site a
705     Vector3d Eb(0.0); // Electric field at site b
706     RealType dUdCa(0.0); // fluctuating charge force at site a
707     RealType dUdCb(0.0); // fluctuating charge force at site a
708    
709     // Indirect interactions mediated by the reaction field.
710     RealType indirect_Pot(0.0); // Potential
711     Vector3d indirect_F(0.0); // Force
712     Vector3d indirect_Ta(0.0); // Torque on site a
713     Vector3d indirect_Tb(0.0); // Torque on site b
714 gezelter 1587
715 gezelter 1787 // Excluded potential that is still computed for fluctuating charges
716     RealType excluded_Pot(0.0);
717    
718     RealType rfContrib, coulInt;
719 gezelter 1502
720 gezelter 1787 // spline for coulomb integral
721     CubicSpline* J;
722    
723 gezelter 1502 if (!initialized_) initialize();
724    
725 gezelter 1571 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
726     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
727 gezelter 1502
728     // some variables we'll need independent of electrostatic type:
729    
730 gezelter 1787 ri = 1.0 / *(idat.rij);
731     Vector3d rhat = *(idat.d) * ri;
732     ri2 = ri * ri;
733    
734 gezelter 1502 // logicals
735    
736 gezelter 1787 bool a_is_Charge = data1.is_Charge;
737     bool a_is_Dipole = data1.is_Dipole;
738     bool a_is_Quadrupole = data1.is_Quadrupole;
739     bool a_is_Fluctuating = data1.is_Fluctuating;
740 gezelter 1502
741 gezelter 1787 bool b_is_Charge = data2.is_Charge;
742     bool b_is_Dipole = data2.is_Dipole;
743     bool b_is_Quadrupole = data2.is_Quadrupole;
744     bool b_is_Fluctuating = data2.is_Fluctuating;
745    
746     // Obtain all of the required radial function values from the
747     // spline structures:
748 gezelter 1502
749 gezelter 1808 // needed for fields (and forces):
750     if (a_is_Charge || b_is_Charge) {
751     v02 = v02s->getValueAt( *(idat.rij) );
752     }
753     if (a_is_Dipole || b_is_Dipole) {
754     v12 = v12s->getValueAt( *(idat.rij) );
755     v13 = v13s->getValueAt( *(idat.rij) );
756     }
757     if (a_is_Quadrupole || b_is_Quadrupole) {
758     v23 = v23s->getValueAt( *(idat.rij) );
759     v24 = v24s->getValueAt( *(idat.rij) );
760     }
761    
762     // needed for potentials (and torques):
763 gezelter 1787 if (a_is_Charge && b_is_Charge) {
764     v01 = v01s->getValueAt( *(idat.rij) );
765     }
766     if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
767     v11 = v11s->getValueAt( *(idat.rij) );
768     }
769 gezelter 1808 if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
770 gezelter 1787 v21 = v21s->getValueAt( *(idat.rij) );
771     v22 = v22s->getValueAt( *(idat.rij) );
772 gezelter 1808 } else if (a_is_Dipole && b_is_Dipole) {
773     v21 = v21s->getValueAt( *(idat.rij) );
774     v22 = v22s->getValueAt( *(idat.rij) );
775 gezelter 1787 v23 = v23s->getValueAt( *(idat.rij) );
776     v24 = v24s->getValueAt( *(idat.rij) );
777     }
778     if ((a_is_Dipole && b_is_Quadrupole) ||
779     (b_is_Dipole && a_is_Quadrupole)) {
780     v31 = v31s->getValueAt( *(idat.rij) );
781     v32 = v32s->getValueAt( *(idat.rij) );
782     v33 = v33s->getValueAt( *(idat.rij) );
783     v34 = v34s->getValueAt( *(idat.rij) );
784     v35 = v35s->getValueAt( *(idat.rij) );
785     }
786     if (a_is_Quadrupole && b_is_Quadrupole) {
787     v41 = v41s->getValueAt( *(idat.rij) );
788     v42 = v42s->getValueAt( *(idat.rij) );
789     v43 = v43s->getValueAt( *(idat.rij) );
790     v44 = v44s->getValueAt( *(idat.rij) );
791     v45 = v45s->getValueAt( *(idat.rij) );
792     v46 = v46s->getValueAt( *(idat.rij) );
793     }
794 gezelter 1721
795 gezelter 1787
796     // calculate the single-site contributions (fields, etc).
797    
798     if (a_is_Charge) {
799     C_a = data1.fixedCharge;
800    
801     if (a_is_Fluctuating) {
802     C_a += *(idat.flucQ1);
803 gezelter 1721 }
804    
805 gezelter 1587 if (idat.excluded) {
806 gezelter 1787 *(idat.skippedCharge2) += C_a;
807 gezelter 1587 }
808 gezelter 1787 Eb -= C_a * pre11_ * v02 * rhat;
809 gezelter 1587 }
810 gezelter 1787
811     if (a_is_Dipole) {
812     D_a = *(idat.dipole1);
813     rdDa = dot(rhat, D_a);
814     rxDa = cross(rhat, D_a);
815     Eb -= pre12_ * (v13 * rdDa * rhat + v12 * D_a);
816 gezelter 1502 }
817    
818 gezelter 1787 if (a_is_Quadrupole) {
819     Q_a = *(idat.quadrupole1);
820     trQa = Q_a.trace();
821     Qar = Q_a * rhat;
822     rQa = rhat * Q_a;
823     rdQar = dot(rhat, Qar);
824     rxQar = cross(rhat, Qar);
825     Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
826     }
827    
828     if (b_is_Charge) {
829     C_b = data2.fixedCharge;
830 gezelter 1502
831 gezelter 1787 if (b_is_Fluctuating)
832     C_b += *(idat.flucQ2);
833    
834 gezelter 1587 if (idat.excluded) {
835 gezelter 1787 *(idat.skippedCharge1) += C_b;
836 gezelter 1587 }
837 gezelter 1787 Ea += C_b * pre11_ * v02 * rhat;
838 gezelter 1587 }
839 gezelter 1502
840 gezelter 1787 if (b_is_Dipole) {
841     D_b = *(idat.dipole2);
842     rdDb = dot(rhat, D_b);
843     rxDb = cross(rhat, D_b);
844     Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
845 gezelter 1502 }
846    
847 gezelter 1787 if (b_is_Quadrupole) {
848     Q_b = *(idat.quadrupole2);
849     trQb = Q_b.trace();
850     Qbr = Q_b * rhat;
851     rQb = rhat * Q_b;
852     rdQbr = dot(rhat, Qbr);
853     rxQbr = cross(rhat, Qbr);
854     Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
855 gezelter 1721 }
856 gezelter 1502
857 gezelter 1787 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
858     J = Jij[idat.atypes];
859     }
860    
861     if (a_is_Charge) {
862 gezelter 1502
863 gezelter 1787 if (b_is_Charge) {
864     pref = pre11_ * *(idat.electroMult);
865     U += C_a * C_b * pref * v01;
866     F += C_a * C_b * pref * v02 * rhat;
867    
868     // If this is an excluded pair, there are still indirect
869     // interactions via the reaction field we must worry about:
870 gezelter 1616
871 gezelter 1787 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
872     rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
873     indirect_Pot += rfContrib;
874     indirect_F += rfContrib * 2.0 * ri * rhat;
875 gezelter 1502 }
876    
877 gezelter 1787 // Fluctuating charge forces are handled via Coulomb integrals
878     // for excluded pairs (i.e. those connected via bonds) and
879     // with the standard charge-charge interaction otherwise.
880 gezelter 1502
881 gezelter 1787 if (idat.excluded) {
882     if (a_is_Fluctuating || b_is_Fluctuating) {
883     coulInt = J->getValueAt( *(idat.rij) );
884     if (a_is_Fluctuating) dUdCa += coulInt * C_b;
885     if (b_is_Fluctuating) dUdCb += coulInt * C_a;
886     excluded_Pot += C_a * C_b * coulInt;
887     }
888 gezelter 1502 } else {
889 gezelter 1787 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
890     if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
891 gezelter 1721 }
892 gezelter 1502 }
893    
894 gezelter 1787 if (b_is_Dipole) {
895     pref = pre12_ * *(idat.electroMult);
896     U += C_a * pref * v11 * rdDb;
897     F += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
898     Tb += C_a * pref * v11 * rxDb;
899 gezelter 1502
900 gezelter 1787 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
901 gezelter 1502
902 gezelter 1787 // Even if we excluded this pair from direct interactions, we
903     // still have the reaction-field-mediated charge-dipole
904     // interaction:
905 gezelter 1502
906 gezelter 1787 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
907     rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
908     indirect_Pot += rfContrib * rdDb;
909     indirect_F += rfContrib * D_b / (*idat.rij);
910     indirect_Tb += C_a * pref * preRF_ * rxDb;
911 gezelter 1502 }
912     }
913    
914 gezelter 1787 if (b_is_Quadrupole) {
915     pref = pre14_ * *(idat.electroMult);
916     U += C_a * pref * (v21 * trQb + v22 * rdQbr);
917     F += C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
918     F += C_a * pref * rdQbr * rhat * v24;
919     Tb += C_a * pref * 2.0 * rxQbr * v22;
920 gezelter 1502
921 gezelter 1787 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
922 gezelter 1502 }
923     }
924    
925 gezelter 1787 if (a_is_Dipole) {
926 gezelter 1502
927 gezelter 1787 if (b_is_Charge) {
928     pref = pre12_ * *(idat.electroMult);
929 gezelter 1502
930 gezelter 1787 U -= C_b * pref * v11 * rdDa;
931     F -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
932     Ta -= C_b * pref * v11 * rxDa;
933 gezelter 1502
934 gezelter 1787 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
935 gezelter 1587
936 gezelter 1787 // Even if we excluded this pair from direct interactions,
937     // we still have the reaction-field-mediated charge-dipole
938     // interaction:
939     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
940     rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
941     indirect_Pot -= rfContrib * rdDa;
942     indirect_F -= rfContrib * D_a / (*idat.rij);
943     indirect_Ta -= C_b * pref * preRF_ * rxDa;
944     }
945     }
946 gezelter 1587
947 gezelter 1787 if (b_is_Dipole) {
948     pref = pre22_ * *(idat.electroMult);
949     DadDb = dot(D_a, D_b);
950     DaxDb = cross(D_a, D_b);
951 gezelter 1502
952 gezelter 1787 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
953     F -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
954     F -= pref * (rdDa * rdDb) * v24 * rhat;
955     Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
956     Tb += pref * (-v21 * DaxDb + v22 * rdDa * rxDb);
957 gezelter 1723
958 gezelter 1787 // Even if we excluded this pair from direct interactions, we
959     // still have the reaction-field-mediated dipole-dipole
960     // interaction:
961     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
962     rfContrib = -pref * preRF_ * 2.0;
963     indirect_Pot += rfContrib * DadDb;
964     indirect_Ta += rfContrib * DaxDb;
965     indirect_Tb -= rfContrib * DaxDb;
966 gezelter 1723 }
967    
968 gezelter 1502 }
969    
970 gezelter 1787 if (b_is_Quadrupole) {
971     pref = pre24_ * *(idat.electroMult);
972     DadQb = D_a * Q_b;
973     DadQbr = dot(D_a, Qbr);
974     DaxQbr = cross(D_a, Qbr);
975 gezelter 1502
976 gezelter 1787 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
977     F -= pref * (trQb*D_a + 2.0*DadQb) * v33;
978     F -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
979     + 2.0*rdDa*rQb)*v34;
980     F -= pref * (rdDa * rdQbr * rhat * v35);
981     Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
982     Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
983     - 2.0*rdDa*rxQbr*v32);
984 gezelter 1502 }
985     }
986    
987 gezelter 1787 if (a_is_Quadrupole) {
988     if (b_is_Charge) {
989     pref = pre14_ * *(idat.electroMult);
990     U += C_b * pref * (v21 * trQa + v22 * rdQar);
991     F += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
992     F += C_b * pref * rdQar * rhat * v24;
993     Ta += C_b * pref * 2.0 * rxQar * v22;
994 gezelter 1502
995 gezelter 1787 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
996     }
997     if (b_is_Dipole) {
998     pref = pre24_ * *(idat.electroMult);
999     DbdQa = D_b * Q_a;
1000     DbdQar = dot(D_b, Qar);
1001     DbxQar = cross(D_b, Qar);
1002 gezelter 1502
1003 gezelter 1787 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1004     F += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1005     F += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1006     + 2.0*rdDb*rQa)*v34;
1007     F += pref * (rdDb * rdQar * rhat * v35);
1008     Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1009     + 2.0*rdDb*rxQar*v32);
1010     Tb += pref * ((trQa*rxDb + 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1011     }
1012     if (b_is_Quadrupole) {
1013     pref = pre44_ * *(idat.electroMult);
1014     QaQb = Q_a * Q_b;
1015     trQaQb = QaQb.trace();
1016     rQaQb = rhat * QaQb;
1017     QaQbr = QaQb * rhat;
1018     QaxQb = cross(Q_a, Q_b);
1019 gezelter 1502
1020 gezelter 1787 U += pref * (trQa * trQb + 2.0*trQaQb) * v41;
1021     U += pref * (trQa*rdQbr + trQb*rdQar + 4.0*dot(rQa, Qbr)) * v42;
1022     U += pref * (rdQar * rdQbr) * v43;
1023 gezelter 1502
1024 gezelter 1787 F += pref * (trQa*trQb*rhat + 2.0*trQaQb*rhat)*v44;
1025     F += pref * (2.0*trQb*rQa + 2.0*trQa*rQb)*v44;
1026     F += pref * (4.0* QaQb * rhat + 4.0 * rhat * QaQb)*v44;
1027     F += pref * (trQa*rdQbr*rhat + trQb*rdQar*rhat
1028     + 4.0*dot(rQa, Qbr)*rhat)*v45;
1029     F += pref * (2.0*rQa*rdQbr + 2.0*rdQar*rQb)*v45;
1030     F += pref * (rdQar*rdQbr*rhat) * v46;
1031 gezelter 1502
1032 gezelter 1787 Ta += pref * (-4.0 * QaxQb * v41);
1033     Ta += pref * (-2.0*trQb*cross(rQa, rhat)
1034     + 4.0*cross(rhat, QaQbr)
1035     - 4.0*cross(rQa, Qbr)) * v42;
1036     Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1037 gezelter 1502
1038 gezelter 1787 Tb += pref * (4.0 * QaxQb * v41);
1039     Tb += pref * (-2.0*trQa*cross(rQb, rhat)
1040     - 4.0*cross(rQaQb, rhat)
1041     + 4.0*cross(rQa, Qbr))*v42;
1042     Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1043 gezelter 1723
1044 gezelter 1502 }
1045     }
1046    
1047 gezelter 1787 if (idat.doElectricField) {
1048     *(idat.eField1) += Ea * *(idat.electroMult);
1049     *(idat.eField2) += Eb * *(idat.electroMult);
1050     }
1051 gezelter 1502
1052 gezelter 1787 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1053     if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1054    
1055 gezelter 1587 if (!idat.excluded) {
1056    
1057 gezelter 1787 *(idat.vpair) += U;
1058     (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1059     *(idat.f1) += F * *(idat.sw);
1060 gezelter 1587
1061 gezelter 1787 if (a_is_Dipole || a_is_Quadrupole)
1062     *(idat.t1) += Ta * *(idat.sw);
1063 gezelter 1587
1064 gezelter 1787 if (b_is_Dipole || b_is_Quadrupole)
1065     *(idat.t2) += Tb * *(idat.sw);
1066    
1067 gezelter 1587 } else {
1068    
1069     // only accumulate the forces and torques resulting from the
1070     // indirect reaction field terms.
1071 gezelter 1616
1072 gezelter 1787 *(idat.vpair) += indirect_Pot;
1073     (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1074     (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1075     *(idat.f1) += *(idat.sw) * indirect_F;
1076 gezelter 1761
1077 gezelter 1787 if (a_is_Dipole || a_is_Quadrupole)
1078     *(idat.t1) += *(idat.sw) * indirect_Ta;
1079    
1080     if (b_is_Dipole || b_is_Quadrupole)
1081     *(idat.t2) += *(idat.sw) * indirect_Tb;
1082 gezelter 1502 }
1083     return;
1084     }
1085    
1086 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1087 gezelter 1787
1088 gezelter 1502 if (!initialized_) initialize();
1089 gezelter 1586
1090 gezelter 1545 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1091 gezelter 1787
1092 gezelter 1502 // logicals
1093     bool i_is_Charge = data.is_Charge;
1094     bool i_is_Dipole = data.is_Dipole;
1095 jmichalk 1734 bool i_is_Fluctuating = data.is_Fluctuating;
1096 gezelter 1787 RealType C_a = data.fixedCharge;
1097     RealType self, preVal, DadDa;
1098 jmichalk 1734
1099     if (i_is_Fluctuating) {
1100 gezelter 1787 C_a += *(sdat.flucQ);
1101 jmichalk 1734 // dVdFQ is really a force, so this is negative the derivative
1102     *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1103 gezelter 1761 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1104     (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1105 jmichalk 1734 }
1106 gezelter 1502
1107 gezelter 1787 switch (summationMethod_) {
1108     case esm_REACTION_FIELD:
1109    
1110     if (i_is_Charge) {
1111     // Self potential [see Wang and Hermans, "Reaction Field
1112     // Molecular Dynamics Simulation with Friedman’s Image Charge
1113     // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1114     preVal = pre11_ * preRF_ * C_a * C_a;
1115     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1116     }
1117    
1118 gezelter 1502 if (i_is_Dipole) {
1119 gezelter 1787 DadDa = data.dipole.lengthSquare();
1120     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1121 gezelter 1502 }
1122 gezelter 1787
1123     break;
1124    
1125     case esm_SHIFTED_FORCE:
1126     case esm_SHIFTED_POTENTIAL:
1127 gezelter 1502 if (i_is_Charge) {
1128 gezelter 1787 self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1129 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1130 gezelter 1502 }
1131 gezelter 1787 break;
1132     default:
1133     break;
1134 gezelter 1502 }
1135     }
1136 gezelter 1787
1137 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1138 gezelter 1505 // This seems to work moderately well as a default. There's no
1139     // inherent scale for 1/r interactions that we can standardize.
1140     // 12 angstroms seems to be a reasonably good guess for most
1141     // cases.
1142     return 12.0;
1143     }
1144 gezelter 1502 }

Properties

Name Value
svn:eol-style native