ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1723
Committed: Thu May 24 20:59:54 2012 UTC (12 years, 11 months ago) by gezelter
File size: 38156 byte(s)
Log Message:
Bug fixes for heat flux import

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1502 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1502
57 gezelter 1718
58 gezelter 1502 namespace OpenMD {
59    
60     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 gezelter 1587 forceField_(NULL), info_(NULL),
62     haveCutoffRadius_(false),
63     haveDampingAlpha_(false),
64     haveDielectric_(false),
65 gezelter 1586 haveElectroSpline_(false)
66 gezelter 1587 {}
67 gezelter 1502
68     void Electrostatic::initialize() {
69 gezelter 1587
70 gezelter 1584 Globals* simParams_ = info_->getSimParams();
71 gezelter 1535
72 gezelter 1528 summationMap_["HARD"] = esm_HARD;
73 gezelter 1616 summationMap_["NONE"] = esm_HARD;
74 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79     summationMap_["EWALD_PME"] = esm_EWALD_PME;
80     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81     screeningMap_["DAMPED"] = DAMPED;
82     screeningMap_["UNDAMPED"] = UNDAMPED;
83    
84 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
85     // all were computed assuming distances are measured in angstroms
86     // Charge-Charge, assuming charges are measured in electrons
87     pre11_ = 332.0637778;
88     // Charge-Dipole, assuming charges are measured in electrons, and
89     // dipoles are measured in debyes
90     pre12_ = 69.13373;
91     // Dipole-Dipole, assuming dipoles are measured in debyes
92     pre22_ = 14.39325;
93     // Charge-Quadrupole, assuming charges are measured in electrons, and
94     // quadrupoles are measured in 10^-26 esu cm^2
95     // This unit is also known affectionately as an esu centi-barn.
96     pre14_ = 69.13373;
97    
98     // conversions for the simulation box dipole moment
99     chargeToC_ = 1.60217733e-19;
100     angstromToM_ = 1.0e-10;
101     debyeToCm_ = 3.33564095198e-30;
102    
103     // number of points for electrostatic splines
104     np_ = 100;
105    
106     // variables to handle different summation methods for long-range
107     // electrostatics:
108 gezelter 1528 summationMethod_ = esm_HARD;
109 gezelter 1502 screeningMethod_ = UNDAMPED;
110     dielectric_ = 1.0;
111     one_third_ = 1.0 / 3.0;
112    
113 gezelter 1528 // check the summation method:
114     if (simParams_->haveElectrostaticSummationMethod()) {
115     string myMethod = simParams_->getElectrostaticSummationMethod();
116     toUpper(myMethod);
117     map<string, ElectrostaticSummationMethod>::iterator i;
118     i = summationMap_.find(myMethod);
119     if ( i != summationMap_.end() ) {
120     summationMethod_ = (*i).second;
121     } else {
122     // throw error
123     sprintf( painCave.errMsg,
124 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 gezelter 1528 "\t(Input file specified %s .)\n"
126 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 gezelter 1528 "\t\"shifted_potential\", \"shifted_force\", or \n"
128     "\t\"reaction_field\".\n", myMethod.c_str() );
129     painCave.isFatal = 1;
130     simError();
131     }
132     } else {
133     // set ElectrostaticSummationMethod to the cutoffMethod:
134     if (simParams_->haveCutoffMethod()){
135     string myMethod = simParams_->getCutoffMethod();
136     toUpper(myMethod);
137     map<string, ElectrostaticSummationMethod>::iterator i;
138     i = summationMap_.find(myMethod);
139     if ( i != summationMap_.end() ) {
140     summationMethod_ = (*i).second;
141     }
142     }
143     }
144    
145     if (summationMethod_ == esm_REACTION_FIELD) {
146     if (!simParams_->haveDielectric()) {
147     // throw warning
148     sprintf( painCave.errMsg,
149     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151     painCave.isFatal = 0;
152     painCave.severity = OPENMD_INFO;
153     simError();
154     } else {
155     dielectric_ = simParams_->getDielectric();
156     }
157     haveDielectric_ = true;
158     }
159    
160     if (simParams_->haveElectrostaticScreeningMethod()) {
161     string myScreen = simParams_->getElectrostaticScreeningMethod();
162     toUpper(myScreen);
163     map<string, ElectrostaticScreeningMethod>::iterator i;
164     i = screeningMap_.find(myScreen);
165     if ( i != screeningMap_.end()) {
166     screeningMethod_ = (*i).second;
167     } else {
168     sprintf( painCave.errMsg,
169     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170     "\t(Input file specified %s .)\n"
171     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172     "or \"damped\".\n", myScreen.c_str() );
173     painCave.isFatal = 1;
174     simError();
175     }
176     }
177    
178     // check to make sure a cutoff value has been set:
179     if (!haveCutoffRadius_) {
180     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181     "Cutoff value!\n");
182     painCave.severity = OPENMD_ERROR;
183     painCave.isFatal = 1;
184     simError();
185     }
186    
187     if (screeningMethod_ == DAMPED) {
188     if (!simParams_->haveDampingAlpha()) {
189     // first set a cutoff dependent alpha value
190     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193    
194     // throw warning
195     sprintf( painCave.errMsg,
196     "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
198     dampingAlpha_, cutoffRadius_);
199     painCave.severity = OPENMD_INFO;
200     painCave.isFatal = 0;
201     simError();
202     } else {
203     dampingAlpha_ = simParams_->getDampingAlpha();
204     }
205     haveDampingAlpha_ = true;
206     }
207    
208 gezelter 1502 // find all of the Electrostatic atom Types:
209     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
210     ForceField::AtomTypeContainer::MapTypeIterator i;
211     AtomType* at;
212 gezelter 1528
213 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
214     at = atomTypes->nextType(i)) {
215    
216     if (at->isElectrostatic())
217     addType(at);
218     }
219    
220 gezelter 1528 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
221     rcuti_ = 1.0 / cutoffRadius_;
222 gezelter 1502 rcuti2_ = rcuti_ * rcuti_;
223     rcuti3_ = rcuti2_ * rcuti_;
224     rcuti4_ = rcuti2_ * rcuti2_;
225    
226     if (screeningMethod_ == DAMPED) {
227 gezelter 1528
228 gezelter 1502 alpha2_ = dampingAlpha_ * dampingAlpha_;
229     alpha4_ = alpha2_ * alpha2_;
230     alpha6_ = alpha4_ * alpha2_;
231     alpha8_ = alpha4_ * alpha4_;
232    
233 gezelter 1528 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
234 gezelter 1502 invRootPi_ = 0.56418958354775628695;
235     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
236    
237 gezelter 1528 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
238 gezelter 1502 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
239     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
240     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
241     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
242     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
243     } else {
244     c1c_ = rcuti_;
245     c2c_ = c1c_ * rcuti_;
246     c3c_ = 3.0 * c2c_ * rcuti_;
247     c4c_ = 5.0 * c3c_ * rcuti2_;
248     c5c_ = 7.0 * c4c_ * rcuti2_;
249     c6c_ = 9.0 * c5c_ * rcuti2_;
250     }
251    
252 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
253     preRF_ = (dielectric_ - 1.0) /
254     ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
255     preRF2_ = 2.0 * preRF_;
256 gezelter 1502 }
257 gezelter 1528
258 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
259     // have charged atoms longer than the cutoffRadius away from each
260     // other. Splining may not be the best choice here. Direct calls
261     // to erfc might be preferrable.
262    
263     RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
264 gezelter 1502 RealType rval;
265     vector<RealType> rvals;
266     vector<RealType> yvals;
267     for (int i = 0; i < np_; i++) {
268     rval = RealType(i) * dx;
269     rvals.push_back(rval);
270     yvals.push_back(erfc(dampingAlpha_ * rval));
271     }
272     erfcSpline_ = new CubicSpline();
273     erfcSpline_->addPoints(rvals, yvals);
274     haveElectroSpline_ = true;
275    
276     initialized_ = true;
277     }
278    
279     void Electrostatic::addType(AtomType* atomType){
280    
281     ElectrostaticAtomData electrostaticAtomData;
282     electrostaticAtomData.is_Charge = false;
283     electrostaticAtomData.is_Dipole = false;
284     electrostaticAtomData.is_SplitDipole = false;
285     electrostaticAtomData.is_Quadrupole = false;
286 gezelter 1723 electrostaticAtomData.is_Fluctuating = false;
287 gezelter 1502
288 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289 gezelter 1502
290 gezelter 1710 if (fca.isFixedCharge()) {
291 gezelter 1502 electrostaticAtomData.is_Charge = true;
292 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
293 gezelter 1502 }
294    
295 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
296     if (ma.isMultipole()) {
297     if (ma.isDipole()) {
298 gezelter 1502 electrostaticAtomData.is_Dipole = true;
299 gezelter 1710 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300 gezelter 1502 }
301 gezelter 1710 if (ma.isSplitDipole()) {
302 gezelter 1502 electrostaticAtomData.is_SplitDipole = true;
303 gezelter 1710 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304 gezelter 1502 }
305 gezelter 1710 if (ma.isQuadrupole()) {
306 gezelter 1505 // Quadrupoles in OpenMD are set as the diagonal elements
307     // of the diagonalized traceless quadrupole moment tensor.
308     // The column vectors of the unitary matrix that diagonalizes
309     // the quadrupole moment tensor become the eFrame (or the
310     // electrostatic version of the body-fixed frame.
311 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
312 gezelter 1710 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313 gezelter 1502 }
314     }
315    
316 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317 gezelter 1502
318 gezelter 1718 if (fqa.isFluctuatingCharge()) {
319 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
320     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321     electrostaticAtomData.hardness = fqa.getHardness();
322     electrostaticAtomData.slaterN = fqa.getSlaterN();
323     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 gezelter 1718 }
325    
326 gezelter 1502 pair<map<int,AtomType*>::iterator,bool> ret;
327 gezelter 1710 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
328     atomType) );
329 gezelter 1502 if (ret.second == false) {
330     sprintf( painCave.errMsg,
331     "Electrostatic already had a previous entry with ident %d\n",
332 gezelter 1710 atomType->getIdent() );
333 gezelter 1502 painCave.severity = OPENMD_INFO;
334     painCave.isFatal = 0;
335     simError();
336     }
337    
338 gezelter 1718 ElectrostaticMap[atomType] = electrostaticAtomData;
339    
340     // Now, iterate over all known types and add to the mixing map:
341    
342     map<AtomType*, ElectrostaticAtomData>::iterator it;
343     for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
344     AtomType* atype2 = (*it).first;
345 gezelter 1720 ElectrostaticAtomData eaData2 = (*it).second;
346     if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
347 gezelter 1718
348     RealType a = electrostaticAtomData.slaterZeta;
349 gezelter 1720 RealType b = eaData2.slaterZeta;
350 gezelter 1718 int m = electrostaticAtomData.slaterN;
351 gezelter 1720 int n = eaData2.slaterN;
352 gezelter 1718
353     // Create the spline of the coulombic integral for s-type
354     // Slater orbitals. Add a 2 angstrom safety window to deal
355     // with cutoffGroups that have charged atoms longer than the
356     // cutoffRadius away from each other.
357    
358 gezelter 1720 RealType rval;
359 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
360     vector<RealType> rvals;
361     vector<RealType> J1vals;
362     vector<RealType> J2vals;
363     for (int i = 0; i < np_; i++) {
364     rval = RealType(i) * dr;
365     rvals.push_back(rval);
366     J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
367 gezelter 1721 // may not be necessary if Slater coulomb integral is symmetric
368 gezelter 1718 J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
369     }
370    
371 gezelter 1720 CubicSpline* J1 = new CubicSpline();
372 gezelter 1718 J1->addPoints(rvals, J1vals);
373 gezelter 1720 CubicSpline* J2 = new CubicSpline();
374 gezelter 1718 J2->addPoints(rvals, J2vals);
375    
376     pair<AtomType*, AtomType*> key1, key2;
377     key1 = make_pair(atomType, atype2);
378     key2 = make_pair(atype2, atomType);
379    
380     Jij[key1] = J1;
381     Jij[key2] = J2;
382     }
383     }
384    
385 gezelter 1502 return;
386     }
387    
388 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
389     cutoffRadius_ = rCut;
390 gezelter 1528 rrf_ = cutoffRadius_;
391     haveCutoffRadius_ = true;
392 gezelter 1502 }
393 gezelter 1584
394     void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
395     rt_ = rSwitch;
396     }
397 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
398     summationMethod_ = esm;
399     }
400     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
401     screeningMethod_ = sm;
402     }
403     void Electrostatic::setDampingAlpha( RealType alpha ) {
404     dampingAlpha_ = alpha;
405     haveDampingAlpha_ = true;
406     }
407     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
408     dielectric_ = dielectric;
409     haveDielectric_ = true;
410     }
411    
412 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
413 gezelter 1502
414     // utility variables. Should clean these up and use the Vector3d and
415     // Mat3x3d to replace as many as we can in future versions:
416    
417     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
418     RealType qxx_i, qyy_i, qzz_i;
419     RealType qxx_j, qyy_j, qzz_j;
420     RealType cx_i, cy_i, cz_i;
421     RealType cx_j, cy_j, cz_j;
422     RealType cx2, cy2, cz2;
423     RealType ct_i, ct_j, ct_ij, a1;
424     RealType riji, ri, ri2, ri3, ri4;
425     RealType pref, vterm, epot, dudr;
426 gezelter 1587 RealType vpair(0.0);
427 gezelter 1502 RealType scale, sc2;
428     RealType pot_term, preVal, rfVal;
429     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
430     RealType preSw, preSwSc;
431     RealType c1, c2, c3, c4;
432 gezelter 1587 RealType erfcVal(1.0), derfcVal(0.0);
433 gezelter 1502 RealType BigR;
434 gezelter 1668 RealType two(2.0), three(3.0);
435 gezelter 1502
436     Vector3d Q_i, Q_j;
437     Vector3d ux_i, uy_i, uz_i;
438     Vector3d ux_j, uy_j, uz_j;
439     Vector3d dudux_i, duduy_i, duduz_i;
440     Vector3d dudux_j, duduy_j, duduz_j;
441     Vector3d rhatdot2, rhatc4;
442     Vector3d dVdr;
443    
444 gezelter 1587 // variables for indirect (reaction field) interactions for excluded pairs:
445     RealType indirect_Pot(0.0);
446     RealType indirect_vpair(0.0);
447     Vector3d indirect_dVdr(V3Zero);
448     Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
449    
450 gezelter 1723 RealType coulInt, vFluc1(0.0), vFluc2(0.0);
451 gezelter 1502 pair<RealType, RealType> res;
452    
453 gezelter 1721 // splines for coulomb integrals
454     CubicSpline* J1;
455     CubicSpline* J2;
456    
457 gezelter 1502 if (!initialized_) initialize();
458    
459 gezelter 1571 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
460     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
461 gezelter 1502
462     // some variables we'll need independent of electrostatic type:
463    
464 gezelter 1554 riji = 1.0 / *(idat.rij) ;
465     Vector3d rhat = *(idat.d) * riji;
466 gezelter 1502
467     // logicals
468    
469     bool i_is_Charge = data1.is_Charge;
470     bool i_is_Dipole = data1.is_Dipole;
471     bool i_is_SplitDipole = data1.is_SplitDipole;
472     bool i_is_Quadrupole = data1.is_Quadrupole;
473 gezelter 1721 bool i_is_Fluctuating = data1.is_Fluctuating;
474 gezelter 1502
475     bool j_is_Charge = data2.is_Charge;
476     bool j_is_Dipole = data2.is_Dipole;
477     bool j_is_SplitDipole = data2.is_SplitDipole;
478     bool j_is_Quadrupole = data2.is_Quadrupole;
479 gezelter 1721 bool j_is_Fluctuating = data2.is_Fluctuating;
480 gezelter 1502
481 gezelter 1587 if (i_is_Charge) {
482 gezelter 1720 q_i = data1.fixedCharge;
483 gezelter 1721
484     if (i_is_Fluctuating) {
485     q_i += *(idat.flucQ1);
486     }
487    
488 gezelter 1587 if (idat.excluded) {
489     *(idat.skippedCharge2) += q_i;
490     }
491     }
492 gezelter 1502
493     if (i_is_Dipole) {
494     mu_i = data1.dipole_moment;
495 gezelter 1554 uz_i = idat.eFrame1->getColumn(2);
496 gezelter 1502
497     ct_i = dot(uz_i, rhat);
498    
499     if (i_is_SplitDipole)
500     d_i = data1.split_dipole_distance;
501    
502     duduz_i = V3Zero;
503     }
504    
505     if (i_is_Quadrupole) {
506     Q_i = data1.quadrupole_moments;
507     qxx_i = Q_i.x();
508     qyy_i = Q_i.y();
509     qzz_i = Q_i.z();
510    
511 gezelter 1554 ux_i = idat.eFrame1->getColumn(0);
512     uy_i = idat.eFrame1->getColumn(1);
513     uz_i = idat.eFrame1->getColumn(2);
514 gezelter 1502
515     cx_i = dot(ux_i, rhat);
516     cy_i = dot(uy_i, rhat);
517     cz_i = dot(uz_i, rhat);
518    
519     dudux_i = V3Zero;
520     duduy_i = V3Zero;
521     duduz_i = V3Zero;
522     }
523    
524 gezelter 1587 if (j_is_Charge) {
525 gezelter 1720 q_j = data2.fixedCharge;
526 gezelter 1721
527     if (i_is_Fluctuating)
528     q_j += *(idat.flucQ2);
529    
530 gezelter 1587 if (idat.excluded) {
531     *(idat.skippedCharge1) += q_j;
532     }
533     }
534 gezelter 1502
535 gezelter 1587
536 gezelter 1502 if (j_is_Dipole) {
537     mu_j = data2.dipole_moment;
538 gezelter 1554 uz_j = idat.eFrame2->getColumn(2);
539 gezelter 1502
540     ct_j = dot(uz_j, rhat);
541    
542     if (j_is_SplitDipole)
543     d_j = data2.split_dipole_distance;
544    
545     duduz_j = V3Zero;
546     }
547    
548     if (j_is_Quadrupole) {
549     Q_j = data2.quadrupole_moments;
550     qxx_j = Q_j.x();
551     qyy_j = Q_j.y();
552     qzz_j = Q_j.z();
553    
554 gezelter 1554 ux_j = idat.eFrame2->getColumn(0);
555     uy_j = idat.eFrame2->getColumn(1);
556     uz_j = idat.eFrame2->getColumn(2);
557 gezelter 1502
558     cx_j = dot(ux_j, rhat);
559     cy_j = dot(uy_j, rhat);
560     cz_j = dot(uz_j, rhat);
561    
562     dudux_j = V3Zero;
563     duduy_j = V3Zero;
564     duduz_j = V3Zero;
565     }
566    
567 gezelter 1721 if (i_is_Fluctuating && j_is_Fluctuating) {
568     J1 = Jij[idat.atypes];
569     J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
570     }
571    
572 gezelter 1502 epot = 0.0;
573     dVdr = V3Zero;
574    
575     if (i_is_Charge) {
576    
577     if (j_is_Charge) {
578     if (screeningMethod_ == DAMPED) {
579     // assemble the damping variables
580 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
581     //erfcVal = res.first;
582     //derfcVal = res.second;
583    
584     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
585     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
586    
587 gezelter 1502 c1 = erfcVal * riji;
588     c2 = (-derfcVal + c1) * riji;
589     } else {
590     c1 = riji;
591     c2 = c1 * riji;
592     }
593    
594 gezelter 1554 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
595 gezelter 1502
596 gezelter 1528 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
597 gezelter 1502 vterm = preVal * (c1 - c1c_);
598 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
599 gezelter 1502
600 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
601 gezelter 1554 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
602     dudr = *(idat.sw) * preVal * (c2c_ - c2);
603 gezelter 1502
604 gezelter 1528 } else if (summationMethod_ == esm_REACTION_FIELD) {
605 gezelter 1587 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
606    
607 gezelter 1502 vterm = preVal * ( riji + rfVal );
608 gezelter 1554 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
609 gezelter 1587
610     // if this is an excluded pair, there are still indirect
611     // interactions via the reaction field we must worry about:
612 gezelter 1502
613 gezelter 1587 if (idat.excluded) {
614     indirect_vpair += preVal * rfVal;
615     indirect_Pot += *(idat.sw) * preVal * rfVal;
616 gezelter 1668 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
617 gezelter 1587 }
618    
619 gezelter 1502 } else {
620    
621 gezelter 1587 vterm = preVal * riji * erfcVal;
622 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
623 gezelter 1721
624     }
625 gezelter 1723
626     vpair += vterm;
627     epot += *(idat.sw) * vterm;
628     dVdr += dudr * rhat;
629 gezelter 1502
630 gezelter 1721 if (i_is_Fluctuating) {
631 gezelter 1723 if (idat.excluded) {
632     // vFluc1 is the difference between the direct coulomb integral
633     // and the normal 1/r-like interaction between point charges.
634     coulInt = J1->getValueAt( *(idat.rij) );
635     vFluc1 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm);
636     } else {
637     vFluc1 = 0.0;
638 gezelter 1721 }
639 gezelter 1723 *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) / q_i;
640 gezelter 1502 }
641 gezelter 1723
642 gezelter 1721 if (j_is_Fluctuating) {
643 gezelter 1723 if (idat.excluded) {
644     // vFluc2 is the difference between the direct coulomb integral
645     // and the normal 1/r-like interaction between point charges.
646     coulInt = J2->getValueAt( *(idat.rij) );
647     vFluc2 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm);
648     } else {
649     vFluc2 = 0.0;
650 gezelter 1721 }
651 gezelter 1723 *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) / q_j;
652 gezelter 1721 }
653 gezelter 1723
654    
655 gezelter 1502 }
656    
657     if (j_is_Dipole) {
658     // pref is used by all the possible methods
659 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
660     preSw = *(idat.sw) * pref;
661 gezelter 1502
662 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
663 gezelter 1502 ri2 = riji * riji;
664     ri3 = ri2 * riji;
665    
666 gezelter 1554 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
667 gezelter 1587 vpair += vterm;
668 gezelter 1554 epot += *(idat.sw) * vterm;
669 gezelter 1502
670 gezelter 1668 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
671 gezelter 1554 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
672 gezelter 1502
673 gezelter 1587 // Even if we excluded this pair from direct interactions,
674     // we still have the reaction-field-mediated charge-dipole
675     // interaction:
676    
677     if (idat.excluded) {
678     indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
679     indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
680     indirect_dVdr += preSw * preRF2_ * uz_j;
681     indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
682     }
683    
684 gezelter 1502 } else {
685     // determine the inverse r used if we have split dipoles
686     if (j_is_SplitDipole) {
687 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
688 gezelter 1502 ri = 1.0 / BigR;
689 gezelter 1554 scale = *(idat.rij) * ri;
690 gezelter 1502 } else {
691     ri = riji;
692     scale = 1.0;
693     }
694    
695     sc2 = scale * scale;
696    
697     if (screeningMethod_ == DAMPED) {
698     // assemble the damping variables
699 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
700     //erfcVal = res.first;
701     //derfcVal = res.second;
702     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
703     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
704 gezelter 1502 c1 = erfcVal * ri;
705     c2 = (-derfcVal + c1) * ri;
706     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
707     } else {
708     c1 = ri;
709     c2 = c1 * ri;
710     c3 = 3.0 * c2 * ri;
711     }
712    
713     c2ri = c2 * ri;
714    
715     // calculate the potential
716     pot_term = scale * c2;
717     vterm = -pref * ct_j * pot_term;
718 gezelter 1587 vpair += vterm;
719 gezelter 1554 epot += *(idat.sw) * vterm;
720 gezelter 1502
721     // calculate derivatives for forces and torques
722    
723     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
724     duduz_j += -preSw * pot_term * rhat;
725    
726     }
727 gezelter 1723 if (i_is_Fluctuating) {
728     *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
729     }
730 gezelter 1502 }
731    
732     if (j_is_Quadrupole) {
733     // first precalculate some necessary variables
734     cx2 = cx_j * cx_j;
735     cy2 = cy_j * cy_j;
736     cz2 = cz_j * cz_j;
737 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
738 gezelter 1502
739     if (screeningMethod_ == DAMPED) {
740     // assemble the damping variables
741 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
742     //erfcVal = res.first;
743     //derfcVal = res.second;
744     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
745     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
746 gezelter 1502 c1 = erfcVal * riji;
747     c2 = (-derfcVal + c1) * riji;
748     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
749     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
750     } else {
751     c1 = riji;
752     c2 = c1 * riji;
753     c3 = 3.0 * c2 * riji;
754     c4 = 5.0 * c3 * riji * riji;
755     }
756    
757     // precompute variables for convenience
758 gezelter 1554 preSw = *(idat.sw) * pref;
759 gezelter 1502 c2ri = c2 * riji;
760     c3ri = c3 * riji;
761 gezelter 1554 c4rij = c4 * *(idat.rij) ;
762 gezelter 1668 rhatdot2 = two * rhat * c3;
763 gezelter 1502 rhatc4 = rhat * c4rij;
764    
765     // calculate the potential
766     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
767     qyy_j * (cy2*c3 - c2ri) +
768     qzz_j * (cz2*c3 - c2ri) );
769     vterm = pref * pot_term;
770 gezelter 1587 vpair += vterm;
771 gezelter 1554 epot += *(idat.sw) * vterm;
772 gezelter 1502
773     // calculate derivatives for the forces and torques
774    
775 gezelter 1668 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
776     qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
777     qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
778 gezelter 1502
779     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
780     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
781     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
782 gezelter 1723 if (i_is_Fluctuating) {
783     *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
784     }
785    
786 gezelter 1502 }
787     }
788    
789     if (i_is_Dipole) {
790    
791     if (j_is_Charge) {
792     // variables used by all the methods
793 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
794     preSw = *(idat.sw) * pref;
795 gezelter 1502
796 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
797 gezelter 1502
798     ri2 = riji * riji;
799     ri3 = ri2 * riji;
800    
801 gezelter 1554 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
802 gezelter 1587 vpair += vterm;
803 gezelter 1554 epot += *(idat.sw) * vterm;
804 gezelter 1502
805 gezelter 1668 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
806 gezelter 1502
807 gezelter 1554 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
808 gezelter 1587
809     // Even if we excluded this pair from direct interactions,
810     // we still have the reaction-field-mediated charge-dipole
811     // interaction:
812    
813     if (idat.excluded) {
814     indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
815     indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
816     indirect_dVdr += -preSw * preRF2_ * uz_i;
817     indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
818     }
819 gezelter 1502
820     } else {
821    
822     // determine inverse r if we are using split dipoles
823     if (i_is_SplitDipole) {
824 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
825 gezelter 1502 ri = 1.0 / BigR;
826 gezelter 1554 scale = *(idat.rij) * ri;
827 gezelter 1502 } else {
828     ri = riji;
829     scale = 1.0;
830     }
831    
832     sc2 = scale * scale;
833    
834     if (screeningMethod_ == DAMPED) {
835     // assemble the damping variables
836 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
837     //erfcVal = res.first;
838     //derfcVal = res.second;
839     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
840     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
841 gezelter 1502 c1 = erfcVal * ri;
842     c2 = (-derfcVal + c1) * ri;
843     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
844     } else {
845     c1 = ri;
846     c2 = c1 * ri;
847     c3 = 3.0 * c2 * ri;
848     }
849    
850     c2ri = c2 * ri;
851    
852     // calculate the potential
853     pot_term = c2 * scale;
854     vterm = pref * ct_i * pot_term;
855 gezelter 1587 vpair += vterm;
856 gezelter 1554 epot += *(idat.sw) * vterm;
857 gezelter 1502
858     // calculate derivatives for the forces and torques
859     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
860     duduz_i += preSw * pot_term * rhat;
861     }
862 gezelter 1723
863     if (j_is_Fluctuating) {
864     *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
865     }
866    
867 gezelter 1502 }
868    
869     if (j_is_Dipole) {
870     // variables used by all methods
871     ct_ij = dot(uz_i, uz_j);
872    
873 gezelter 1554 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
874     preSw = *(idat.sw) * pref;
875 gezelter 1502
876 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
877 gezelter 1502 ri2 = riji * riji;
878     ri3 = ri2 * riji;
879     ri4 = ri2 * ri2;
880    
881     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
882     preRF2_ * ct_ij );
883 gezelter 1587 vpair += vterm;
884 gezelter 1554 epot += *(idat.sw) * vterm;
885 gezelter 1502
886     a1 = 5.0 * ct_i * ct_j - ct_ij;
887    
888 gezelter 1668 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
889 gezelter 1502
890 gezelter 1668 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
891     duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
892 gezelter 1502
893 gezelter 1587 if (idat.excluded) {
894     indirect_vpair += - pref * preRF2_ * ct_ij;
895     indirect_Pot += - preSw * preRF2_ * ct_ij;
896     indirect_duduz_i += -preSw * preRF2_ * uz_j;
897     indirect_duduz_j += -preSw * preRF2_ * uz_i;
898     }
899    
900 gezelter 1502 } else {
901    
902     if (i_is_SplitDipole) {
903     if (j_is_SplitDipole) {
904 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
905 gezelter 1502 } else {
906 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
907 gezelter 1502 }
908     ri = 1.0 / BigR;
909 gezelter 1554 scale = *(idat.rij) * ri;
910 gezelter 1502 } else {
911     if (j_is_SplitDipole) {
912 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
913 gezelter 1502 ri = 1.0 / BigR;
914 gezelter 1554 scale = *(idat.rij) * ri;
915 gezelter 1502 } else {
916     ri = riji;
917     scale = 1.0;
918     }
919     }
920     if (screeningMethod_ == DAMPED) {
921     // assemble damping variables
922 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
923     //erfcVal = res.first;
924     //derfcVal = res.second;
925     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
926     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
927 gezelter 1502 c1 = erfcVal * ri;
928     c2 = (-derfcVal + c1) * ri;
929     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
930     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
931     } else {
932     c1 = ri;
933     c2 = c1 * ri;
934     c3 = 3.0 * c2 * ri;
935     c4 = 5.0 * c3 * ri * ri;
936     }
937    
938     // precompute variables for convenience
939     sc2 = scale * scale;
940     cti3 = ct_i * sc2 * c3;
941     ctj3 = ct_j * sc2 * c3;
942     ctidotj = ct_i * ct_j * sc2;
943     preSwSc = preSw * scale;
944     c2ri = c2 * ri;
945     c3ri = c3 * ri;
946 gezelter 1554 c4rij = c4 * *(idat.rij) ;
947 gezelter 1502
948     // calculate the potential
949     pot_term = (ct_ij * c2ri - ctidotj * c3);
950     vterm = pref * pot_term;
951 gezelter 1587 vpair += vterm;
952 gezelter 1554 epot += *(idat.sw) * vterm;
953 gezelter 1502
954     // calculate derivatives for the forces and torques
955     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
956     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
957    
958     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
959     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
960     }
961     }
962     }
963    
964     if (i_is_Quadrupole) {
965     if (j_is_Charge) {
966     // precompute some necessary variables
967     cx2 = cx_i * cx_i;
968     cy2 = cy_i * cy_i;
969     cz2 = cz_i * cz_i;
970    
971 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
972 gezelter 1502
973     if (screeningMethod_ == DAMPED) {
974     // assemble the damping variables
975 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
976     //erfcVal = res.first;
977     //derfcVal = res.second;
978     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
979     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
980 gezelter 1502 c1 = erfcVal * riji;
981     c2 = (-derfcVal + c1) * riji;
982     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
983     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
984     } else {
985     c1 = riji;
986     c2 = c1 * riji;
987     c3 = 3.0 * c2 * riji;
988     c4 = 5.0 * c3 * riji * riji;
989     }
990    
991     // precompute some variables for convenience
992 gezelter 1554 preSw = *(idat.sw) * pref;
993 gezelter 1502 c2ri = c2 * riji;
994     c3ri = c3 * riji;
995 gezelter 1554 c4rij = c4 * *(idat.rij) ;
996 gezelter 1668 rhatdot2 = two * rhat * c3;
997 gezelter 1502 rhatc4 = rhat * c4rij;
998    
999     // calculate the potential
1000     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1001     qyy_i * (cy2 * c3 - c2ri) +
1002     qzz_i * (cz2 * c3 - c2ri) );
1003    
1004     vterm = pref * pot_term;
1005 gezelter 1587 vpair += vterm;
1006 gezelter 1554 epot += *(idat.sw) * vterm;
1007 gezelter 1502
1008     // calculate the derivatives for the forces and torques
1009    
1010 gezelter 1668 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1011     qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1012     qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1013 gezelter 1502
1014     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
1015     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
1016     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
1017 gezelter 1723
1018     if (j_is_Fluctuating) {
1019     *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1020     }
1021    
1022 gezelter 1502 }
1023     }
1024    
1025    
1026 gezelter 1587 if (!idat.excluded) {
1027     *(idat.vpair) += vpair;
1028     (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1029     *(idat.f1) += dVdr;
1030    
1031     if (i_is_Dipole || i_is_Quadrupole)
1032     *(idat.t1) -= cross(uz_i, duduz_i);
1033     if (i_is_Quadrupole) {
1034     *(idat.t1) -= cross(ux_i, dudux_i);
1035     *(idat.t1) -= cross(uy_i, duduy_i);
1036     }
1037    
1038     if (j_is_Dipole || j_is_Quadrupole)
1039     *(idat.t2) -= cross(uz_j, duduz_j);
1040     if (j_is_Quadrupole) {
1041     *(idat.t2) -= cross(uz_j, dudux_j);
1042     *(idat.t2) -= cross(uz_j, duduy_j);
1043     }
1044    
1045     } else {
1046    
1047     // only accumulate the forces and torques resulting from the
1048     // indirect reaction field terms.
1049 gezelter 1616
1050 gezelter 1587 *(idat.vpair) += indirect_vpair;
1051     (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1052     *(idat.f1) += indirect_dVdr;
1053    
1054     if (i_is_Dipole)
1055     *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1056     if (j_is_Dipole)
1057     *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1058 gezelter 1502 }
1059    
1060     return;
1061     }
1062    
1063 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1064 gezelter 1502 RealType mu1, preVal, chg1, self;
1065    
1066     if (!initialized_) initialize();
1067 gezelter 1586
1068 gezelter 1545 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1069 gezelter 1502
1070     // logicals
1071     bool i_is_Charge = data.is_Charge;
1072     bool i_is_Dipole = data.is_Dipole;
1073    
1074 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
1075 gezelter 1502 if (i_is_Dipole) {
1076     mu1 = data.dipole_moment;
1077     preVal = pre22_ * preRF2_ * mu1 * mu1;
1078 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1079 gezelter 1502
1080     // The self-correction term adds into the reaction field vector
1081 gezelter 1554 Vector3d uz_i = sdat.eFrame->getColumn(2);
1082 gezelter 1502 Vector3d ei = preVal * uz_i;
1083    
1084     // This looks very wrong. A vector crossed with itself is zero.
1085 gezelter 1554 *(sdat.t) -= cross(uz_i, ei);
1086 gezelter 1502 }
1087 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1088 gezelter 1502 if (i_is_Charge) {
1089 gezelter 1720 chg1 = data.fixedCharge;
1090 gezelter 1502 if (screeningMethod_ == DAMPED) {
1091 gezelter 1554 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1092 gezelter 1502 } else {
1093 gezelter 1554 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1094 gezelter 1502 }
1095 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1096 gezelter 1502 }
1097     }
1098     }
1099 gezelter 1505
1100 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1101 gezelter 1505 // This seems to work moderately well as a default. There's no
1102     // inherent scale for 1/r interactions that we can standardize.
1103     // 12 angstroms seems to be a reasonably good guess for most
1104     // cases.
1105     return 12.0;
1106     }
1107 gezelter 1502 }

Properties

Name Value
svn:eol-style native