ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1721
Committed: Thu May 24 14:17:42 2012 UTC (12 years, 11 months ago) by gezelter
File size: 37322 byte(s)
Log Message:
Fixing some bugs

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1502 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1502
57 gezelter 1718
58 gezelter 1502 namespace OpenMD {
59    
60     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 gezelter 1587 forceField_(NULL), info_(NULL),
62     haveCutoffRadius_(false),
63     haveDampingAlpha_(false),
64     haveDielectric_(false),
65 gezelter 1586 haveElectroSpline_(false)
66 gezelter 1587 {}
67 gezelter 1502
68     void Electrostatic::initialize() {
69 gezelter 1587
70 gezelter 1584 Globals* simParams_ = info_->getSimParams();
71 gezelter 1535
72 gezelter 1528 summationMap_["HARD"] = esm_HARD;
73 gezelter 1616 summationMap_["NONE"] = esm_HARD;
74 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79     summationMap_["EWALD_PME"] = esm_EWALD_PME;
80     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81     screeningMap_["DAMPED"] = DAMPED;
82     screeningMap_["UNDAMPED"] = UNDAMPED;
83    
84 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
85     // all were computed assuming distances are measured in angstroms
86     // Charge-Charge, assuming charges are measured in electrons
87     pre11_ = 332.0637778;
88     // Charge-Dipole, assuming charges are measured in electrons, and
89     // dipoles are measured in debyes
90     pre12_ = 69.13373;
91     // Dipole-Dipole, assuming dipoles are measured in debyes
92     pre22_ = 14.39325;
93     // Charge-Quadrupole, assuming charges are measured in electrons, and
94     // quadrupoles are measured in 10^-26 esu cm^2
95     // This unit is also known affectionately as an esu centi-barn.
96     pre14_ = 69.13373;
97    
98     // conversions for the simulation box dipole moment
99     chargeToC_ = 1.60217733e-19;
100     angstromToM_ = 1.0e-10;
101     debyeToCm_ = 3.33564095198e-30;
102    
103     // number of points for electrostatic splines
104     np_ = 100;
105    
106     // variables to handle different summation methods for long-range
107     // electrostatics:
108 gezelter 1528 summationMethod_ = esm_HARD;
109 gezelter 1502 screeningMethod_ = UNDAMPED;
110     dielectric_ = 1.0;
111     one_third_ = 1.0 / 3.0;
112    
113 gezelter 1528 // check the summation method:
114     if (simParams_->haveElectrostaticSummationMethod()) {
115     string myMethod = simParams_->getElectrostaticSummationMethod();
116     toUpper(myMethod);
117     map<string, ElectrostaticSummationMethod>::iterator i;
118     i = summationMap_.find(myMethod);
119     if ( i != summationMap_.end() ) {
120     summationMethod_ = (*i).second;
121     } else {
122     // throw error
123     sprintf( painCave.errMsg,
124 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 gezelter 1528 "\t(Input file specified %s .)\n"
126 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 gezelter 1528 "\t\"shifted_potential\", \"shifted_force\", or \n"
128     "\t\"reaction_field\".\n", myMethod.c_str() );
129     painCave.isFatal = 1;
130     simError();
131     }
132     } else {
133     // set ElectrostaticSummationMethod to the cutoffMethod:
134     if (simParams_->haveCutoffMethod()){
135     string myMethod = simParams_->getCutoffMethod();
136     toUpper(myMethod);
137     map<string, ElectrostaticSummationMethod>::iterator i;
138     i = summationMap_.find(myMethod);
139     if ( i != summationMap_.end() ) {
140     summationMethod_ = (*i).second;
141     }
142     }
143     }
144    
145     if (summationMethod_ == esm_REACTION_FIELD) {
146     if (!simParams_->haveDielectric()) {
147     // throw warning
148     sprintf( painCave.errMsg,
149     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151     painCave.isFatal = 0;
152     painCave.severity = OPENMD_INFO;
153     simError();
154     } else {
155     dielectric_ = simParams_->getDielectric();
156     }
157     haveDielectric_ = true;
158     }
159    
160     if (simParams_->haveElectrostaticScreeningMethod()) {
161     string myScreen = simParams_->getElectrostaticScreeningMethod();
162     toUpper(myScreen);
163     map<string, ElectrostaticScreeningMethod>::iterator i;
164     i = screeningMap_.find(myScreen);
165     if ( i != screeningMap_.end()) {
166     screeningMethod_ = (*i).second;
167     } else {
168     sprintf( painCave.errMsg,
169     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170     "\t(Input file specified %s .)\n"
171     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172     "or \"damped\".\n", myScreen.c_str() );
173     painCave.isFatal = 1;
174     simError();
175     }
176     }
177    
178     // check to make sure a cutoff value has been set:
179     if (!haveCutoffRadius_) {
180     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181     "Cutoff value!\n");
182     painCave.severity = OPENMD_ERROR;
183     painCave.isFatal = 1;
184     simError();
185     }
186    
187     if (screeningMethod_ == DAMPED) {
188     if (!simParams_->haveDampingAlpha()) {
189     // first set a cutoff dependent alpha value
190     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193    
194     // throw warning
195     sprintf( painCave.errMsg,
196     "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
198     dampingAlpha_, cutoffRadius_);
199     painCave.severity = OPENMD_INFO;
200     painCave.isFatal = 0;
201     simError();
202     } else {
203     dampingAlpha_ = simParams_->getDampingAlpha();
204     }
205     haveDampingAlpha_ = true;
206     }
207    
208 gezelter 1502 // find all of the Electrostatic atom Types:
209     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
210     ForceField::AtomTypeContainer::MapTypeIterator i;
211     AtomType* at;
212 gezelter 1528
213 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
214     at = atomTypes->nextType(i)) {
215    
216     if (at->isElectrostatic())
217     addType(at);
218     }
219    
220    
221 gezelter 1528 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222     rcuti_ = 1.0 / cutoffRadius_;
223 gezelter 1502 rcuti2_ = rcuti_ * rcuti_;
224     rcuti3_ = rcuti2_ * rcuti_;
225     rcuti4_ = rcuti2_ * rcuti2_;
226    
227     if (screeningMethod_ == DAMPED) {
228 gezelter 1528
229 gezelter 1502 alpha2_ = dampingAlpha_ * dampingAlpha_;
230     alpha4_ = alpha2_ * alpha2_;
231     alpha6_ = alpha4_ * alpha2_;
232     alpha8_ = alpha4_ * alpha4_;
233    
234 gezelter 1528 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 gezelter 1502 invRootPi_ = 0.56418958354775628695;
236     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237    
238 gezelter 1528 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239 gezelter 1502 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244     } else {
245     c1c_ = rcuti_;
246     c2c_ = c1c_ * rcuti_;
247     c3c_ = 3.0 * c2c_ * rcuti_;
248     c4c_ = 5.0 * c3c_ * rcuti2_;
249     c5c_ = 7.0 * c4c_ * rcuti2_;
250     c6c_ = 9.0 * c5c_ * rcuti2_;
251     }
252    
253 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
254     preRF_ = (dielectric_ - 1.0) /
255     ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256     preRF2_ = 2.0 * preRF_;
257 gezelter 1502 }
258 gezelter 1528
259 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
260     // have charged atoms longer than the cutoffRadius away from each
261     // other. Splining may not be the best choice here. Direct calls
262     // to erfc might be preferrable.
263    
264     RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265 gezelter 1502 RealType rval;
266     vector<RealType> rvals;
267     vector<RealType> yvals;
268     for (int i = 0; i < np_; i++) {
269     rval = RealType(i) * dx;
270     rvals.push_back(rval);
271     yvals.push_back(erfc(dampingAlpha_ * rval));
272     }
273     erfcSpline_ = new CubicSpline();
274     erfcSpline_->addPoints(rvals, yvals);
275     haveElectroSpline_ = true;
276    
277     initialized_ = true;
278     }
279    
280     void Electrostatic::addType(AtomType* atomType){
281    
282     ElectrostaticAtomData electrostaticAtomData;
283     electrostaticAtomData.is_Charge = false;
284     electrostaticAtomData.is_Dipole = false;
285     electrostaticAtomData.is_SplitDipole = false;
286     electrostaticAtomData.is_Quadrupole = false;
287    
288 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289 gezelter 1502
290 gezelter 1710 if (fca.isFixedCharge()) {
291 gezelter 1502 electrostaticAtomData.is_Charge = true;
292 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
293 gezelter 1502 }
294    
295 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
296     if (ma.isMultipole()) {
297     if (ma.isDipole()) {
298 gezelter 1502 electrostaticAtomData.is_Dipole = true;
299 gezelter 1710 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300 gezelter 1502 }
301 gezelter 1710 if (ma.isSplitDipole()) {
302 gezelter 1502 electrostaticAtomData.is_SplitDipole = true;
303 gezelter 1710 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304 gezelter 1502 }
305 gezelter 1710 if (ma.isQuadrupole()) {
306 gezelter 1505 // Quadrupoles in OpenMD are set as the diagonal elements
307     // of the diagonalized traceless quadrupole moment tensor.
308     // The column vectors of the unitary matrix that diagonalizes
309     // the quadrupole moment tensor become the eFrame (or the
310     // electrostatic version of the body-fixed frame.
311 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
312 gezelter 1710 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313 gezelter 1502 }
314     }
315    
316 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317 gezelter 1502
318 gezelter 1718 if (fqa.isFluctuatingCharge()) {
319 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
320     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321     electrostaticAtomData.hardness = fqa.getHardness();
322     electrostaticAtomData.slaterN = fqa.getSlaterN();
323     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 gezelter 1721 } else {
325     electrostaticAtomData.is_Fluctuating = false;
326 gezelter 1718 }
327    
328 gezelter 1502 pair<map<int,AtomType*>::iterator,bool> ret;
329 gezelter 1710 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
330     atomType) );
331 gezelter 1502 if (ret.second == false) {
332     sprintf( painCave.errMsg,
333     "Electrostatic already had a previous entry with ident %d\n",
334 gezelter 1710 atomType->getIdent() );
335 gezelter 1502 painCave.severity = OPENMD_INFO;
336     painCave.isFatal = 0;
337     simError();
338     }
339    
340 gezelter 1718 ElectrostaticMap[atomType] = electrostaticAtomData;
341    
342     // Now, iterate over all known types and add to the mixing map:
343    
344     map<AtomType*, ElectrostaticAtomData>::iterator it;
345     for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
346     AtomType* atype2 = (*it).first;
347 gezelter 1720 ElectrostaticAtomData eaData2 = (*it).second;
348     if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
349 gezelter 1718
350     RealType a = electrostaticAtomData.slaterZeta;
351 gezelter 1720 RealType b = eaData2.slaterZeta;
352 gezelter 1718 int m = electrostaticAtomData.slaterN;
353 gezelter 1720 int n = eaData2.slaterN;
354 gezelter 1718
355     // Create the spline of the coulombic integral for s-type
356     // Slater orbitals. Add a 2 angstrom safety window to deal
357     // with cutoffGroups that have charged atoms longer than the
358     // cutoffRadius away from each other.
359    
360 gezelter 1720 RealType rval;
361 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
362     vector<RealType> rvals;
363     vector<RealType> J1vals;
364     vector<RealType> J2vals;
365     for (int i = 0; i < np_; i++) {
366     rval = RealType(i) * dr;
367     rvals.push_back(rval);
368     J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
369 gezelter 1721 // may not be necessary if Slater coulomb integral is symmetric
370 gezelter 1718 J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
371     }
372    
373 gezelter 1720 CubicSpline* J1 = new CubicSpline();
374 gezelter 1718 J1->addPoints(rvals, J1vals);
375 gezelter 1720 CubicSpline* J2 = new CubicSpline();
376 gezelter 1718 J2->addPoints(rvals, J2vals);
377    
378     pair<AtomType*, AtomType*> key1, key2;
379     key1 = make_pair(atomType, atype2);
380     key2 = make_pair(atype2, atomType);
381    
382     Jij[key1] = J1;
383     Jij[key2] = J2;
384     }
385     }
386    
387 gezelter 1502 return;
388     }
389    
390 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
391     cutoffRadius_ = rCut;
392 gezelter 1528 rrf_ = cutoffRadius_;
393     haveCutoffRadius_ = true;
394 gezelter 1502 }
395 gezelter 1584
396     void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
397     rt_ = rSwitch;
398     }
399 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
400     summationMethod_ = esm;
401     }
402     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
403     screeningMethod_ = sm;
404     }
405     void Electrostatic::setDampingAlpha( RealType alpha ) {
406     dampingAlpha_ = alpha;
407     haveDampingAlpha_ = true;
408     }
409     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
410     dielectric_ = dielectric;
411     haveDielectric_ = true;
412     }
413    
414 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
415 gezelter 1502
416     // utility variables. Should clean these up and use the Vector3d and
417     // Mat3x3d to replace as many as we can in future versions:
418    
419     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
420     RealType qxx_i, qyy_i, qzz_i;
421     RealType qxx_j, qyy_j, qzz_j;
422     RealType cx_i, cy_i, cz_i;
423     RealType cx_j, cy_j, cz_j;
424     RealType cx2, cy2, cz2;
425     RealType ct_i, ct_j, ct_ij, a1;
426     RealType riji, ri, ri2, ri3, ri4;
427     RealType pref, vterm, epot, dudr;
428 gezelter 1587 RealType vpair(0.0);
429 gezelter 1502 RealType scale, sc2;
430     RealType pot_term, preVal, rfVal;
431     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
432     RealType preSw, preSwSc;
433     RealType c1, c2, c3, c4;
434 gezelter 1587 RealType erfcVal(1.0), derfcVal(0.0);
435 gezelter 1502 RealType BigR;
436 gezelter 1668 RealType two(2.0), three(3.0);
437 gezelter 1502
438     Vector3d Q_i, Q_j;
439     Vector3d ux_i, uy_i, uz_i;
440     Vector3d ux_j, uy_j, uz_j;
441     Vector3d dudux_i, duduy_i, duduz_i;
442     Vector3d dudux_j, duduy_j, duduz_j;
443     Vector3d rhatdot2, rhatc4;
444     Vector3d dVdr;
445    
446 gezelter 1587 // variables for indirect (reaction field) interactions for excluded pairs:
447     RealType indirect_Pot(0.0);
448     RealType indirect_vpair(0.0);
449     Vector3d indirect_dVdr(V3Zero);
450     Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
451    
452 gezelter 1502 pair<RealType, RealType> res;
453    
454 gezelter 1721 // splines for coulomb integrals
455     CubicSpline* J1;
456     CubicSpline* J2;
457    
458 gezelter 1502 if (!initialized_) initialize();
459    
460 gezelter 1571 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462 gezelter 1502
463     // some variables we'll need independent of electrostatic type:
464    
465 gezelter 1554 riji = 1.0 / *(idat.rij) ;
466     Vector3d rhat = *(idat.d) * riji;
467 gezelter 1502
468     // logicals
469    
470     bool i_is_Charge = data1.is_Charge;
471     bool i_is_Dipole = data1.is_Dipole;
472     bool i_is_SplitDipole = data1.is_SplitDipole;
473     bool i_is_Quadrupole = data1.is_Quadrupole;
474 gezelter 1721 bool i_is_Fluctuating = data1.is_Fluctuating;
475 gezelter 1502
476     bool j_is_Charge = data2.is_Charge;
477     bool j_is_Dipole = data2.is_Dipole;
478     bool j_is_SplitDipole = data2.is_SplitDipole;
479     bool j_is_Quadrupole = data2.is_Quadrupole;
480 gezelter 1721 bool j_is_Fluctuating = data2.is_Fluctuating;
481 gezelter 1502
482 gezelter 1587 if (i_is_Charge) {
483 gezelter 1720 q_i = data1.fixedCharge;
484 gezelter 1721
485     if (i_is_Fluctuating) {
486     q_i += *(idat.flucQ1);
487     }
488    
489 gezelter 1587 if (idat.excluded) {
490     *(idat.skippedCharge2) += q_i;
491     }
492     }
493 gezelter 1502
494     if (i_is_Dipole) {
495     mu_i = data1.dipole_moment;
496 gezelter 1554 uz_i = idat.eFrame1->getColumn(2);
497 gezelter 1502
498     ct_i = dot(uz_i, rhat);
499    
500     if (i_is_SplitDipole)
501     d_i = data1.split_dipole_distance;
502    
503     duduz_i = V3Zero;
504     }
505    
506     if (i_is_Quadrupole) {
507     Q_i = data1.quadrupole_moments;
508     qxx_i = Q_i.x();
509     qyy_i = Q_i.y();
510     qzz_i = Q_i.z();
511    
512 gezelter 1554 ux_i = idat.eFrame1->getColumn(0);
513     uy_i = idat.eFrame1->getColumn(1);
514     uz_i = idat.eFrame1->getColumn(2);
515 gezelter 1502
516     cx_i = dot(ux_i, rhat);
517     cy_i = dot(uy_i, rhat);
518     cz_i = dot(uz_i, rhat);
519    
520     dudux_i = V3Zero;
521     duduy_i = V3Zero;
522     duduz_i = V3Zero;
523     }
524    
525 gezelter 1587 if (j_is_Charge) {
526 gezelter 1720 q_j = data2.fixedCharge;
527 gezelter 1721
528     if (i_is_Fluctuating)
529     q_j += *(idat.flucQ2);
530    
531 gezelter 1587 if (idat.excluded) {
532     *(idat.skippedCharge1) += q_j;
533     }
534     }
535 gezelter 1502
536 gezelter 1587
537 gezelter 1502 if (j_is_Dipole) {
538     mu_j = data2.dipole_moment;
539 gezelter 1554 uz_j = idat.eFrame2->getColumn(2);
540 gezelter 1502
541     ct_j = dot(uz_j, rhat);
542    
543     if (j_is_SplitDipole)
544     d_j = data2.split_dipole_distance;
545    
546     duduz_j = V3Zero;
547     }
548    
549     if (j_is_Quadrupole) {
550     Q_j = data2.quadrupole_moments;
551     qxx_j = Q_j.x();
552     qyy_j = Q_j.y();
553     qzz_j = Q_j.z();
554    
555 gezelter 1554 ux_j = idat.eFrame2->getColumn(0);
556     uy_j = idat.eFrame2->getColumn(1);
557     uz_j = idat.eFrame2->getColumn(2);
558 gezelter 1502
559     cx_j = dot(ux_j, rhat);
560     cy_j = dot(uy_j, rhat);
561     cz_j = dot(uz_j, rhat);
562    
563     dudux_j = V3Zero;
564     duduy_j = V3Zero;
565     duduz_j = V3Zero;
566     }
567    
568 gezelter 1721 if (i_is_Fluctuating && j_is_Fluctuating) {
569     J1 = Jij[idat.atypes];
570     J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
571     }
572    
573 gezelter 1502 epot = 0.0;
574     dVdr = V3Zero;
575    
576     if (i_is_Charge) {
577    
578     if (j_is_Charge) {
579     if (screeningMethod_ == DAMPED) {
580     // assemble the damping variables
581 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582     //erfcVal = res.first;
583     //derfcVal = res.second;
584    
585     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
586     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
587    
588 gezelter 1502 c1 = erfcVal * riji;
589     c2 = (-derfcVal + c1) * riji;
590     } else {
591     c1 = riji;
592     c2 = c1 * riji;
593     }
594    
595 gezelter 1554 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
596 gezelter 1502
597 gezelter 1528 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
598 gezelter 1502 vterm = preVal * (c1 - c1c_);
599 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
600 gezelter 1502
601 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
602 gezelter 1554 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
603     dudr = *(idat.sw) * preVal * (c2c_ - c2);
604 gezelter 1502
605 gezelter 1528 } else if (summationMethod_ == esm_REACTION_FIELD) {
606 gezelter 1587 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
607    
608 gezelter 1502 vterm = preVal * ( riji + rfVal );
609 gezelter 1554 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
610 gezelter 1587
611     // if this is an excluded pair, there are still indirect
612     // interactions via the reaction field we must worry about:
613 gezelter 1502
614 gezelter 1587 if (idat.excluded) {
615     indirect_vpair += preVal * rfVal;
616     indirect_Pot += *(idat.sw) * preVal * rfVal;
617 gezelter 1668 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
618 gezelter 1587 }
619    
620 gezelter 1502 } else {
621    
622 gezelter 1587 vterm = preVal * riji * erfcVal;
623 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
624 gezelter 1721
625     }
626 gezelter 1502
627 gezelter 1721
628     if (i_is_Fluctuating) {
629     if (!idat.excluded)
630     *(idat.dVdFQ1) += *(idat.sw) * vterm / q_i;
631     else {
632     res = J1->getValueAndDerivativeAt( *(idat.rij) );
633     *(idat.dVdFQ1) += pre11_ * res.first * q_j;
634     }
635 gezelter 1502 }
636 gezelter 1721 if (j_is_Fluctuating) {
637     if (!idat.excluded)
638     *(idat.dVdFQ2) += *(idat.sw) * vterm / q_j;
639     else {
640     res = J2->getValueAndDerivativeAt( *(idat.rij) );
641     *(idat.dVdFQ2) += pre11_ * res.first * q_i;
642     }
643     }
644 gezelter 1587
645     vpair += vterm;
646 gezelter 1554 epot += *(idat.sw) * vterm;
647 gezelter 1587 dVdr += dudr * rhat;
648 gezelter 1502 }
649    
650     if (j_is_Dipole) {
651     // pref is used by all the possible methods
652 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
653     preSw = *(idat.sw) * pref;
654 gezelter 1502
655 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
656 gezelter 1502 ri2 = riji * riji;
657     ri3 = ri2 * riji;
658    
659 gezelter 1554 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
660 gezelter 1587 vpair += vterm;
661 gezelter 1554 epot += *(idat.sw) * vterm;
662 gezelter 1502
663 gezelter 1668 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
664 gezelter 1554 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
665 gezelter 1502
666 gezelter 1587 // Even if we excluded this pair from direct interactions,
667     // we still have the reaction-field-mediated charge-dipole
668     // interaction:
669    
670     if (idat.excluded) {
671     indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
672     indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
673     indirect_dVdr += preSw * preRF2_ * uz_j;
674     indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
675     }
676    
677 gezelter 1502 } else {
678     // determine the inverse r used if we have split dipoles
679     if (j_is_SplitDipole) {
680 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
681 gezelter 1502 ri = 1.0 / BigR;
682 gezelter 1554 scale = *(idat.rij) * ri;
683 gezelter 1502 } else {
684     ri = riji;
685     scale = 1.0;
686     }
687    
688     sc2 = scale * scale;
689    
690     if (screeningMethod_ == DAMPED) {
691     // assemble the damping variables
692 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
693     //erfcVal = res.first;
694     //derfcVal = res.second;
695     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
696     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
697 gezelter 1502 c1 = erfcVal * ri;
698     c2 = (-derfcVal + c1) * ri;
699     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
700     } else {
701     c1 = ri;
702     c2 = c1 * ri;
703     c3 = 3.0 * c2 * ri;
704     }
705    
706     c2ri = c2 * ri;
707    
708     // calculate the potential
709     pot_term = scale * c2;
710     vterm = -pref * ct_j * pot_term;
711 gezelter 1587 vpair += vterm;
712 gezelter 1554 epot += *(idat.sw) * vterm;
713 gezelter 1502
714     // calculate derivatives for forces and torques
715    
716     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
717     duduz_j += -preSw * pot_term * rhat;
718    
719     }
720     }
721    
722     if (j_is_Quadrupole) {
723     // first precalculate some necessary variables
724     cx2 = cx_j * cx_j;
725     cy2 = cy_j * cy_j;
726     cz2 = cz_j * cz_j;
727 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
728 gezelter 1502
729     if (screeningMethod_ == DAMPED) {
730     // assemble the damping variables
731 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
732     //erfcVal = res.first;
733     //derfcVal = res.second;
734     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
735     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
736 gezelter 1502 c1 = erfcVal * riji;
737     c2 = (-derfcVal + c1) * riji;
738     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
739     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
740     } else {
741     c1 = riji;
742     c2 = c1 * riji;
743     c3 = 3.0 * c2 * riji;
744     c4 = 5.0 * c3 * riji * riji;
745     }
746    
747     // precompute variables for convenience
748 gezelter 1554 preSw = *(idat.sw) * pref;
749 gezelter 1502 c2ri = c2 * riji;
750     c3ri = c3 * riji;
751 gezelter 1554 c4rij = c4 * *(idat.rij) ;
752 gezelter 1668 rhatdot2 = two * rhat * c3;
753 gezelter 1502 rhatc4 = rhat * c4rij;
754    
755     // calculate the potential
756     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
757     qyy_j * (cy2*c3 - c2ri) +
758     qzz_j * (cz2*c3 - c2ri) );
759     vterm = pref * pot_term;
760 gezelter 1587 vpair += vterm;
761 gezelter 1554 epot += *(idat.sw) * vterm;
762 gezelter 1502
763     // calculate derivatives for the forces and torques
764    
765 gezelter 1668 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
766     qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
767     qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
768 gezelter 1502
769     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
770     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
771     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
772     }
773     }
774    
775     if (i_is_Dipole) {
776    
777     if (j_is_Charge) {
778     // variables used by all the methods
779 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
780     preSw = *(idat.sw) * pref;
781 gezelter 1502
782 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
783 gezelter 1502
784     ri2 = riji * riji;
785     ri3 = ri2 * riji;
786    
787 gezelter 1554 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
788 gezelter 1587 vpair += vterm;
789 gezelter 1554 epot += *(idat.sw) * vterm;
790 gezelter 1502
791 gezelter 1668 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
792 gezelter 1502
793 gezelter 1554 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
794 gezelter 1587
795     // Even if we excluded this pair from direct interactions,
796     // we still have the reaction-field-mediated charge-dipole
797     // interaction:
798    
799     if (idat.excluded) {
800     indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
801     indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
802     indirect_dVdr += -preSw * preRF2_ * uz_i;
803     indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
804     }
805 gezelter 1502
806     } else {
807    
808     // determine inverse r if we are using split dipoles
809     if (i_is_SplitDipole) {
810 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
811 gezelter 1502 ri = 1.0 / BigR;
812 gezelter 1554 scale = *(idat.rij) * ri;
813 gezelter 1502 } else {
814     ri = riji;
815     scale = 1.0;
816     }
817    
818     sc2 = scale * scale;
819    
820     if (screeningMethod_ == DAMPED) {
821     // assemble the damping variables
822 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
823     //erfcVal = res.first;
824     //derfcVal = res.second;
825     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
826     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
827 gezelter 1502 c1 = erfcVal * ri;
828     c2 = (-derfcVal + c1) * ri;
829     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
830     } else {
831     c1 = ri;
832     c2 = c1 * ri;
833     c3 = 3.0 * c2 * ri;
834     }
835    
836     c2ri = c2 * ri;
837    
838     // calculate the potential
839     pot_term = c2 * scale;
840     vterm = pref * ct_i * pot_term;
841 gezelter 1587 vpair += vterm;
842 gezelter 1554 epot += *(idat.sw) * vterm;
843 gezelter 1502
844     // calculate derivatives for the forces and torques
845     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
846     duduz_i += preSw * pot_term * rhat;
847     }
848     }
849    
850     if (j_is_Dipole) {
851     // variables used by all methods
852     ct_ij = dot(uz_i, uz_j);
853    
854 gezelter 1554 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
855     preSw = *(idat.sw) * pref;
856 gezelter 1502
857 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
858 gezelter 1502 ri2 = riji * riji;
859     ri3 = ri2 * riji;
860     ri4 = ri2 * ri2;
861    
862     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
863     preRF2_ * ct_ij );
864 gezelter 1587 vpair += vterm;
865 gezelter 1554 epot += *(idat.sw) * vterm;
866 gezelter 1502
867     a1 = 5.0 * ct_i * ct_j - ct_ij;
868    
869 gezelter 1668 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
870 gezelter 1502
871 gezelter 1668 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
872     duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
873 gezelter 1502
874 gezelter 1587 if (idat.excluded) {
875     indirect_vpair += - pref * preRF2_ * ct_ij;
876     indirect_Pot += - preSw * preRF2_ * ct_ij;
877     indirect_duduz_i += -preSw * preRF2_ * uz_j;
878     indirect_duduz_j += -preSw * preRF2_ * uz_i;
879     }
880    
881 gezelter 1502 } else {
882    
883     if (i_is_SplitDipole) {
884     if (j_is_SplitDipole) {
885 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
886 gezelter 1502 } else {
887 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
888 gezelter 1502 }
889     ri = 1.0 / BigR;
890 gezelter 1554 scale = *(idat.rij) * ri;
891 gezelter 1502 } else {
892     if (j_is_SplitDipole) {
893 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
894 gezelter 1502 ri = 1.0 / BigR;
895 gezelter 1554 scale = *(idat.rij) * ri;
896 gezelter 1502 } else {
897     ri = riji;
898     scale = 1.0;
899     }
900     }
901     if (screeningMethod_ == DAMPED) {
902     // assemble damping variables
903 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
904     //erfcVal = res.first;
905     //derfcVal = res.second;
906     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
907     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
908 gezelter 1502 c1 = erfcVal * ri;
909     c2 = (-derfcVal + c1) * ri;
910     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
911     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
912     } else {
913     c1 = ri;
914     c2 = c1 * ri;
915     c3 = 3.0 * c2 * ri;
916     c4 = 5.0 * c3 * ri * ri;
917     }
918    
919     // precompute variables for convenience
920     sc2 = scale * scale;
921     cti3 = ct_i * sc2 * c3;
922     ctj3 = ct_j * sc2 * c3;
923     ctidotj = ct_i * ct_j * sc2;
924     preSwSc = preSw * scale;
925     c2ri = c2 * ri;
926     c3ri = c3 * ri;
927 gezelter 1554 c4rij = c4 * *(idat.rij) ;
928 gezelter 1502
929     // calculate the potential
930     pot_term = (ct_ij * c2ri - ctidotj * c3);
931     vterm = pref * pot_term;
932 gezelter 1587 vpair += vterm;
933 gezelter 1554 epot += *(idat.sw) * vterm;
934 gezelter 1502
935     // calculate derivatives for the forces and torques
936     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
937     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
938    
939     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
940     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
941     }
942     }
943     }
944    
945     if (i_is_Quadrupole) {
946     if (j_is_Charge) {
947     // precompute some necessary variables
948     cx2 = cx_i * cx_i;
949     cy2 = cy_i * cy_i;
950     cz2 = cz_i * cz_i;
951    
952 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
953 gezelter 1502
954     if (screeningMethod_ == DAMPED) {
955     // assemble the damping variables
956 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
957     //erfcVal = res.first;
958     //derfcVal = res.second;
959     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
960     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
961 gezelter 1502 c1 = erfcVal * riji;
962     c2 = (-derfcVal + c1) * riji;
963     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
964     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
965     } else {
966     c1 = riji;
967     c2 = c1 * riji;
968     c3 = 3.0 * c2 * riji;
969     c4 = 5.0 * c3 * riji * riji;
970     }
971    
972     // precompute some variables for convenience
973 gezelter 1554 preSw = *(idat.sw) * pref;
974 gezelter 1502 c2ri = c2 * riji;
975     c3ri = c3 * riji;
976 gezelter 1554 c4rij = c4 * *(idat.rij) ;
977 gezelter 1668 rhatdot2 = two * rhat * c3;
978 gezelter 1502 rhatc4 = rhat * c4rij;
979    
980     // calculate the potential
981     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
982     qyy_i * (cy2 * c3 - c2ri) +
983     qzz_i * (cz2 * c3 - c2ri) );
984    
985     vterm = pref * pot_term;
986 gezelter 1587 vpair += vterm;
987 gezelter 1554 epot += *(idat.sw) * vterm;
988 gezelter 1502
989     // calculate the derivatives for the forces and torques
990    
991 gezelter 1668 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
992     qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
993     qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
994 gezelter 1502
995     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
996     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
997     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
998     }
999     }
1000    
1001    
1002 gezelter 1587 if (!idat.excluded) {
1003     *(idat.vpair) += vpair;
1004     (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1005     *(idat.f1) += dVdr;
1006    
1007     if (i_is_Dipole || i_is_Quadrupole)
1008     *(idat.t1) -= cross(uz_i, duduz_i);
1009     if (i_is_Quadrupole) {
1010     *(idat.t1) -= cross(ux_i, dudux_i);
1011     *(idat.t1) -= cross(uy_i, duduy_i);
1012     }
1013    
1014     if (j_is_Dipole || j_is_Quadrupole)
1015     *(idat.t2) -= cross(uz_j, duduz_j);
1016     if (j_is_Quadrupole) {
1017     *(idat.t2) -= cross(uz_j, dudux_j);
1018     *(idat.t2) -= cross(uz_j, duduy_j);
1019     }
1020    
1021     } else {
1022    
1023     // only accumulate the forces and torques resulting from the
1024     // indirect reaction field terms.
1025 gezelter 1616
1026 gezelter 1587 *(idat.vpair) += indirect_vpair;
1027     (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1028     *(idat.f1) += indirect_dVdr;
1029    
1030     if (i_is_Dipole)
1031     *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1032     if (j_is_Dipole)
1033     *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1034 gezelter 1502 }
1035    
1036 gezelter 1587
1037 gezelter 1502 return;
1038     }
1039    
1040 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1041 gezelter 1502 RealType mu1, preVal, chg1, self;
1042    
1043     if (!initialized_) initialize();
1044 gezelter 1586
1045 gezelter 1545 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1046 gezelter 1502
1047     // logicals
1048     bool i_is_Charge = data.is_Charge;
1049     bool i_is_Dipole = data.is_Dipole;
1050    
1051 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
1052 gezelter 1502 if (i_is_Dipole) {
1053     mu1 = data.dipole_moment;
1054     preVal = pre22_ * preRF2_ * mu1 * mu1;
1055 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1056 gezelter 1502
1057     // The self-correction term adds into the reaction field vector
1058 gezelter 1554 Vector3d uz_i = sdat.eFrame->getColumn(2);
1059 gezelter 1502 Vector3d ei = preVal * uz_i;
1060    
1061     // This looks very wrong. A vector crossed with itself is zero.
1062 gezelter 1554 *(sdat.t) -= cross(uz_i, ei);
1063 gezelter 1502 }
1064 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1065 gezelter 1502 if (i_is_Charge) {
1066 gezelter 1720 chg1 = data.fixedCharge;
1067 gezelter 1502 if (screeningMethod_ == DAMPED) {
1068 gezelter 1554 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1069 gezelter 1502 } else {
1070 gezelter 1554 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1071 gezelter 1502 }
1072 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1073 gezelter 1502 }
1074     }
1075     }
1076 gezelter 1505
1077 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1078 gezelter 1505 // This seems to work moderately well as a default. There's no
1079     // inherent scale for 1/r interactions that we can standardize.
1080     // 12 angstroms seems to be a reasonably good guess for most
1081     // cases.
1082     return 12.0;
1083     }
1084 gezelter 1502 }

Properties

Name Value
svn:eol-style native