ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1720
Committed: Thu May 24 01:48:29 2012 UTC (12 years, 11 months ago) by gezelter
File size: 36140 byte(s)
Log Message:
Fixed a few bugs in that last commit

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1502 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1502
57 gezelter 1718
58 gezelter 1502 namespace OpenMD {
59    
60     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 gezelter 1587 forceField_(NULL), info_(NULL),
62     haveCutoffRadius_(false),
63     haveDampingAlpha_(false),
64     haveDielectric_(false),
65 gezelter 1586 haveElectroSpline_(false)
66 gezelter 1587 {}
67 gezelter 1502
68     void Electrostatic::initialize() {
69 gezelter 1587
70 gezelter 1584 Globals* simParams_ = info_->getSimParams();
71 gezelter 1535
72 gezelter 1528 summationMap_["HARD"] = esm_HARD;
73 gezelter 1616 summationMap_["NONE"] = esm_HARD;
74 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79     summationMap_["EWALD_PME"] = esm_EWALD_PME;
80     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81     screeningMap_["DAMPED"] = DAMPED;
82     screeningMap_["UNDAMPED"] = UNDAMPED;
83    
84 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
85     // all were computed assuming distances are measured in angstroms
86     // Charge-Charge, assuming charges are measured in electrons
87     pre11_ = 332.0637778;
88     // Charge-Dipole, assuming charges are measured in electrons, and
89     // dipoles are measured in debyes
90     pre12_ = 69.13373;
91     // Dipole-Dipole, assuming dipoles are measured in debyes
92     pre22_ = 14.39325;
93     // Charge-Quadrupole, assuming charges are measured in electrons, and
94     // quadrupoles are measured in 10^-26 esu cm^2
95     // This unit is also known affectionately as an esu centi-barn.
96     pre14_ = 69.13373;
97    
98     // conversions for the simulation box dipole moment
99     chargeToC_ = 1.60217733e-19;
100     angstromToM_ = 1.0e-10;
101     debyeToCm_ = 3.33564095198e-30;
102    
103     // number of points for electrostatic splines
104     np_ = 100;
105    
106     // variables to handle different summation methods for long-range
107     // electrostatics:
108 gezelter 1528 summationMethod_ = esm_HARD;
109 gezelter 1502 screeningMethod_ = UNDAMPED;
110     dielectric_ = 1.0;
111     one_third_ = 1.0 / 3.0;
112    
113 gezelter 1528 // check the summation method:
114     if (simParams_->haveElectrostaticSummationMethod()) {
115     string myMethod = simParams_->getElectrostaticSummationMethod();
116     toUpper(myMethod);
117     map<string, ElectrostaticSummationMethod>::iterator i;
118     i = summationMap_.find(myMethod);
119     if ( i != summationMap_.end() ) {
120     summationMethod_ = (*i).second;
121     } else {
122     // throw error
123     sprintf( painCave.errMsg,
124 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 gezelter 1528 "\t(Input file specified %s .)\n"
126 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 gezelter 1528 "\t\"shifted_potential\", \"shifted_force\", or \n"
128     "\t\"reaction_field\".\n", myMethod.c_str() );
129     painCave.isFatal = 1;
130     simError();
131     }
132     } else {
133     // set ElectrostaticSummationMethod to the cutoffMethod:
134     if (simParams_->haveCutoffMethod()){
135     string myMethod = simParams_->getCutoffMethod();
136     toUpper(myMethod);
137     map<string, ElectrostaticSummationMethod>::iterator i;
138     i = summationMap_.find(myMethod);
139     if ( i != summationMap_.end() ) {
140     summationMethod_ = (*i).second;
141     }
142     }
143     }
144    
145     if (summationMethod_ == esm_REACTION_FIELD) {
146     if (!simParams_->haveDielectric()) {
147     // throw warning
148     sprintf( painCave.errMsg,
149     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151     painCave.isFatal = 0;
152     painCave.severity = OPENMD_INFO;
153     simError();
154     } else {
155     dielectric_ = simParams_->getDielectric();
156     }
157     haveDielectric_ = true;
158     }
159    
160     if (simParams_->haveElectrostaticScreeningMethod()) {
161     string myScreen = simParams_->getElectrostaticScreeningMethod();
162     toUpper(myScreen);
163     map<string, ElectrostaticScreeningMethod>::iterator i;
164     i = screeningMap_.find(myScreen);
165     if ( i != screeningMap_.end()) {
166     screeningMethod_ = (*i).second;
167     } else {
168     sprintf( painCave.errMsg,
169     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170     "\t(Input file specified %s .)\n"
171     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172     "or \"damped\".\n", myScreen.c_str() );
173     painCave.isFatal = 1;
174     simError();
175     }
176     }
177    
178     // check to make sure a cutoff value has been set:
179     if (!haveCutoffRadius_) {
180     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181     "Cutoff value!\n");
182     painCave.severity = OPENMD_ERROR;
183     painCave.isFatal = 1;
184     simError();
185     }
186    
187     if (screeningMethod_ == DAMPED) {
188     if (!simParams_->haveDampingAlpha()) {
189     // first set a cutoff dependent alpha value
190     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193    
194     // throw warning
195     sprintf( painCave.errMsg,
196     "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
198     dampingAlpha_, cutoffRadius_);
199     painCave.severity = OPENMD_INFO;
200     painCave.isFatal = 0;
201     simError();
202     } else {
203     dampingAlpha_ = simParams_->getDampingAlpha();
204     }
205     haveDampingAlpha_ = true;
206     }
207    
208 gezelter 1502 // find all of the Electrostatic atom Types:
209     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
210     ForceField::AtomTypeContainer::MapTypeIterator i;
211     AtomType* at;
212 gezelter 1528
213 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
214     at = atomTypes->nextType(i)) {
215    
216     if (at->isElectrostatic())
217     addType(at);
218     }
219    
220    
221 gezelter 1528 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222     rcuti_ = 1.0 / cutoffRadius_;
223 gezelter 1502 rcuti2_ = rcuti_ * rcuti_;
224     rcuti3_ = rcuti2_ * rcuti_;
225     rcuti4_ = rcuti2_ * rcuti2_;
226    
227     if (screeningMethod_ == DAMPED) {
228 gezelter 1528
229 gezelter 1502 alpha2_ = dampingAlpha_ * dampingAlpha_;
230     alpha4_ = alpha2_ * alpha2_;
231     alpha6_ = alpha4_ * alpha2_;
232     alpha8_ = alpha4_ * alpha4_;
233    
234 gezelter 1528 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 gezelter 1502 invRootPi_ = 0.56418958354775628695;
236     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237    
238 gezelter 1528 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239 gezelter 1502 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244     } else {
245     c1c_ = rcuti_;
246     c2c_ = c1c_ * rcuti_;
247     c3c_ = 3.0 * c2c_ * rcuti_;
248     c4c_ = 5.0 * c3c_ * rcuti2_;
249     c5c_ = 7.0 * c4c_ * rcuti2_;
250     c6c_ = 9.0 * c5c_ * rcuti2_;
251     }
252    
253 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
254     preRF_ = (dielectric_ - 1.0) /
255     ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256     preRF2_ = 2.0 * preRF_;
257 gezelter 1502 }
258 gezelter 1528
259 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
260     // have charged atoms longer than the cutoffRadius away from each
261     // other. Splining may not be the best choice here. Direct calls
262     // to erfc might be preferrable.
263    
264     RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265 gezelter 1502 RealType rval;
266     vector<RealType> rvals;
267     vector<RealType> yvals;
268     for (int i = 0; i < np_; i++) {
269     rval = RealType(i) * dx;
270     rvals.push_back(rval);
271     yvals.push_back(erfc(dampingAlpha_ * rval));
272     }
273     erfcSpline_ = new CubicSpline();
274     erfcSpline_->addPoints(rvals, yvals);
275     haveElectroSpline_ = true;
276    
277     initialized_ = true;
278     }
279    
280     void Electrostatic::addType(AtomType* atomType){
281    
282     ElectrostaticAtomData electrostaticAtomData;
283     electrostaticAtomData.is_Charge = false;
284     electrostaticAtomData.is_Dipole = false;
285     electrostaticAtomData.is_SplitDipole = false;
286     electrostaticAtomData.is_Quadrupole = false;
287    
288 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289 gezelter 1502
290 gezelter 1710 if (fca.isFixedCharge()) {
291 gezelter 1502 electrostaticAtomData.is_Charge = true;
292 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
293 gezelter 1502 }
294    
295 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
296     if (ma.isMultipole()) {
297     if (ma.isDipole()) {
298 gezelter 1502 electrostaticAtomData.is_Dipole = true;
299 gezelter 1710 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300 gezelter 1502 }
301 gezelter 1710 if (ma.isSplitDipole()) {
302 gezelter 1502 electrostaticAtomData.is_SplitDipole = true;
303 gezelter 1710 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304 gezelter 1502 }
305 gezelter 1710 if (ma.isQuadrupole()) {
306 gezelter 1505 // Quadrupoles in OpenMD are set as the diagonal elements
307     // of the diagonalized traceless quadrupole moment tensor.
308     // The column vectors of the unitary matrix that diagonalizes
309     // the quadrupole moment tensor become the eFrame (or the
310     // electrostatic version of the body-fixed frame.
311 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
312 gezelter 1710 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313 gezelter 1502 }
314     }
315    
316 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317 gezelter 1502
318 gezelter 1718 if (fqa.isFluctuatingCharge()) {
319 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
320     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321     electrostaticAtomData.hardness = fqa.getHardness();
322     electrostaticAtomData.slaterN = fqa.getSlaterN();
323     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 gezelter 1718 }
325    
326 gezelter 1502 pair<map<int,AtomType*>::iterator,bool> ret;
327 gezelter 1710 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
328     atomType) );
329 gezelter 1502 if (ret.second == false) {
330     sprintf( painCave.errMsg,
331     "Electrostatic already had a previous entry with ident %d\n",
332 gezelter 1710 atomType->getIdent() );
333 gezelter 1502 painCave.severity = OPENMD_INFO;
334     painCave.isFatal = 0;
335     simError();
336     }
337    
338 gezelter 1718 ElectrostaticMap[atomType] = electrostaticAtomData;
339    
340     // Now, iterate over all known types and add to the mixing map:
341    
342     map<AtomType*, ElectrostaticAtomData>::iterator it;
343     for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
344     AtomType* atype2 = (*it).first;
345 gezelter 1720 ElectrostaticAtomData eaData2 = (*it).second;
346     if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
347 gezelter 1718
348     RealType a = electrostaticAtomData.slaterZeta;
349 gezelter 1720 RealType b = eaData2.slaterZeta;
350 gezelter 1718 int m = electrostaticAtomData.slaterN;
351 gezelter 1720 int n = eaData2.slaterN;
352 gezelter 1718
353     // Create the spline of the coulombic integral for s-type
354     // Slater orbitals. Add a 2 angstrom safety window to deal
355     // with cutoffGroups that have charged atoms longer than the
356     // cutoffRadius away from each other.
357    
358 gezelter 1720 RealType rval;
359 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
360     vector<RealType> rvals;
361     vector<RealType> J1vals;
362     vector<RealType> J2vals;
363     for (int i = 0; i < np_; i++) {
364     rval = RealType(i) * dr;
365     rvals.push_back(rval);
366     J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
367     J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
368     }
369    
370 gezelter 1720 CubicSpline* J1 = new CubicSpline();
371 gezelter 1718 J1->addPoints(rvals, J1vals);
372 gezelter 1720 CubicSpline* J2 = new CubicSpline();
373 gezelter 1718 J2->addPoints(rvals, J2vals);
374    
375     pair<AtomType*, AtomType*> key1, key2;
376     key1 = make_pair(atomType, atype2);
377     key2 = make_pair(atype2, atomType);
378    
379     Jij[key1] = J1;
380     Jij[key2] = J2;
381     }
382     }
383    
384 gezelter 1502 return;
385     }
386    
387 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
388     cutoffRadius_ = rCut;
389 gezelter 1528 rrf_ = cutoffRadius_;
390     haveCutoffRadius_ = true;
391 gezelter 1502 }
392 gezelter 1584
393     void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
394     rt_ = rSwitch;
395     }
396 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
397     summationMethod_ = esm;
398     }
399     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
400     screeningMethod_ = sm;
401     }
402     void Electrostatic::setDampingAlpha( RealType alpha ) {
403     dampingAlpha_ = alpha;
404     haveDampingAlpha_ = true;
405     }
406     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
407     dielectric_ = dielectric;
408     haveDielectric_ = true;
409     }
410    
411 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
412 gezelter 1502
413     // utility variables. Should clean these up and use the Vector3d and
414     // Mat3x3d to replace as many as we can in future versions:
415    
416     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
417     RealType qxx_i, qyy_i, qzz_i;
418     RealType qxx_j, qyy_j, qzz_j;
419     RealType cx_i, cy_i, cz_i;
420     RealType cx_j, cy_j, cz_j;
421     RealType cx2, cy2, cz2;
422     RealType ct_i, ct_j, ct_ij, a1;
423     RealType riji, ri, ri2, ri3, ri4;
424     RealType pref, vterm, epot, dudr;
425 gezelter 1587 RealType vpair(0.0);
426 gezelter 1502 RealType scale, sc2;
427     RealType pot_term, preVal, rfVal;
428     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
429     RealType preSw, preSwSc;
430     RealType c1, c2, c3, c4;
431 gezelter 1587 RealType erfcVal(1.0), derfcVal(0.0);
432 gezelter 1502 RealType BigR;
433 gezelter 1668 RealType two(2.0), three(3.0);
434 gezelter 1502
435     Vector3d Q_i, Q_j;
436     Vector3d ux_i, uy_i, uz_i;
437     Vector3d ux_j, uy_j, uz_j;
438     Vector3d dudux_i, duduy_i, duduz_i;
439     Vector3d dudux_j, duduy_j, duduz_j;
440     Vector3d rhatdot2, rhatc4;
441     Vector3d dVdr;
442    
443 gezelter 1587 // variables for indirect (reaction field) interactions for excluded pairs:
444     RealType indirect_Pot(0.0);
445     RealType indirect_vpair(0.0);
446     Vector3d indirect_dVdr(V3Zero);
447     Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
448    
449 gezelter 1502 pair<RealType, RealType> res;
450    
451     if (!initialized_) initialize();
452    
453 gezelter 1571 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
454     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
455 gezelter 1502
456     // some variables we'll need independent of electrostatic type:
457    
458 gezelter 1554 riji = 1.0 / *(idat.rij) ;
459     Vector3d rhat = *(idat.d) * riji;
460 gezelter 1502
461     // logicals
462    
463     bool i_is_Charge = data1.is_Charge;
464     bool i_is_Dipole = data1.is_Dipole;
465     bool i_is_SplitDipole = data1.is_SplitDipole;
466     bool i_is_Quadrupole = data1.is_Quadrupole;
467    
468     bool j_is_Charge = data2.is_Charge;
469     bool j_is_Dipole = data2.is_Dipole;
470     bool j_is_SplitDipole = data2.is_SplitDipole;
471     bool j_is_Quadrupole = data2.is_Quadrupole;
472    
473 gezelter 1587 if (i_is_Charge) {
474 gezelter 1720 q_i = data1.fixedCharge;
475 gezelter 1587 if (idat.excluded) {
476     *(idat.skippedCharge2) += q_i;
477     }
478     }
479 gezelter 1502
480     if (i_is_Dipole) {
481     mu_i = data1.dipole_moment;
482 gezelter 1554 uz_i = idat.eFrame1->getColumn(2);
483 gezelter 1502
484     ct_i = dot(uz_i, rhat);
485    
486     if (i_is_SplitDipole)
487     d_i = data1.split_dipole_distance;
488    
489     duduz_i = V3Zero;
490     }
491    
492     if (i_is_Quadrupole) {
493     Q_i = data1.quadrupole_moments;
494     qxx_i = Q_i.x();
495     qyy_i = Q_i.y();
496     qzz_i = Q_i.z();
497    
498 gezelter 1554 ux_i = idat.eFrame1->getColumn(0);
499     uy_i = idat.eFrame1->getColumn(1);
500     uz_i = idat.eFrame1->getColumn(2);
501 gezelter 1502
502     cx_i = dot(ux_i, rhat);
503     cy_i = dot(uy_i, rhat);
504     cz_i = dot(uz_i, rhat);
505    
506     dudux_i = V3Zero;
507     duduy_i = V3Zero;
508     duduz_i = V3Zero;
509     }
510    
511 gezelter 1587 if (j_is_Charge) {
512 gezelter 1720 q_j = data2.fixedCharge;
513 gezelter 1587 if (idat.excluded) {
514     *(idat.skippedCharge1) += q_j;
515     }
516     }
517 gezelter 1502
518 gezelter 1587
519 gezelter 1502 if (j_is_Dipole) {
520     mu_j = data2.dipole_moment;
521 gezelter 1554 uz_j = idat.eFrame2->getColumn(2);
522 gezelter 1502
523     ct_j = dot(uz_j, rhat);
524    
525     if (j_is_SplitDipole)
526     d_j = data2.split_dipole_distance;
527    
528     duduz_j = V3Zero;
529     }
530    
531     if (j_is_Quadrupole) {
532     Q_j = data2.quadrupole_moments;
533     qxx_j = Q_j.x();
534     qyy_j = Q_j.y();
535     qzz_j = Q_j.z();
536    
537 gezelter 1554 ux_j = idat.eFrame2->getColumn(0);
538     uy_j = idat.eFrame2->getColumn(1);
539     uz_j = idat.eFrame2->getColumn(2);
540 gezelter 1502
541     cx_j = dot(ux_j, rhat);
542     cy_j = dot(uy_j, rhat);
543     cz_j = dot(uz_j, rhat);
544    
545     dudux_j = V3Zero;
546     duduy_j = V3Zero;
547     duduz_j = V3Zero;
548     }
549    
550     epot = 0.0;
551     dVdr = V3Zero;
552    
553     if (i_is_Charge) {
554    
555     if (j_is_Charge) {
556     if (screeningMethod_ == DAMPED) {
557     // assemble the damping variables
558 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
559     //erfcVal = res.first;
560     //derfcVal = res.second;
561    
562     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
563     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
564    
565 gezelter 1502 c1 = erfcVal * riji;
566     c2 = (-derfcVal + c1) * riji;
567     } else {
568     c1 = riji;
569     c2 = c1 * riji;
570     }
571    
572 gezelter 1554 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
573 gezelter 1502
574 gezelter 1528 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
575 gezelter 1502 vterm = preVal * (c1 - c1c_);
576 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
577 gezelter 1502
578 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
579 gezelter 1554 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
580     dudr = *(idat.sw) * preVal * (c2c_ - c2);
581 gezelter 1502
582 gezelter 1528 } else if (summationMethod_ == esm_REACTION_FIELD) {
583 gezelter 1587 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
584    
585 gezelter 1502 vterm = preVal * ( riji + rfVal );
586 gezelter 1554 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
587 gezelter 1587
588     // if this is an excluded pair, there are still indirect
589     // interactions via the reaction field we must worry about:
590 gezelter 1502
591 gezelter 1587 if (idat.excluded) {
592     indirect_vpair += preVal * rfVal;
593     indirect_Pot += *(idat.sw) * preVal * rfVal;
594 gezelter 1668 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
595 gezelter 1587 }
596    
597 gezelter 1502 } else {
598    
599 gezelter 1587 vterm = preVal * riji * erfcVal;
600 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
601 gezelter 1502
602     }
603 gezelter 1587
604     vpair += vterm;
605 gezelter 1554 epot += *(idat.sw) * vterm;
606 gezelter 1587 dVdr += dudr * rhat;
607 gezelter 1502 }
608    
609     if (j_is_Dipole) {
610     // pref is used by all the possible methods
611 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
612     preSw = *(idat.sw) * pref;
613 gezelter 1502
614 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
615 gezelter 1502 ri2 = riji * riji;
616     ri3 = ri2 * riji;
617    
618 gezelter 1554 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
619 gezelter 1587 vpair += vterm;
620 gezelter 1554 epot += *(idat.sw) * vterm;
621 gezelter 1502
622 gezelter 1668 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
623 gezelter 1554 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
624 gezelter 1502
625 gezelter 1587 // Even if we excluded this pair from direct interactions,
626     // we still have the reaction-field-mediated charge-dipole
627     // interaction:
628    
629     if (idat.excluded) {
630     indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
631     indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
632     indirect_dVdr += preSw * preRF2_ * uz_j;
633     indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
634     }
635    
636 gezelter 1502 } else {
637     // determine the inverse r used if we have split dipoles
638     if (j_is_SplitDipole) {
639 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
640 gezelter 1502 ri = 1.0 / BigR;
641 gezelter 1554 scale = *(idat.rij) * ri;
642 gezelter 1502 } else {
643     ri = riji;
644     scale = 1.0;
645     }
646    
647     sc2 = scale * scale;
648    
649     if (screeningMethod_ == DAMPED) {
650     // assemble the damping variables
651 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
652     //erfcVal = res.first;
653     //derfcVal = res.second;
654     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
655     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
656 gezelter 1502 c1 = erfcVal * ri;
657     c2 = (-derfcVal + c1) * ri;
658     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
659     } else {
660     c1 = ri;
661     c2 = c1 * ri;
662     c3 = 3.0 * c2 * ri;
663     }
664    
665     c2ri = c2 * ri;
666    
667     // calculate the potential
668     pot_term = scale * c2;
669     vterm = -pref * ct_j * pot_term;
670 gezelter 1587 vpair += vterm;
671 gezelter 1554 epot += *(idat.sw) * vterm;
672 gezelter 1502
673     // calculate derivatives for forces and torques
674    
675     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
676     duduz_j += -preSw * pot_term * rhat;
677    
678     }
679     }
680    
681     if (j_is_Quadrupole) {
682     // first precalculate some necessary variables
683     cx2 = cx_j * cx_j;
684     cy2 = cy_j * cy_j;
685     cz2 = cz_j * cz_j;
686 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
687 gezelter 1502
688     if (screeningMethod_ == DAMPED) {
689     // assemble the damping variables
690 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
691     //erfcVal = res.first;
692     //derfcVal = res.second;
693     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
694     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
695 gezelter 1502 c1 = erfcVal * riji;
696     c2 = (-derfcVal + c1) * riji;
697     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
698     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
699     } else {
700     c1 = riji;
701     c2 = c1 * riji;
702     c3 = 3.0 * c2 * riji;
703     c4 = 5.0 * c3 * riji * riji;
704     }
705    
706     // precompute variables for convenience
707 gezelter 1554 preSw = *(idat.sw) * pref;
708 gezelter 1502 c2ri = c2 * riji;
709     c3ri = c3 * riji;
710 gezelter 1554 c4rij = c4 * *(idat.rij) ;
711 gezelter 1668 rhatdot2 = two * rhat * c3;
712 gezelter 1502 rhatc4 = rhat * c4rij;
713    
714     // calculate the potential
715     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
716     qyy_j * (cy2*c3 - c2ri) +
717     qzz_j * (cz2*c3 - c2ri) );
718     vterm = pref * pot_term;
719 gezelter 1587 vpair += vterm;
720 gezelter 1554 epot += *(idat.sw) * vterm;
721 gezelter 1502
722     // calculate derivatives for the forces and torques
723    
724 gezelter 1668 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
725     qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
726     qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
727 gezelter 1502
728     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
729     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
730     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
731     }
732     }
733    
734     if (i_is_Dipole) {
735    
736     if (j_is_Charge) {
737     // variables used by all the methods
738 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
739     preSw = *(idat.sw) * pref;
740 gezelter 1502
741 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
742 gezelter 1502
743     ri2 = riji * riji;
744     ri3 = ri2 * riji;
745    
746 gezelter 1554 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
747 gezelter 1587 vpair += vterm;
748 gezelter 1554 epot += *(idat.sw) * vterm;
749 gezelter 1502
750 gezelter 1668 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
751 gezelter 1502
752 gezelter 1554 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
753 gezelter 1587
754     // Even if we excluded this pair from direct interactions,
755     // we still have the reaction-field-mediated charge-dipole
756     // interaction:
757    
758     if (idat.excluded) {
759     indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
760     indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
761     indirect_dVdr += -preSw * preRF2_ * uz_i;
762     indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
763     }
764 gezelter 1502
765     } else {
766    
767     // determine inverse r if we are using split dipoles
768     if (i_is_SplitDipole) {
769 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
770 gezelter 1502 ri = 1.0 / BigR;
771 gezelter 1554 scale = *(idat.rij) * ri;
772 gezelter 1502 } else {
773     ri = riji;
774     scale = 1.0;
775     }
776    
777     sc2 = scale * scale;
778    
779     if (screeningMethod_ == DAMPED) {
780     // assemble the damping variables
781 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
782     //erfcVal = res.first;
783     //derfcVal = res.second;
784     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
785     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
786 gezelter 1502 c1 = erfcVal * ri;
787     c2 = (-derfcVal + c1) * ri;
788     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
789     } else {
790     c1 = ri;
791     c2 = c1 * ri;
792     c3 = 3.0 * c2 * ri;
793     }
794    
795     c2ri = c2 * ri;
796    
797     // calculate the potential
798     pot_term = c2 * scale;
799     vterm = pref * ct_i * pot_term;
800 gezelter 1587 vpair += vterm;
801 gezelter 1554 epot += *(idat.sw) * vterm;
802 gezelter 1502
803     // calculate derivatives for the forces and torques
804     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
805     duduz_i += preSw * pot_term * rhat;
806     }
807     }
808    
809     if (j_is_Dipole) {
810     // variables used by all methods
811     ct_ij = dot(uz_i, uz_j);
812    
813 gezelter 1554 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
814     preSw = *(idat.sw) * pref;
815 gezelter 1502
816 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
817 gezelter 1502 ri2 = riji * riji;
818     ri3 = ri2 * riji;
819     ri4 = ri2 * ri2;
820    
821     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
822     preRF2_ * ct_ij );
823 gezelter 1587 vpair += vterm;
824 gezelter 1554 epot += *(idat.sw) * vterm;
825 gezelter 1502
826     a1 = 5.0 * ct_i * ct_j - ct_ij;
827    
828 gezelter 1668 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
829 gezelter 1502
830 gezelter 1668 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
831     duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
832 gezelter 1502
833 gezelter 1587 if (idat.excluded) {
834     indirect_vpair += - pref * preRF2_ * ct_ij;
835     indirect_Pot += - preSw * preRF2_ * ct_ij;
836     indirect_duduz_i += -preSw * preRF2_ * uz_j;
837     indirect_duduz_j += -preSw * preRF2_ * uz_i;
838     }
839    
840 gezelter 1502 } else {
841    
842     if (i_is_SplitDipole) {
843     if (j_is_SplitDipole) {
844 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
845 gezelter 1502 } else {
846 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
847 gezelter 1502 }
848     ri = 1.0 / BigR;
849 gezelter 1554 scale = *(idat.rij) * ri;
850 gezelter 1502 } else {
851     if (j_is_SplitDipole) {
852 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
853 gezelter 1502 ri = 1.0 / BigR;
854 gezelter 1554 scale = *(idat.rij) * ri;
855 gezelter 1502 } else {
856     ri = riji;
857     scale = 1.0;
858     }
859     }
860     if (screeningMethod_ == DAMPED) {
861     // assemble damping variables
862 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
863     //erfcVal = res.first;
864     //derfcVal = res.second;
865     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
866     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
867 gezelter 1502 c1 = erfcVal * ri;
868     c2 = (-derfcVal + c1) * ri;
869     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
870     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
871     } else {
872     c1 = ri;
873     c2 = c1 * ri;
874     c3 = 3.0 * c2 * ri;
875     c4 = 5.0 * c3 * ri * ri;
876     }
877    
878     // precompute variables for convenience
879     sc2 = scale * scale;
880     cti3 = ct_i * sc2 * c3;
881     ctj3 = ct_j * sc2 * c3;
882     ctidotj = ct_i * ct_j * sc2;
883     preSwSc = preSw * scale;
884     c2ri = c2 * ri;
885     c3ri = c3 * ri;
886 gezelter 1554 c4rij = c4 * *(idat.rij) ;
887 gezelter 1502
888     // calculate the potential
889     pot_term = (ct_ij * c2ri - ctidotj * c3);
890     vterm = pref * pot_term;
891 gezelter 1587 vpair += vterm;
892 gezelter 1554 epot += *(idat.sw) * vterm;
893 gezelter 1502
894     // calculate derivatives for the forces and torques
895     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
896     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
897    
898     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
899     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
900     }
901     }
902     }
903    
904     if (i_is_Quadrupole) {
905     if (j_is_Charge) {
906     // precompute some necessary variables
907     cx2 = cx_i * cx_i;
908     cy2 = cy_i * cy_i;
909     cz2 = cz_i * cz_i;
910    
911 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
912 gezelter 1502
913     if (screeningMethod_ == DAMPED) {
914     // assemble the damping variables
915 gezelter 1616 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
916     //erfcVal = res.first;
917     //derfcVal = res.second;
918     erfcVal = erfc(dampingAlpha_ * *(idat.rij));
919     derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
920 gezelter 1502 c1 = erfcVal * riji;
921     c2 = (-derfcVal + c1) * riji;
922     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
923     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
924     } else {
925     c1 = riji;
926     c2 = c1 * riji;
927     c3 = 3.0 * c2 * riji;
928     c4 = 5.0 * c3 * riji * riji;
929     }
930    
931     // precompute some variables for convenience
932 gezelter 1554 preSw = *(idat.sw) * pref;
933 gezelter 1502 c2ri = c2 * riji;
934     c3ri = c3 * riji;
935 gezelter 1554 c4rij = c4 * *(idat.rij) ;
936 gezelter 1668 rhatdot2 = two * rhat * c3;
937 gezelter 1502 rhatc4 = rhat * c4rij;
938    
939     // calculate the potential
940     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
941     qyy_i * (cy2 * c3 - c2ri) +
942     qzz_i * (cz2 * c3 - c2ri) );
943    
944     vterm = pref * pot_term;
945 gezelter 1587 vpair += vterm;
946 gezelter 1554 epot += *(idat.sw) * vterm;
947 gezelter 1502
948     // calculate the derivatives for the forces and torques
949    
950 gezelter 1668 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
951     qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
952     qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
953 gezelter 1502
954     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
955     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
956     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
957     }
958     }
959    
960    
961 gezelter 1587 if (!idat.excluded) {
962     *(idat.vpair) += vpair;
963     (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
964     *(idat.f1) += dVdr;
965    
966     if (i_is_Dipole || i_is_Quadrupole)
967     *(idat.t1) -= cross(uz_i, duduz_i);
968     if (i_is_Quadrupole) {
969     *(idat.t1) -= cross(ux_i, dudux_i);
970     *(idat.t1) -= cross(uy_i, duduy_i);
971     }
972    
973     if (j_is_Dipole || j_is_Quadrupole)
974     *(idat.t2) -= cross(uz_j, duduz_j);
975     if (j_is_Quadrupole) {
976     *(idat.t2) -= cross(uz_j, dudux_j);
977     *(idat.t2) -= cross(uz_j, duduy_j);
978     }
979    
980     } else {
981    
982     // only accumulate the forces and torques resulting from the
983     // indirect reaction field terms.
984 gezelter 1616
985 gezelter 1587 *(idat.vpair) += indirect_vpair;
986     (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
987     *(idat.f1) += indirect_dVdr;
988    
989     if (i_is_Dipole)
990     *(idat.t1) -= cross(uz_i, indirect_duduz_i);
991     if (j_is_Dipole)
992     *(idat.t2) -= cross(uz_j, indirect_duduz_j);
993 gezelter 1502 }
994    
995 gezelter 1587
996 gezelter 1502 return;
997     }
998    
999 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1000 gezelter 1502 RealType mu1, preVal, chg1, self;
1001    
1002     if (!initialized_) initialize();
1003 gezelter 1586
1004 gezelter 1545 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1005 gezelter 1502
1006     // logicals
1007     bool i_is_Charge = data.is_Charge;
1008     bool i_is_Dipole = data.is_Dipole;
1009    
1010 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
1011 gezelter 1502 if (i_is_Dipole) {
1012     mu1 = data.dipole_moment;
1013     preVal = pre22_ * preRF2_ * mu1 * mu1;
1014 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1015 gezelter 1502
1016     // The self-correction term adds into the reaction field vector
1017 gezelter 1554 Vector3d uz_i = sdat.eFrame->getColumn(2);
1018 gezelter 1502 Vector3d ei = preVal * uz_i;
1019    
1020     // This looks very wrong. A vector crossed with itself is zero.
1021 gezelter 1554 *(sdat.t) -= cross(uz_i, ei);
1022 gezelter 1502 }
1023 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1024 gezelter 1502 if (i_is_Charge) {
1025 gezelter 1720 chg1 = data.fixedCharge;
1026 gezelter 1502 if (screeningMethod_ == DAMPED) {
1027 gezelter 1554 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1028 gezelter 1502 } else {
1029 gezelter 1554 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1030 gezelter 1502 }
1031 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1032 gezelter 1502 }
1033     }
1034     }
1035 gezelter 1505
1036 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1037 gezelter 1505 // This seems to work moderately well as a default. There's no
1038     // inherent scale for 1/r interactions that we can standardize.
1039     // 12 angstroms seems to be a reasonably good guess for most
1040     // cases.
1041     return 12.0;
1042     }
1043 gezelter 1502 }

Properties

Name Value
svn:eol-style native