ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1613
Committed: Thu Aug 18 20:18:19 2011 UTC (13 years, 9 months ago) by gezelter
File size: 36492 byte(s)
Log Message:
Fixed a parallel bug in computing exclude lists.
Added file versioning information in MD files.
Still tracking down cutoff group bugs.

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1502 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44    
45     #include <cmath>
46     #include "nonbonded/Electrostatic.hpp"
47     #include "utils/simError.h"
48     #include "types/NonBondedInteractionType.hpp"
49     #include "types/DirectionalAtomType.hpp"
50 gezelter 1535 #include "io/Globals.hpp"
51 gezelter 1502
52     namespace OpenMD {
53    
54     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55 gezelter 1587 forceField_(NULL), info_(NULL),
56     haveCutoffRadius_(false),
57     haveDampingAlpha_(false),
58     haveDielectric_(false),
59 gezelter 1586 haveElectroSpline_(false)
60 gezelter 1587 {}
61 gezelter 1502
62     void Electrostatic::initialize() {
63 gezelter 1587
64 gezelter 1584 Globals* simParams_ = info_->getSimParams();
65 gezelter 1535
66 gezelter 1528 summationMap_["HARD"] = esm_HARD;
67     summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
68     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
69     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
70     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
71     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
72     summationMap_["EWALD_PME"] = esm_EWALD_PME;
73     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
74     screeningMap_["DAMPED"] = DAMPED;
75     screeningMap_["UNDAMPED"] = UNDAMPED;
76    
77 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
78     // all were computed assuming distances are measured in angstroms
79     // Charge-Charge, assuming charges are measured in electrons
80     pre11_ = 332.0637778;
81     // Charge-Dipole, assuming charges are measured in electrons, and
82     // dipoles are measured in debyes
83     pre12_ = 69.13373;
84     // Dipole-Dipole, assuming dipoles are measured in debyes
85     pre22_ = 14.39325;
86     // Charge-Quadrupole, assuming charges are measured in electrons, and
87     // quadrupoles are measured in 10^-26 esu cm^2
88     // This unit is also known affectionately as an esu centi-barn.
89     pre14_ = 69.13373;
90    
91     // conversions for the simulation box dipole moment
92     chargeToC_ = 1.60217733e-19;
93     angstromToM_ = 1.0e-10;
94     debyeToCm_ = 3.33564095198e-30;
95    
96     // number of points for electrostatic splines
97     np_ = 100;
98    
99     // variables to handle different summation methods for long-range
100     // electrostatics:
101 gezelter 1528 summationMethod_ = esm_HARD;
102 gezelter 1502 screeningMethod_ = UNDAMPED;
103     dielectric_ = 1.0;
104     one_third_ = 1.0 / 3.0;
105    
106 gezelter 1528 // check the summation method:
107     if (simParams_->haveElectrostaticSummationMethod()) {
108     string myMethod = simParams_->getElectrostaticSummationMethod();
109     toUpper(myMethod);
110     map<string, ElectrostaticSummationMethod>::iterator i;
111     i = summationMap_.find(myMethod);
112     if ( i != summationMap_.end() ) {
113     summationMethod_ = (*i).second;
114     } else {
115     // throw error
116     sprintf( painCave.errMsg,
117 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
118 gezelter 1528 "\t(Input file specified %s .)\n"
119     "\telectrostaticSummationMethod must be one of: \"none\",\n"
120     "\t\"shifted_potential\", \"shifted_force\", or \n"
121     "\t\"reaction_field\".\n", myMethod.c_str() );
122     painCave.isFatal = 1;
123     simError();
124     }
125     } else {
126     // set ElectrostaticSummationMethod to the cutoffMethod:
127     if (simParams_->haveCutoffMethod()){
128     string myMethod = simParams_->getCutoffMethod();
129     toUpper(myMethod);
130     map<string, ElectrostaticSummationMethod>::iterator i;
131     i = summationMap_.find(myMethod);
132     if ( i != summationMap_.end() ) {
133     summationMethod_ = (*i).second;
134     }
135     }
136     }
137    
138     if (summationMethod_ == esm_REACTION_FIELD) {
139     if (!simParams_->haveDielectric()) {
140     // throw warning
141     sprintf( painCave.errMsg,
142     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
143     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
144     painCave.isFatal = 0;
145     painCave.severity = OPENMD_INFO;
146     simError();
147     } else {
148     dielectric_ = simParams_->getDielectric();
149     }
150     haveDielectric_ = true;
151     }
152    
153     if (simParams_->haveElectrostaticScreeningMethod()) {
154     string myScreen = simParams_->getElectrostaticScreeningMethod();
155     toUpper(myScreen);
156     map<string, ElectrostaticScreeningMethod>::iterator i;
157     i = screeningMap_.find(myScreen);
158     if ( i != screeningMap_.end()) {
159     screeningMethod_ = (*i).second;
160     } else {
161     sprintf( painCave.errMsg,
162     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
163     "\t(Input file specified %s .)\n"
164     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
165     "or \"damped\".\n", myScreen.c_str() );
166     painCave.isFatal = 1;
167     simError();
168     }
169     }
170    
171     // check to make sure a cutoff value has been set:
172     if (!haveCutoffRadius_) {
173     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
174     "Cutoff value!\n");
175     painCave.severity = OPENMD_ERROR;
176     painCave.isFatal = 1;
177     simError();
178     }
179    
180     if (screeningMethod_ == DAMPED) {
181     if (!simParams_->haveDampingAlpha()) {
182     // first set a cutoff dependent alpha value
183     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
184     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
185     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
186    
187     // throw warning
188     sprintf( painCave.errMsg,
189     "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
190     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
191     dampingAlpha_, cutoffRadius_);
192     painCave.severity = OPENMD_INFO;
193     painCave.isFatal = 0;
194     simError();
195     } else {
196     dampingAlpha_ = simParams_->getDampingAlpha();
197     }
198     haveDampingAlpha_ = true;
199     }
200    
201 gezelter 1502 // find all of the Electrostatic atom Types:
202     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
203     ForceField::AtomTypeContainer::MapTypeIterator i;
204     AtomType* at;
205 gezelter 1528
206 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
207     at = atomTypes->nextType(i)) {
208    
209     if (at->isElectrostatic())
210     addType(at);
211     }
212    
213    
214 gezelter 1528 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
215     rcuti_ = 1.0 / cutoffRadius_;
216 gezelter 1502 rcuti2_ = rcuti_ * rcuti_;
217     rcuti3_ = rcuti2_ * rcuti_;
218     rcuti4_ = rcuti2_ * rcuti2_;
219    
220     if (screeningMethod_ == DAMPED) {
221 gezelter 1528
222 gezelter 1502 alpha2_ = dampingAlpha_ * dampingAlpha_;
223     alpha4_ = alpha2_ * alpha2_;
224     alpha6_ = alpha4_ * alpha2_;
225     alpha8_ = alpha4_ * alpha4_;
226    
227 gezelter 1528 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
228 gezelter 1502 invRootPi_ = 0.56418958354775628695;
229     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
230    
231 gezelter 1528 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
232 gezelter 1502 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
233     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
234     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
235     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
236     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
237     } else {
238     c1c_ = rcuti_;
239     c2c_ = c1c_ * rcuti_;
240     c3c_ = 3.0 * c2c_ * rcuti_;
241     c4c_ = 5.0 * c3c_ * rcuti2_;
242     c5c_ = 7.0 * c4c_ * rcuti2_;
243     c6c_ = 9.0 * c5c_ * rcuti2_;
244     }
245    
246 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
247     preRF_ = (dielectric_ - 1.0) /
248     ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
249     preRF2_ = 2.0 * preRF_;
250 gezelter 1502 }
251 gezelter 1528
252 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
253     // have charged atoms longer than the cutoffRadius away from each
254     // other. Splining may not be the best choice here. Direct calls
255     // to erfc might be preferrable.
256    
257     RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
258 gezelter 1502 RealType rval;
259     vector<RealType> rvals;
260     vector<RealType> yvals;
261     for (int i = 0; i < np_; i++) {
262     rval = RealType(i) * dx;
263     rvals.push_back(rval);
264     yvals.push_back(erfc(dampingAlpha_ * rval));
265     }
266     erfcSpline_ = new CubicSpline();
267     erfcSpline_->addPoints(rvals, yvals);
268     haveElectroSpline_ = true;
269    
270     initialized_ = true;
271     }
272    
273     void Electrostatic::addType(AtomType* atomType){
274    
275     ElectrostaticAtomData electrostaticAtomData;
276     electrostaticAtomData.is_Charge = false;
277     electrostaticAtomData.is_Dipole = false;
278     electrostaticAtomData.is_SplitDipole = false;
279     electrostaticAtomData.is_Quadrupole = false;
280    
281     if (atomType->isCharge()) {
282     GenericData* data = atomType->getPropertyByName("Charge");
283    
284     if (data == NULL) {
285     sprintf( painCave.errMsg, "Electrostatic::addType could not find "
286     "Charge\n"
287     "\tparameters for atomType %s.\n",
288     atomType->getName().c_str());
289     painCave.severity = OPENMD_ERROR;
290     painCave.isFatal = 1;
291     simError();
292     }
293    
294     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
295     if (doubleData == NULL) {
296     sprintf( painCave.errMsg,
297     "Electrostatic::addType could not convert GenericData to "
298     "Charge for\n"
299     "\tatom type %s\n", atomType->getName().c_str());
300     painCave.severity = OPENMD_ERROR;
301     painCave.isFatal = 1;
302     simError();
303     }
304     electrostaticAtomData.is_Charge = true;
305     electrostaticAtomData.charge = doubleData->getData();
306     }
307    
308     if (atomType->isDirectional()) {
309     DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
310    
311     if (daType->isDipole()) {
312     GenericData* data = daType->getPropertyByName("Dipole");
313    
314     if (data == NULL) {
315     sprintf( painCave.errMsg,
316     "Electrostatic::addType could not find Dipole\n"
317     "\tparameters for atomType %s.\n",
318     daType->getName().c_str());
319     painCave.severity = OPENMD_ERROR;
320     painCave.isFatal = 1;
321     simError();
322     }
323    
324     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
325     if (doubleData == NULL) {
326     sprintf( painCave.errMsg,
327     "Electrostatic::addType could not convert GenericData to "
328     "Dipole Moment\n"
329     "\tfor atom type %s\n", daType->getName().c_str());
330     painCave.severity = OPENMD_ERROR;
331     painCave.isFatal = 1;
332     simError();
333     }
334     electrostaticAtomData.is_Dipole = true;
335     electrostaticAtomData.dipole_moment = doubleData->getData();
336     }
337    
338     if (daType->isSplitDipole()) {
339     GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
340    
341     if (data == NULL) {
342     sprintf(painCave.errMsg,
343     "Electrostatic::addType could not find SplitDipoleDistance\n"
344     "\tparameter for atomType %s.\n",
345     daType->getName().c_str());
346     painCave.severity = OPENMD_ERROR;
347     painCave.isFatal = 1;
348     simError();
349     }
350    
351     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
352     if (doubleData == NULL) {
353     sprintf( painCave.errMsg,
354     "Electrostatic::addType could not convert GenericData to "
355     "SplitDipoleDistance for\n"
356     "\tatom type %s\n", daType->getName().c_str());
357     painCave.severity = OPENMD_ERROR;
358     painCave.isFatal = 1;
359     simError();
360     }
361     electrostaticAtomData.is_SplitDipole = true;
362     electrostaticAtomData.split_dipole_distance = doubleData->getData();
363     }
364    
365     if (daType->isQuadrupole()) {
366     GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
367    
368     if (data == NULL) {
369     sprintf( painCave.errMsg,
370     "Electrostatic::addType could not find QuadrupoleMoments\n"
371     "\tparameter for atomType %s.\n",
372     daType->getName().c_str());
373     painCave.severity = OPENMD_ERROR;
374     painCave.isFatal = 1;
375     simError();
376     }
377    
378 gezelter 1505 // Quadrupoles in OpenMD are set as the diagonal elements
379     // of the diagonalized traceless quadrupole moment tensor.
380     // The column vectors of the unitary matrix that diagonalizes
381     // the quadrupole moment tensor become the eFrame (or the
382     // electrostatic version of the body-fixed frame.
383    
384 gezelter 1502 Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
385     if (v3dData == NULL) {
386     sprintf( painCave.errMsg,
387     "Electrostatic::addType could not convert GenericData to "
388     "Quadrupole Moments for\n"
389     "\tatom type %s\n", daType->getName().c_str());
390     painCave.severity = OPENMD_ERROR;
391     painCave.isFatal = 1;
392     simError();
393     }
394     electrostaticAtomData.is_Quadrupole = true;
395     electrostaticAtomData.quadrupole_moments = v3dData->getData();
396     }
397     }
398    
399     AtomTypeProperties atp = atomType->getATP();
400    
401     pair<map<int,AtomType*>::iterator,bool> ret;
402     ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
403     if (ret.second == false) {
404     sprintf( painCave.errMsg,
405     "Electrostatic already had a previous entry with ident %d\n",
406     atp.ident);
407     painCave.severity = OPENMD_INFO;
408     painCave.isFatal = 0;
409     simError();
410     }
411    
412     ElectrostaticMap[atomType] = electrostaticAtomData;
413     return;
414     }
415    
416 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
417     cutoffRadius_ = rCut;
418 gezelter 1528 rrf_ = cutoffRadius_;
419     haveCutoffRadius_ = true;
420 gezelter 1502 }
421 gezelter 1584
422     void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
423     rt_ = rSwitch;
424     }
425 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
426     summationMethod_ = esm;
427     }
428     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
429     screeningMethod_ = sm;
430     }
431     void Electrostatic::setDampingAlpha( RealType alpha ) {
432     dampingAlpha_ = alpha;
433     haveDampingAlpha_ = true;
434     }
435     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
436     dielectric_ = dielectric;
437     haveDielectric_ = true;
438     }
439    
440 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
441 gezelter 1502
442     // utility variables. Should clean these up and use the Vector3d and
443     // Mat3x3d to replace as many as we can in future versions:
444    
445     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
446     RealType qxx_i, qyy_i, qzz_i;
447     RealType qxx_j, qyy_j, qzz_j;
448     RealType cx_i, cy_i, cz_i;
449     RealType cx_j, cy_j, cz_j;
450     RealType cx2, cy2, cz2;
451     RealType ct_i, ct_j, ct_ij, a1;
452     RealType riji, ri, ri2, ri3, ri4;
453     RealType pref, vterm, epot, dudr;
454 gezelter 1587 RealType vpair(0.0);
455 gezelter 1502 RealType scale, sc2;
456     RealType pot_term, preVal, rfVal;
457     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
458     RealType preSw, preSwSc;
459     RealType c1, c2, c3, c4;
460 gezelter 1587 RealType erfcVal(1.0), derfcVal(0.0);
461 gezelter 1502 RealType BigR;
462    
463     Vector3d Q_i, Q_j;
464     Vector3d ux_i, uy_i, uz_i;
465     Vector3d ux_j, uy_j, uz_j;
466     Vector3d dudux_i, duduy_i, duduz_i;
467     Vector3d dudux_j, duduy_j, duduz_j;
468     Vector3d rhatdot2, rhatc4;
469     Vector3d dVdr;
470    
471 gezelter 1587 // variables for indirect (reaction field) interactions for excluded pairs:
472     RealType indirect_Pot(0.0);
473     RealType indirect_vpair(0.0);
474     Vector3d indirect_dVdr(V3Zero);
475     Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
476    
477 gezelter 1502 pair<RealType, RealType> res;
478    
479     if (!initialized_) initialize();
480    
481 gezelter 1571 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
482     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
483 gezelter 1502
484     // some variables we'll need independent of electrostatic type:
485    
486 gezelter 1554 riji = 1.0 / *(idat.rij) ;
487     Vector3d rhat = *(idat.d) * riji;
488 gezelter 1502
489     // logicals
490    
491     bool i_is_Charge = data1.is_Charge;
492     bool i_is_Dipole = data1.is_Dipole;
493     bool i_is_SplitDipole = data1.is_SplitDipole;
494     bool i_is_Quadrupole = data1.is_Quadrupole;
495    
496     bool j_is_Charge = data2.is_Charge;
497     bool j_is_Dipole = data2.is_Dipole;
498     bool j_is_SplitDipole = data2.is_SplitDipole;
499     bool j_is_Quadrupole = data2.is_Quadrupole;
500    
501 gezelter 1587 if (i_is_Charge) {
502 gezelter 1502 q_i = data1.charge;
503 gezelter 1587 if (idat.excluded) {
504     *(idat.skippedCharge2) += q_i;
505     }
506     }
507 gezelter 1502
508     if (i_is_Dipole) {
509     mu_i = data1.dipole_moment;
510 gezelter 1554 uz_i = idat.eFrame1->getColumn(2);
511 gezelter 1502
512     ct_i = dot(uz_i, rhat);
513    
514     if (i_is_SplitDipole)
515     d_i = data1.split_dipole_distance;
516    
517     duduz_i = V3Zero;
518     }
519    
520     if (i_is_Quadrupole) {
521     Q_i = data1.quadrupole_moments;
522     qxx_i = Q_i.x();
523     qyy_i = Q_i.y();
524     qzz_i = Q_i.z();
525    
526 gezelter 1554 ux_i = idat.eFrame1->getColumn(0);
527     uy_i = idat.eFrame1->getColumn(1);
528     uz_i = idat.eFrame1->getColumn(2);
529 gezelter 1502
530     cx_i = dot(ux_i, rhat);
531     cy_i = dot(uy_i, rhat);
532     cz_i = dot(uz_i, rhat);
533    
534     dudux_i = V3Zero;
535     duduy_i = V3Zero;
536     duduz_i = V3Zero;
537     }
538    
539 gezelter 1587 if (j_is_Charge) {
540 gezelter 1502 q_j = data2.charge;
541 gezelter 1587 if (idat.excluded) {
542     *(idat.skippedCharge1) += q_j;
543     }
544     }
545 gezelter 1502
546 gezelter 1587
547 gezelter 1502 if (j_is_Dipole) {
548     mu_j = data2.dipole_moment;
549 gezelter 1554 uz_j = idat.eFrame2->getColumn(2);
550 gezelter 1502
551     ct_j = dot(uz_j, rhat);
552    
553     if (j_is_SplitDipole)
554     d_j = data2.split_dipole_distance;
555    
556     duduz_j = V3Zero;
557     }
558    
559     if (j_is_Quadrupole) {
560     Q_j = data2.quadrupole_moments;
561     qxx_j = Q_j.x();
562     qyy_j = Q_j.y();
563     qzz_j = Q_j.z();
564    
565 gezelter 1554 ux_j = idat.eFrame2->getColumn(0);
566     uy_j = idat.eFrame2->getColumn(1);
567     uz_j = idat.eFrame2->getColumn(2);
568 gezelter 1502
569     cx_j = dot(ux_j, rhat);
570     cy_j = dot(uy_j, rhat);
571     cz_j = dot(uz_j, rhat);
572    
573     dudux_j = V3Zero;
574     duduy_j = V3Zero;
575     duduz_j = V3Zero;
576     }
577    
578     epot = 0.0;
579     dVdr = V3Zero;
580    
581     if (i_is_Charge) {
582    
583     if (j_is_Charge) {
584     if (screeningMethod_ == DAMPED) {
585     // assemble the damping variables
586 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
587 gezelter 1502 erfcVal = res.first;
588     derfcVal = res.second;
589     c1 = erfcVal * riji;
590     c2 = (-derfcVal + c1) * riji;
591     } else {
592     c1 = riji;
593     c2 = c1 * riji;
594     }
595    
596 gezelter 1554 preVal = *(idat.electroMult) * pre11_ * q_i * q_j;
597 gezelter 1502
598 gezelter 1528 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
599 gezelter 1502 vterm = preVal * (c1 - c1c_);
600 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
601 gezelter 1502
602 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
603 gezelter 1554 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
604     dudr = *(idat.sw) * preVal * (c2c_ - c2);
605 gezelter 1502
606 gezelter 1528 } else if (summationMethod_ == esm_REACTION_FIELD) {
607 gezelter 1587 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
608    
609 gezelter 1502 vterm = preVal * ( riji + rfVal );
610 gezelter 1554 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
611 gezelter 1587
612     // if this is an excluded pair, there are still indirect
613     // interactions via the reaction field we must worry about:
614 gezelter 1502
615 gezelter 1587 if (idat.excluded) {
616     indirect_vpair += preVal * rfVal;
617     indirect_Pot += *(idat.sw) * preVal * rfVal;
618     indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat;
619     }
620    
621 gezelter 1502 } else {
622    
623 gezelter 1587 vterm = preVal * riji * erfcVal;
624 gezelter 1554 dudr = - *(idat.sw) * preVal * c2;
625 gezelter 1502
626     }
627 gezelter 1587
628     vpair += vterm;
629 gezelter 1554 epot += *(idat.sw) * vterm;
630 gezelter 1587 dVdr += dudr * rhat;
631 gezelter 1502 }
632    
633     if (j_is_Dipole) {
634     // pref is used by all the possible methods
635 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
636     preSw = *(idat.sw) * pref;
637 gezelter 1502
638 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
639 gezelter 1502 ri2 = riji * riji;
640     ri3 = ri2 * riji;
641    
642 gezelter 1554 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
643 gezelter 1587 vpair += vterm;
644 gezelter 1554 epot += *(idat.sw) * vterm;
645 gezelter 1502
646     dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
647 gezelter 1554 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
648 gezelter 1502
649 gezelter 1587 // Even if we excluded this pair from direct interactions,
650     // we still have the reaction-field-mediated charge-dipole
651     // interaction:
652    
653     if (idat.excluded) {
654     indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
655     indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
656     indirect_dVdr += preSw * preRF2_ * uz_j;
657     indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
658     }
659    
660 gezelter 1502 } else {
661     // determine the inverse r used if we have split dipoles
662     if (j_is_SplitDipole) {
663 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
664 gezelter 1502 ri = 1.0 / BigR;
665 gezelter 1554 scale = *(idat.rij) * ri;
666 gezelter 1502 } else {
667     ri = riji;
668     scale = 1.0;
669     }
670    
671     sc2 = scale * scale;
672    
673     if (screeningMethod_ == DAMPED) {
674     // assemble the damping variables
675 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
676 gezelter 1502 erfcVal = res.first;
677     derfcVal = res.second;
678     c1 = erfcVal * ri;
679     c2 = (-derfcVal + c1) * ri;
680     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
681     } else {
682     c1 = ri;
683     c2 = c1 * ri;
684     c3 = 3.0 * c2 * ri;
685     }
686    
687     c2ri = c2 * ri;
688    
689     // calculate the potential
690     pot_term = scale * c2;
691     vterm = -pref * ct_j * pot_term;
692 gezelter 1587 vpair += vterm;
693 gezelter 1554 epot += *(idat.sw) * vterm;
694 gezelter 1502
695     // calculate derivatives for forces and torques
696    
697     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
698     duduz_j += -preSw * pot_term * rhat;
699    
700     }
701     }
702    
703     if (j_is_Quadrupole) {
704     // first precalculate some necessary variables
705     cx2 = cx_j * cx_j;
706     cy2 = cy_j * cy_j;
707     cz2 = cz_j * cz_j;
708 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
709 gezelter 1502
710     if (screeningMethod_ == DAMPED) {
711     // assemble the damping variables
712 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
713 gezelter 1502 erfcVal = res.first;
714     derfcVal = res.second;
715     c1 = erfcVal * riji;
716     c2 = (-derfcVal + c1) * riji;
717     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
718     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
719     } else {
720     c1 = riji;
721     c2 = c1 * riji;
722     c3 = 3.0 * c2 * riji;
723     c4 = 5.0 * c3 * riji * riji;
724     }
725    
726     // precompute variables for convenience
727 gezelter 1554 preSw = *(idat.sw) * pref;
728 gezelter 1502 c2ri = c2 * riji;
729     c3ri = c3 * riji;
730 gezelter 1554 c4rij = c4 * *(idat.rij) ;
731 gezelter 1502 rhatdot2 = 2.0 * rhat * c3;
732     rhatc4 = rhat * c4rij;
733    
734     // calculate the potential
735     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
736     qyy_j * (cy2*c3 - c2ri) +
737     qzz_j * (cz2*c3 - c2ri) );
738     vterm = pref * pot_term;
739 gezelter 1587 vpair += vterm;
740 gezelter 1554 epot += *(idat.sw) * vterm;
741 gezelter 1502
742     // calculate derivatives for the forces and torques
743    
744     dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
745     qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
746     qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
747    
748     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
749     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
750     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
751     }
752     }
753    
754     if (i_is_Dipole) {
755    
756     if (j_is_Charge) {
757     // variables used by all the methods
758 gezelter 1554 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
759     preSw = *(idat.sw) * pref;
760 gezelter 1502
761 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
762 gezelter 1502
763     ri2 = riji * riji;
764     ri3 = ri2 * riji;
765    
766 gezelter 1554 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
767 gezelter 1587 vpair += vterm;
768 gezelter 1554 epot += *(idat.sw) * vterm;
769 gezelter 1502
770     dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
771    
772 gezelter 1554 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
773 gezelter 1587
774     // Even if we excluded this pair from direct interactions,
775     // we still have the reaction-field-mediated charge-dipole
776     // interaction:
777    
778     if (idat.excluded) {
779     indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
780     indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
781     indirect_dVdr += -preSw * preRF2_ * uz_i;
782     indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
783     }
784 gezelter 1502
785     } else {
786    
787     // determine inverse r if we are using split dipoles
788     if (i_is_SplitDipole) {
789 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
790 gezelter 1502 ri = 1.0 / BigR;
791 gezelter 1554 scale = *(idat.rij) * ri;
792 gezelter 1502 } else {
793     ri = riji;
794     scale = 1.0;
795     }
796    
797     sc2 = scale * scale;
798    
799     if (screeningMethod_ == DAMPED) {
800     // assemble the damping variables
801 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
802 gezelter 1502 erfcVal = res.first;
803     derfcVal = res.second;
804     c1 = erfcVal * ri;
805     c2 = (-derfcVal + c1) * ri;
806     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
807     } else {
808     c1 = ri;
809     c2 = c1 * ri;
810     c3 = 3.0 * c2 * ri;
811     }
812    
813     c2ri = c2 * ri;
814    
815     // calculate the potential
816     pot_term = c2 * scale;
817     vterm = pref * ct_i * pot_term;
818 gezelter 1587 vpair += vterm;
819 gezelter 1554 epot += *(idat.sw) * vterm;
820 gezelter 1502
821     // calculate derivatives for the forces and torques
822     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
823     duduz_i += preSw * pot_term * rhat;
824     }
825     }
826    
827     if (j_is_Dipole) {
828     // variables used by all methods
829     ct_ij = dot(uz_i, uz_j);
830    
831 gezelter 1554 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
832     preSw = *(idat.sw) * pref;
833 gezelter 1502
834 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
835 gezelter 1502 ri2 = riji * riji;
836     ri3 = ri2 * riji;
837     ri4 = ri2 * ri2;
838    
839     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
840     preRF2_ * ct_ij );
841 gezelter 1587 vpair += vterm;
842 gezelter 1554 epot += *(idat.sw) * vterm;
843 gezelter 1502
844     a1 = 5.0 * ct_i * ct_j - ct_ij;
845    
846     dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
847    
848     duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
849     duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
850    
851 gezelter 1587 if (idat.excluded) {
852     indirect_vpair += - pref * preRF2_ * ct_ij;
853     indirect_Pot += - preSw * preRF2_ * ct_ij;
854     indirect_duduz_i += -preSw * preRF2_ * uz_j;
855     indirect_duduz_j += -preSw * preRF2_ * uz_i;
856     }
857    
858 gezelter 1502 } else {
859    
860     if (i_is_SplitDipole) {
861     if (j_is_SplitDipole) {
862 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
863 gezelter 1502 } else {
864 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
865 gezelter 1502 }
866     ri = 1.0 / BigR;
867 gezelter 1554 scale = *(idat.rij) * ri;
868 gezelter 1502 } else {
869     if (j_is_SplitDipole) {
870 gezelter 1554 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
871 gezelter 1502 ri = 1.0 / BigR;
872 gezelter 1554 scale = *(idat.rij) * ri;
873 gezelter 1502 } else {
874     ri = riji;
875     scale = 1.0;
876     }
877     }
878     if (screeningMethod_ == DAMPED) {
879     // assemble damping variables
880 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
881 gezelter 1502 erfcVal = res.first;
882     derfcVal = res.second;
883     c1 = erfcVal * ri;
884     c2 = (-derfcVal + c1) * ri;
885     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
886     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
887     } else {
888     c1 = ri;
889     c2 = c1 * ri;
890     c3 = 3.0 * c2 * ri;
891     c4 = 5.0 * c3 * ri * ri;
892     }
893    
894     // precompute variables for convenience
895     sc2 = scale * scale;
896     cti3 = ct_i * sc2 * c3;
897     ctj3 = ct_j * sc2 * c3;
898     ctidotj = ct_i * ct_j * sc2;
899     preSwSc = preSw * scale;
900     c2ri = c2 * ri;
901     c3ri = c3 * ri;
902 gezelter 1554 c4rij = c4 * *(idat.rij) ;
903 gezelter 1502
904     // calculate the potential
905     pot_term = (ct_ij * c2ri - ctidotj * c3);
906     vterm = pref * pot_term;
907 gezelter 1587 vpair += vterm;
908 gezelter 1554 epot += *(idat.sw) * vterm;
909 gezelter 1502
910     // calculate derivatives for the forces and torques
911     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
912     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
913    
914     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
915     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
916     }
917     }
918     }
919    
920     if (i_is_Quadrupole) {
921     if (j_is_Charge) {
922     // precompute some necessary variables
923     cx2 = cx_i * cx_i;
924     cy2 = cy_i * cy_i;
925     cz2 = cz_i * cz_i;
926    
927 gezelter 1554 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
928 gezelter 1502
929     if (screeningMethod_ == DAMPED) {
930     // assemble the damping variables
931 gezelter 1554 res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
932 gezelter 1502 erfcVal = res.first;
933     derfcVal = res.second;
934     c1 = erfcVal * riji;
935     c2 = (-derfcVal + c1) * riji;
936     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
937     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
938     } else {
939     c1 = riji;
940     c2 = c1 * riji;
941     c3 = 3.0 * c2 * riji;
942     c4 = 5.0 * c3 * riji * riji;
943     }
944    
945     // precompute some variables for convenience
946 gezelter 1554 preSw = *(idat.sw) * pref;
947 gezelter 1502 c2ri = c2 * riji;
948     c3ri = c3 * riji;
949 gezelter 1554 c4rij = c4 * *(idat.rij) ;
950 gezelter 1502 rhatdot2 = 2.0 * rhat * c3;
951     rhatc4 = rhat * c4rij;
952    
953     // calculate the potential
954     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
955     qyy_i * (cy2 * c3 - c2ri) +
956     qzz_i * (cz2 * c3 - c2ri) );
957    
958     vterm = pref * pot_term;
959 gezelter 1587 vpair += vterm;
960 gezelter 1554 epot += *(idat.sw) * vterm;
961 gezelter 1502
962     // calculate the derivatives for the forces and torques
963    
964     dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
965     qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
966     qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
967    
968     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
969     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
970     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
971     }
972     }
973    
974    
975 gezelter 1587 if (!idat.excluded) {
976     *(idat.vpair) += vpair;
977     (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
978     *(idat.f1) += dVdr;
979    
980     if (i_is_Dipole || i_is_Quadrupole)
981     *(idat.t1) -= cross(uz_i, duduz_i);
982     if (i_is_Quadrupole) {
983     *(idat.t1) -= cross(ux_i, dudux_i);
984     *(idat.t1) -= cross(uy_i, duduy_i);
985     }
986    
987     if (j_is_Dipole || j_is_Quadrupole)
988     *(idat.t2) -= cross(uz_j, duduz_j);
989     if (j_is_Quadrupole) {
990     *(idat.t2) -= cross(uz_j, dudux_j);
991     *(idat.t2) -= cross(uz_j, duduy_j);
992     }
993    
994     } else {
995    
996     // only accumulate the forces and torques resulting from the
997     // indirect reaction field terms.
998     *(idat.vpair) += indirect_vpair;
999     (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1000     *(idat.f1) += indirect_dVdr;
1001    
1002     if (i_is_Dipole)
1003     *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1004     if (j_is_Dipole)
1005     *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1006 gezelter 1502 }
1007    
1008 gezelter 1587
1009 gezelter 1502 return;
1010     }
1011    
1012 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1013 gezelter 1502 RealType mu1, preVal, chg1, self;
1014    
1015     if (!initialized_) initialize();
1016 gezelter 1586
1017 gezelter 1545 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1018 gezelter 1502
1019     // logicals
1020     bool i_is_Charge = data.is_Charge;
1021     bool i_is_Dipole = data.is_Dipole;
1022    
1023 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
1024 gezelter 1502 if (i_is_Dipole) {
1025     mu1 = data.dipole_moment;
1026     preVal = pre22_ * preRF2_ * mu1 * mu1;
1027 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1028 gezelter 1502
1029     // The self-correction term adds into the reaction field vector
1030 gezelter 1554 Vector3d uz_i = sdat.eFrame->getColumn(2);
1031 gezelter 1502 Vector3d ei = preVal * uz_i;
1032    
1033     // This looks very wrong. A vector crossed with itself is zero.
1034 gezelter 1554 *(sdat.t) -= cross(uz_i, ei);
1035 gezelter 1502 }
1036 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1037 gezelter 1502 if (i_is_Charge) {
1038     chg1 = data.charge;
1039     if (screeningMethod_ == DAMPED) {
1040 gezelter 1554 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1041 gezelter 1502 } else {
1042 gezelter 1554 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1043 gezelter 1502 }
1044 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1045 gezelter 1502 }
1046     }
1047     }
1048 gezelter 1505
1049 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1050 gezelter 1505 // This seems to work moderately well as a default. There's no
1051     // inherent scale for 1/r interactions that we can standardize.
1052     // 12 angstroms seems to be a reasonably good guess for most
1053     // cases.
1054     return 12.0;
1055     }
1056 gezelter 1502 }

Properties

Name Value
svn:eol-style native