ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1535
Committed: Fri Dec 31 18:31:56 2010 UTC (14 years, 4 months ago) by gezelter
File size: 36372 byte(s)
Log Message:
Well, it compiles and builds, but still has a bus error at runtime.

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44    
45     #include <cmath>
46     #include "nonbonded/Electrostatic.hpp"
47     #include "utils/simError.h"
48     #include "types/NonBondedInteractionType.hpp"
49     #include "types/DirectionalAtomType.hpp"
50 gezelter 1535 #include "io/Globals.hpp"
51 gezelter 1502
52     namespace OpenMD {
53    
54     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55 gezelter 1535 forceField_(NULL) {}
56 gezelter 1502
57     void Electrostatic::initialize() {
58 gezelter 1528
59 gezelter 1535 Globals* simParams_;
60    
61 gezelter 1528 summationMap_["HARD"] = esm_HARD;
62     summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
63     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
64     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
65     summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
66     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
67     summationMap_["EWALD_PME"] = esm_EWALD_PME;
68     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
69     screeningMap_["DAMPED"] = DAMPED;
70     screeningMap_["UNDAMPED"] = UNDAMPED;
71    
72 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
73     // all were computed assuming distances are measured in angstroms
74     // Charge-Charge, assuming charges are measured in electrons
75     pre11_ = 332.0637778;
76     // Charge-Dipole, assuming charges are measured in electrons, and
77     // dipoles are measured in debyes
78     pre12_ = 69.13373;
79     // Dipole-Dipole, assuming dipoles are measured in debyes
80     pre22_ = 14.39325;
81     // Charge-Quadrupole, assuming charges are measured in electrons, and
82     // quadrupoles are measured in 10^-26 esu cm^2
83     // This unit is also known affectionately as an esu centi-barn.
84     pre14_ = 69.13373;
85    
86     // conversions for the simulation box dipole moment
87     chargeToC_ = 1.60217733e-19;
88     angstromToM_ = 1.0e-10;
89     debyeToCm_ = 3.33564095198e-30;
90    
91     // number of points for electrostatic splines
92     np_ = 100;
93    
94     // variables to handle different summation methods for long-range
95     // electrostatics:
96 gezelter 1528 summationMethod_ = esm_HARD;
97 gezelter 1502 screeningMethod_ = UNDAMPED;
98     dielectric_ = 1.0;
99     one_third_ = 1.0 / 3.0;
100 gezelter 1528 haveCutoffRadius_ = false;
101 gezelter 1502 haveDampingAlpha_ = false;
102     haveDielectric_ = false;
103     haveElectroSpline_ = false;
104    
105 gezelter 1528 // check the summation method:
106     if (simParams_->haveElectrostaticSummationMethod()) {
107     string myMethod = simParams_->getElectrostaticSummationMethod();
108     toUpper(myMethod);
109     map<string, ElectrostaticSummationMethod>::iterator i;
110     i = summationMap_.find(myMethod);
111     if ( i != summationMap_.end() ) {
112     summationMethod_ = (*i).second;
113     } else {
114     // throw error
115     sprintf( painCave.errMsg,
116     "SimInfo error: Unknown electrostaticSummationMethod.\n"
117     "\t(Input file specified %s .)\n"
118     "\telectrostaticSummationMethod must be one of: \"none\",\n"
119     "\t\"shifted_potential\", \"shifted_force\", or \n"
120     "\t\"reaction_field\".\n", myMethod.c_str() );
121     painCave.isFatal = 1;
122     simError();
123     }
124     } else {
125     // set ElectrostaticSummationMethod to the cutoffMethod:
126     if (simParams_->haveCutoffMethod()){
127     string myMethod = simParams_->getCutoffMethod();
128     toUpper(myMethod);
129     map<string, ElectrostaticSummationMethod>::iterator i;
130     i = summationMap_.find(myMethod);
131     if ( i != summationMap_.end() ) {
132     summationMethod_ = (*i).second;
133     }
134     }
135     }
136    
137     if (summationMethod_ == esm_REACTION_FIELD) {
138     if (!simParams_->haveDielectric()) {
139     // throw warning
140     sprintf( painCave.errMsg,
141     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
142     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
143     painCave.isFatal = 0;
144     painCave.severity = OPENMD_INFO;
145     simError();
146     } else {
147     dielectric_ = simParams_->getDielectric();
148     }
149     haveDielectric_ = true;
150     }
151    
152     if (simParams_->haveElectrostaticScreeningMethod()) {
153     string myScreen = simParams_->getElectrostaticScreeningMethod();
154     toUpper(myScreen);
155     map<string, ElectrostaticScreeningMethod>::iterator i;
156     i = screeningMap_.find(myScreen);
157     if ( i != screeningMap_.end()) {
158     screeningMethod_ = (*i).second;
159     } else {
160     sprintf( painCave.errMsg,
161     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
162     "\t(Input file specified %s .)\n"
163     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
164     "or \"damped\".\n", myScreen.c_str() );
165     painCave.isFatal = 1;
166     simError();
167     }
168     }
169    
170     // check to make sure a cutoff value has been set:
171     if (!haveCutoffRadius_) {
172     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
173     "Cutoff value!\n");
174     painCave.severity = OPENMD_ERROR;
175     painCave.isFatal = 1;
176     simError();
177     }
178    
179     if (screeningMethod_ == DAMPED) {
180     if (!simParams_->haveDampingAlpha()) {
181     // first set a cutoff dependent alpha value
182     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
183     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
184     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
185    
186     // throw warning
187     sprintf( painCave.errMsg,
188     "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
189     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
190     dampingAlpha_, cutoffRadius_);
191     painCave.severity = OPENMD_INFO;
192     painCave.isFatal = 0;
193     simError();
194     } else {
195     dampingAlpha_ = simParams_->getDampingAlpha();
196     }
197     haveDampingAlpha_ = true;
198     }
199    
200 gezelter 1502 // find all of the Electrostatic atom Types:
201     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
202     ForceField::AtomTypeContainer::MapTypeIterator i;
203     AtomType* at;
204 gezelter 1528
205 gezelter 1502 for (at = atomTypes->beginType(i); at != NULL;
206     at = atomTypes->nextType(i)) {
207    
208     if (at->isElectrostatic())
209     addType(at);
210     }
211    
212    
213 gezelter 1528 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
214     rcuti_ = 1.0 / cutoffRadius_;
215 gezelter 1502 rcuti2_ = rcuti_ * rcuti_;
216     rcuti3_ = rcuti2_ * rcuti_;
217     rcuti4_ = rcuti2_ * rcuti2_;
218    
219     if (screeningMethod_ == DAMPED) {
220 gezelter 1528
221 gezelter 1502 alpha2_ = dampingAlpha_ * dampingAlpha_;
222     alpha4_ = alpha2_ * alpha2_;
223     alpha6_ = alpha4_ * alpha2_;
224     alpha8_ = alpha4_ * alpha4_;
225    
226 gezelter 1528 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
227 gezelter 1502 invRootPi_ = 0.56418958354775628695;
228     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
229    
230 gezelter 1528 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
231 gezelter 1502 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
232     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
233     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
234     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
235     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
236     } else {
237     c1c_ = rcuti_;
238     c2c_ = c1c_ * rcuti_;
239     c3c_ = 3.0 * c2c_ * rcuti_;
240     c4c_ = 5.0 * c3c_ * rcuti2_;
241     c5c_ = 7.0 * c4c_ * rcuti2_;
242     c6c_ = 9.0 * c5c_ * rcuti2_;
243     }
244    
245 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
246     preRF_ = (dielectric_ - 1.0) /
247     ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
248     preRF2_ = 2.0 * preRF_;
249 gezelter 1502 }
250 gezelter 1528
251     RealType dx = cutoffRadius_ / RealType(np_ - 1);
252 gezelter 1502 RealType rval;
253     vector<RealType> rvals;
254     vector<RealType> yvals;
255     for (int i = 0; i < np_; i++) {
256     rval = RealType(i) * dx;
257     rvals.push_back(rval);
258     yvals.push_back(erfc(dampingAlpha_ * rval));
259     }
260     erfcSpline_ = new CubicSpline();
261     erfcSpline_->addPoints(rvals, yvals);
262     haveElectroSpline_ = true;
263    
264     initialized_ = true;
265     }
266    
267     void Electrostatic::addType(AtomType* atomType){
268    
269     ElectrostaticAtomData electrostaticAtomData;
270     electrostaticAtomData.is_Charge = false;
271     electrostaticAtomData.is_Dipole = false;
272     electrostaticAtomData.is_SplitDipole = false;
273     electrostaticAtomData.is_Quadrupole = false;
274    
275     if (atomType->isCharge()) {
276     GenericData* data = atomType->getPropertyByName("Charge");
277    
278     if (data == NULL) {
279     sprintf( painCave.errMsg, "Electrostatic::addType could not find "
280     "Charge\n"
281     "\tparameters for atomType %s.\n",
282     atomType->getName().c_str());
283     painCave.severity = OPENMD_ERROR;
284     painCave.isFatal = 1;
285     simError();
286     }
287    
288     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
289     if (doubleData == NULL) {
290     sprintf( painCave.errMsg,
291     "Electrostatic::addType could not convert GenericData to "
292     "Charge for\n"
293     "\tatom type %s\n", atomType->getName().c_str());
294     painCave.severity = OPENMD_ERROR;
295     painCave.isFatal = 1;
296     simError();
297     }
298     electrostaticAtomData.is_Charge = true;
299     electrostaticAtomData.charge = doubleData->getData();
300     }
301    
302     if (atomType->isDirectional()) {
303     DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
304    
305     if (daType->isDipole()) {
306     GenericData* data = daType->getPropertyByName("Dipole");
307    
308     if (data == NULL) {
309     sprintf( painCave.errMsg,
310     "Electrostatic::addType could not find Dipole\n"
311     "\tparameters for atomType %s.\n",
312     daType->getName().c_str());
313     painCave.severity = OPENMD_ERROR;
314     painCave.isFatal = 1;
315     simError();
316     }
317    
318     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
319     if (doubleData == NULL) {
320     sprintf( painCave.errMsg,
321     "Electrostatic::addType could not convert GenericData to "
322     "Dipole Moment\n"
323     "\tfor atom type %s\n", daType->getName().c_str());
324     painCave.severity = OPENMD_ERROR;
325     painCave.isFatal = 1;
326     simError();
327     }
328     electrostaticAtomData.is_Dipole = true;
329     electrostaticAtomData.dipole_moment = doubleData->getData();
330     }
331    
332     if (daType->isSplitDipole()) {
333     GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
334    
335     if (data == NULL) {
336     sprintf(painCave.errMsg,
337     "Electrostatic::addType could not find SplitDipoleDistance\n"
338     "\tparameter for atomType %s.\n",
339     daType->getName().c_str());
340     painCave.severity = OPENMD_ERROR;
341     painCave.isFatal = 1;
342     simError();
343     }
344    
345     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
346     if (doubleData == NULL) {
347     sprintf( painCave.errMsg,
348     "Electrostatic::addType could not convert GenericData to "
349     "SplitDipoleDistance for\n"
350     "\tatom type %s\n", daType->getName().c_str());
351     painCave.severity = OPENMD_ERROR;
352     painCave.isFatal = 1;
353     simError();
354     }
355     electrostaticAtomData.is_SplitDipole = true;
356     electrostaticAtomData.split_dipole_distance = doubleData->getData();
357     }
358    
359     if (daType->isQuadrupole()) {
360     GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
361    
362     if (data == NULL) {
363     sprintf( painCave.errMsg,
364     "Electrostatic::addType could not find QuadrupoleMoments\n"
365     "\tparameter for atomType %s.\n",
366     daType->getName().c_str());
367     painCave.severity = OPENMD_ERROR;
368     painCave.isFatal = 1;
369     simError();
370     }
371    
372 gezelter 1505 // Quadrupoles in OpenMD are set as the diagonal elements
373     // of the diagonalized traceless quadrupole moment tensor.
374     // The column vectors of the unitary matrix that diagonalizes
375     // the quadrupole moment tensor become the eFrame (or the
376     // electrostatic version of the body-fixed frame.
377    
378 gezelter 1502 Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
379     if (v3dData == NULL) {
380     sprintf( painCave.errMsg,
381     "Electrostatic::addType could not convert GenericData to "
382     "Quadrupole Moments for\n"
383     "\tatom type %s\n", daType->getName().c_str());
384     painCave.severity = OPENMD_ERROR;
385     painCave.isFatal = 1;
386     simError();
387     }
388     electrostaticAtomData.is_Quadrupole = true;
389     electrostaticAtomData.quadrupole_moments = v3dData->getData();
390     }
391     }
392    
393     AtomTypeProperties atp = atomType->getATP();
394    
395     pair<map<int,AtomType*>::iterator,bool> ret;
396     ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
397     if (ret.second == false) {
398     sprintf( painCave.errMsg,
399     "Electrostatic already had a previous entry with ident %d\n",
400     atp.ident);
401     painCave.severity = OPENMD_INFO;
402     painCave.isFatal = 0;
403     simError();
404     }
405    
406     ElectrostaticMap[atomType] = electrostaticAtomData;
407     return;
408     }
409    
410     void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
411     RealType theRSW ) {
412 gezelter 1528 cutoffRadius_ = theECR;
413     rrf_ = cutoffRadius_;
414 gezelter 1502 rt_ = theRSW;
415 gezelter 1528 haveCutoffRadius_ = true;
416 gezelter 1502 }
417     void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
418     summationMethod_ = esm;
419     }
420     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
421     screeningMethod_ = sm;
422     }
423     void Electrostatic::setDampingAlpha( RealType alpha ) {
424     dampingAlpha_ = alpha;
425     haveDampingAlpha_ = true;
426     }
427     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
428     dielectric_ = dielectric;
429     haveDielectric_ = true;
430     }
431    
432     void Electrostatic::calcForce(InteractionData idat) {
433    
434     // utility variables. Should clean these up and use the Vector3d and
435     // Mat3x3d to replace as many as we can in future versions:
436    
437     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
438     RealType qxx_i, qyy_i, qzz_i;
439     RealType qxx_j, qyy_j, qzz_j;
440     RealType cx_i, cy_i, cz_i;
441     RealType cx_j, cy_j, cz_j;
442     RealType cx2, cy2, cz2;
443     RealType ct_i, ct_j, ct_ij, a1;
444     RealType riji, ri, ri2, ri3, ri4;
445     RealType pref, vterm, epot, dudr;
446     RealType scale, sc2;
447     RealType pot_term, preVal, rfVal;
448     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
449     RealType preSw, preSwSc;
450     RealType c1, c2, c3, c4;
451     RealType erfcVal, derfcVal;
452     RealType BigR;
453    
454     Vector3d Q_i, Q_j;
455     Vector3d ux_i, uy_i, uz_i;
456     Vector3d ux_j, uy_j, uz_j;
457     Vector3d dudux_i, duduy_i, duduz_i;
458     Vector3d dudux_j, duduy_j, duduz_j;
459     Vector3d rhatdot2, rhatc4;
460     Vector3d dVdr;
461    
462     pair<RealType, RealType> res;
463    
464     if (!initialized_) initialize();
465    
466     ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
467     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
468    
469     // some variables we'll need independent of electrostatic type:
470    
471     riji = 1.0 / idat.rij;
472     Vector3d rhat = idat.d * riji;
473    
474     // logicals
475    
476     bool i_is_Charge = data1.is_Charge;
477     bool i_is_Dipole = data1.is_Dipole;
478     bool i_is_SplitDipole = data1.is_SplitDipole;
479     bool i_is_Quadrupole = data1.is_Quadrupole;
480    
481     bool j_is_Charge = data2.is_Charge;
482     bool j_is_Dipole = data2.is_Dipole;
483     bool j_is_SplitDipole = data2.is_SplitDipole;
484     bool j_is_Quadrupole = data2.is_Quadrupole;
485    
486     if (i_is_Charge)
487     q_i = data1.charge;
488    
489     if (i_is_Dipole) {
490     mu_i = data1.dipole_moment;
491     uz_i = idat.eFrame1.getColumn(2);
492    
493     ct_i = dot(uz_i, rhat);
494    
495     if (i_is_SplitDipole)
496     d_i = data1.split_dipole_distance;
497    
498     duduz_i = V3Zero;
499     }
500    
501     if (i_is_Quadrupole) {
502     Q_i = data1.quadrupole_moments;
503     qxx_i = Q_i.x();
504     qyy_i = Q_i.y();
505     qzz_i = Q_i.z();
506    
507     ux_i = idat.eFrame1.getColumn(0);
508     uy_i = idat.eFrame1.getColumn(1);
509     uz_i = idat.eFrame1.getColumn(2);
510    
511     cx_i = dot(ux_i, rhat);
512     cy_i = dot(uy_i, rhat);
513     cz_i = dot(uz_i, rhat);
514    
515     dudux_i = V3Zero;
516     duduy_i = V3Zero;
517     duduz_i = V3Zero;
518     }
519    
520     if (j_is_Charge)
521     q_j = data2.charge;
522    
523     if (j_is_Dipole) {
524     mu_j = data2.dipole_moment;
525     uz_j = idat.eFrame2.getColumn(2);
526    
527     ct_j = dot(uz_j, rhat);
528    
529     if (j_is_SplitDipole)
530     d_j = data2.split_dipole_distance;
531    
532     duduz_j = V3Zero;
533     }
534    
535     if (j_is_Quadrupole) {
536     Q_j = data2.quadrupole_moments;
537     qxx_j = Q_j.x();
538     qyy_j = Q_j.y();
539     qzz_j = Q_j.z();
540    
541     ux_j = idat.eFrame2.getColumn(0);
542     uy_j = idat.eFrame2.getColumn(1);
543     uz_j = idat.eFrame2.getColumn(2);
544    
545     cx_j = dot(ux_j, rhat);
546     cy_j = dot(uy_j, rhat);
547     cz_j = dot(uz_j, rhat);
548    
549     dudux_j = V3Zero;
550     duduy_j = V3Zero;
551     duduz_j = V3Zero;
552     }
553    
554     epot = 0.0;
555     dVdr = V3Zero;
556    
557     if (i_is_Charge) {
558    
559     if (j_is_Charge) {
560     if (screeningMethod_ == DAMPED) {
561     // assemble the damping variables
562     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
563     erfcVal = res.first;
564     derfcVal = res.second;
565     c1 = erfcVal * riji;
566     c2 = (-derfcVal + c1) * riji;
567     } else {
568     c1 = riji;
569     c2 = c1 * riji;
570     }
571    
572     preVal = idat.electroMult * pre11_ * q_i * q_j;
573    
574 gezelter 1528 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
575 gezelter 1502 vterm = preVal * (c1 - c1c_);
576     dudr = -idat.sw * preVal * c2;
577    
578 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
579     vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - cutoffRadius_) );
580 gezelter 1502 dudr = idat.sw * preVal * (c2c_ - c2);
581    
582 gezelter 1528 } else if (summationMethod_ == esm_REACTION_FIELD) {
583 gezelter 1502 rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
584     vterm = preVal * ( riji + rfVal );
585     dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
586    
587     } else {
588     vterm = preVal * riji * erfcVal;
589    
590     dudr = - idat.sw * preVal * c2;
591    
592     }
593    
594     idat.vpair += vterm;
595     epot += idat.sw * vterm;
596    
597     dVdr += dudr * rhat;
598     }
599    
600     if (j_is_Dipole) {
601     // pref is used by all the possible methods
602     pref = idat.electroMult * pre12_ * q_i * mu_j;
603     preSw = idat.sw * pref;
604    
605 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
606 gezelter 1502 ri2 = riji * riji;
607     ri3 = ri2 * riji;
608    
609     vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
610     idat.vpair += vterm;
611     epot += idat.sw * vterm;
612    
613     dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
614     duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);
615    
616     } else {
617     // determine the inverse r used if we have split dipoles
618     if (j_is_SplitDipole) {
619     BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
620     ri = 1.0 / BigR;
621     scale = idat.rij * ri;
622     } else {
623     ri = riji;
624     scale = 1.0;
625     }
626    
627     sc2 = scale * scale;
628    
629     if (screeningMethod_ == DAMPED) {
630     // assemble the damping variables
631     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
632     erfcVal = res.first;
633     derfcVal = res.second;
634     c1 = erfcVal * ri;
635     c2 = (-derfcVal + c1) * ri;
636     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
637     } else {
638     c1 = ri;
639     c2 = c1 * ri;
640     c3 = 3.0 * c2 * ri;
641     }
642    
643     c2ri = c2 * ri;
644    
645     // calculate the potential
646     pot_term = scale * c2;
647     vterm = -pref * ct_j * pot_term;
648     idat.vpair += vterm;
649     epot += idat.sw * vterm;
650    
651     // calculate derivatives for forces and torques
652    
653     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
654     duduz_j += -preSw * pot_term * rhat;
655    
656     }
657     }
658    
659     if (j_is_Quadrupole) {
660     // first precalculate some necessary variables
661     cx2 = cx_j * cx_j;
662     cy2 = cy_j * cy_j;
663     cz2 = cz_j * cz_j;
664     pref = idat.electroMult * pre14_ * q_i * one_third_;
665    
666     if (screeningMethod_ == DAMPED) {
667     // assemble the damping variables
668     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
669     erfcVal = res.first;
670     derfcVal = res.second;
671     c1 = erfcVal * riji;
672     c2 = (-derfcVal + c1) * riji;
673     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
674     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
675     } else {
676     c1 = riji;
677     c2 = c1 * riji;
678     c3 = 3.0 * c2 * riji;
679     c4 = 5.0 * c3 * riji * riji;
680     }
681    
682     // precompute variables for convenience
683     preSw = idat.sw * pref;
684     c2ri = c2 * riji;
685     c3ri = c3 * riji;
686     c4rij = c4 * idat.rij;
687     rhatdot2 = 2.0 * rhat * c3;
688     rhatc4 = rhat * c4rij;
689    
690     // calculate the potential
691     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
692     qyy_j * (cy2*c3 - c2ri) +
693     qzz_j * (cz2*c3 - c2ri) );
694     vterm = pref * pot_term;
695     idat.vpair += vterm;
696     epot += idat.sw * vterm;
697    
698     // calculate derivatives for the forces and torques
699    
700     dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
701     qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
702     qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
703    
704     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
705     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
706     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
707     }
708     }
709    
710     if (i_is_Dipole) {
711    
712     if (j_is_Charge) {
713     // variables used by all the methods
714     pref = idat.electroMult * pre12_ * q_j * mu_i;
715     preSw = idat.sw * pref;
716    
717 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
718 gezelter 1502
719     ri2 = riji * riji;
720     ri3 = ri2 * riji;
721    
722     vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
723     idat.vpair += vterm;
724     epot += idat.sw * vterm;
725    
726     dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
727    
728     duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
729    
730     } else {
731    
732     // determine inverse r if we are using split dipoles
733     if (i_is_SplitDipole) {
734     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
735     ri = 1.0 / BigR;
736     scale = idat.rij * ri;
737     } else {
738     ri = riji;
739     scale = 1.0;
740     }
741    
742     sc2 = scale * scale;
743    
744     if (screeningMethod_ == DAMPED) {
745     // assemble the damping variables
746     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
747     erfcVal = res.first;
748     derfcVal = res.second;
749     c1 = erfcVal * ri;
750     c2 = (-derfcVal + c1) * ri;
751     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
752     } else {
753     c1 = ri;
754     c2 = c1 * ri;
755     c3 = 3.0 * c2 * ri;
756     }
757    
758     c2ri = c2 * ri;
759    
760     // calculate the potential
761     pot_term = c2 * scale;
762     vterm = pref * ct_i * pot_term;
763     idat.vpair += vterm;
764     epot += idat.sw * vterm;
765    
766     // calculate derivatives for the forces and torques
767     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
768     duduz_i += preSw * pot_term * rhat;
769     }
770     }
771    
772     if (j_is_Dipole) {
773     // variables used by all methods
774     ct_ij = dot(uz_i, uz_j);
775    
776     pref = idat.electroMult * pre22_ * mu_i * mu_j;
777     preSw = idat.sw * pref;
778    
779 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
780 gezelter 1502 ri2 = riji * riji;
781     ri3 = ri2 * riji;
782     ri4 = ri2 * ri2;
783    
784     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
785     preRF2_ * ct_ij );
786     idat.vpair += vterm;
787     epot += idat.sw * vterm;
788    
789     a1 = 5.0 * ct_i * ct_j - ct_ij;
790    
791     dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
792    
793     duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
794     duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
795    
796     } else {
797    
798     if (i_is_SplitDipole) {
799     if (j_is_SplitDipole) {
800     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
801     } else {
802     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
803     }
804     ri = 1.0 / BigR;
805     scale = idat.rij * ri;
806     } else {
807     if (j_is_SplitDipole) {
808     BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
809     ri = 1.0 / BigR;
810     scale = idat.rij * ri;
811     } else {
812     ri = riji;
813     scale = 1.0;
814     }
815     }
816     if (screeningMethod_ == DAMPED) {
817     // assemble damping variables
818     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
819     erfcVal = res.first;
820     derfcVal = res.second;
821     c1 = erfcVal * ri;
822     c2 = (-derfcVal + c1) * ri;
823     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
824     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
825     } else {
826     c1 = ri;
827     c2 = c1 * ri;
828     c3 = 3.0 * c2 * ri;
829     c4 = 5.0 * c3 * ri * ri;
830     }
831    
832     // precompute variables for convenience
833     sc2 = scale * scale;
834     cti3 = ct_i * sc2 * c3;
835     ctj3 = ct_j * sc2 * c3;
836     ctidotj = ct_i * ct_j * sc2;
837     preSwSc = preSw * scale;
838     c2ri = c2 * ri;
839     c3ri = c3 * ri;
840     c4rij = c4 * idat.rij;
841    
842     // calculate the potential
843     pot_term = (ct_ij * c2ri - ctidotj * c3);
844     vterm = pref * pot_term;
845     idat.vpair += vterm;
846     epot += idat.sw * vterm;
847    
848     // calculate derivatives for the forces and torques
849     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
850     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
851    
852     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
853     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
854     }
855     }
856     }
857    
858     if (i_is_Quadrupole) {
859     if (j_is_Charge) {
860     // precompute some necessary variables
861     cx2 = cx_i * cx_i;
862     cy2 = cy_i * cy_i;
863     cz2 = cz_i * cz_i;
864    
865     pref = idat.electroMult * pre14_ * q_j * one_third_;
866    
867     if (screeningMethod_ == DAMPED) {
868     // assemble the damping variables
869     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
870     erfcVal = res.first;
871     derfcVal = res.second;
872     c1 = erfcVal * riji;
873     c2 = (-derfcVal + c1) * riji;
874     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
875     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
876     } else {
877     c1 = riji;
878     c2 = c1 * riji;
879     c3 = 3.0 * c2 * riji;
880     c4 = 5.0 * c3 * riji * riji;
881     }
882    
883     // precompute some variables for convenience
884     preSw = idat.sw * pref;
885     c2ri = c2 * riji;
886     c3ri = c3 * riji;
887     c4rij = c4 * idat.rij;
888     rhatdot2 = 2.0 * rhat * c3;
889     rhatc4 = rhat * c4rij;
890    
891     // calculate the potential
892     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
893     qyy_i * (cy2 * c3 - c2ri) +
894     qzz_i * (cz2 * c3 - c2ri) );
895    
896     vterm = pref * pot_term;
897     idat.vpair += vterm;
898     epot += idat.sw * vterm;
899    
900     // calculate the derivatives for the forces and torques
901    
902     dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
903     qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
904     qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
905    
906     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
907     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
908     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
909     }
910     }
911    
912     idat.pot += epot;
913     idat.f1 += dVdr;
914    
915     if (i_is_Dipole || i_is_Quadrupole)
916     idat.t1 -= cross(uz_i, duduz_i);
917     if (i_is_Quadrupole) {
918     idat.t1 -= cross(ux_i, dudux_i);
919     idat.t1 -= cross(uy_i, duduy_i);
920     }
921    
922     if (j_is_Dipole || j_is_Quadrupole)
923     idat.t2 -= cross(uz_j, duduz_j);
924     if (j_is_Quadrupole) {
925     idat.t2 -= cross(uz_j, dudux_j);
926     idat.t2 -= cross(uz_j, duduy_j);
927     }
928    
929     return;
930     }
931    
932     void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
933    
934     if (!initialized_) initialize();
935    
936     ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
937     ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
938    
939     // logicals
940    
941     bool i_is_Charge = data1.is_Charge;
942     bool i_is_Dipole = data1.is_Dipole;
943    
944     bool j_is_Charge = data2.is_Charge;
945     bool j_is_Dipole = data2.is_Dipole;
946    
947     RealType q_i, q_j;
948    
949     // The skippedCharge computation is needed by the real-space cutoff methods
950     // (i.e. shifted force and shifted potential)
951    
952     if (i_is_Charge) {
953     q_i = data1.charge;
954     skdat.skippedCharge2 += q_i;
955     }
956    
957     if (j_is_Charge) {
958     q_j = data2.charge;
959     skdat.skippedCharge1 += q_j;
960     }
961    
962     // the rest of this function should only be necessary for reaction field.
963    
964 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
965 gezelter 1502 RealType riji, ri2, ri3;
966     RealType q_i, mu_i, ct_i;
967     RealType q_j, mu_j, ct_j;
968     RealType preVal, rfVal, vterm, dudr, pref, myPot;
969     Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
970    
971     // some variables we'll need independent of electrostatic type:
972    
973     riji = 1.0 / skdat.rij;
974     rhat = skdat.d * riji;
975    
976     if (i_is_Dipole) {
977     mu_i = data1.dipole_moment;
978 gezelter 1504 uz_i = skdat.eFrame1.getColumn(2);
979 gezelter 1502 ct_i = dot(uz_i, rhat);
980     duduz_i = V3Zero;
981     }
982    
983     if (j_is_Dipole) {
984     mu_j = data2.dipole_moment;
985 gezelter 1504 uz_j = skdat.eFrame2.getColumn(2);
986 gezelter 1502 ct_j = dot(uz_j, rhat);
987     duduz_j = V3Zero;
988     }
989    
990     if (i_is_Charge) {
991     if (j_is_Charge) {
992     preVal = skdat.electroMult * pre11_ * q_i * q_j;
993     rfVal = preRF_ * skdat.rij * skdat.rij;
994     vterm = preVal * rfVal;
995     myPot += skdat.sw * vterm;
996     dudr = skdat.sw * preVal * 2.0 * rfVal * riji;
997     dVdr += dudr * rhat;
998     }
999    
1000     if (j_is_Dipole) {
1001     ri2 = riji * riji;
1002     ri3 = ri2 * riji;
1003     pref = skdat.electroMult * pre12_ * q_i * mu_j;
1004     vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
1005     myPot += skdat.sw * vterm;
1006     dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1007     duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
1008     }
1009     }
1010     if (i_is_Dipole) {
1011     if (j_is_Charge) {
1012     ri2 = riji * riji;
1013     ri3 = ri2 * riji;
1014     pref = skdat.electroMult * pre12_ * q_j * mu_i;
1015     vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
1016     myPot += skdat.sw * vterm;
1017     dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
1018     duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
1019     }
1020     }
1021    
1022     // accumulate the forces and torques resulting from the self term
1023     skdat.pot += myPot;
1024     skdat.f1 += dVdr;
1025    
1026     if (i_is_Dipole)
1027 gezelter 1504 skdat.t1 -= cross(uz_i, duduz_i);
1028 gezelter 1502 if (j_is_Dipole)
1029 gezelter 1504 skdat.t2 -= cross(uz_j, duduz_j);
1030 gezelter 1502 }
1031     }
1032    
1033     void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
1034     RealType mu1, preVal, chg1, self;
1035    
1036     if (!initialized_) initialize();
1037    
1038     ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
1039    
1040     // logicals
1041    
1042     bool i_is_Charge = data.is_Charge;
1043     bool i_is_Dipole = data.is_Dipole;
1044    
1045 gezelter 1528 if (summationMethod_ == esm_REACTION_FIELD) {
1046 gezelter 1502 if (i_is_Dipole) {
1047     mu1 = data.dipole_moment;
1048     preVal = pre22_ * preRF2_ * mu1 * mu1;
1049     scdat.pot -= 0.5 * preVal;
1050    
1051     // The self-correction term adds into the reaction field vector
1052 gezelter 1504 Vector3d uz_i = scdat.eFrame.getColumn(2);
1053 gezelter 1502 Vector3d ei = preVal * uz_i;
1054    
1055     // This looks very wrong. A vector crossed with itself is zero.
1056 gezelter 1504 scdat.t -= cross(uz_i, ei);
1057 gezelter 1502 }
1058 gezelter 1528 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1059 gezelter 1502 if (i_is_Charge) {
1060     chg1 = data.charge;
1061     if (screeningMethod_ == DAMPED) {
1062     self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1063     } else {
1064     self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1065     }
1066     scdat.pot += self;
1067     }
1068     }
1069     }
1070 gezelter 1505
1071     RealType Electrostatic::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) {
1072     // This seems to work moderately well as a default. There's no
1073     // inherent scale for 1/r interactions that we can standardize.
1074     // 12 angstroms seems to be a reasonably good guess for most
1075     // cases.
1076     return 12.0;
1077     }
1078 gezelter 1502 }

Properties

Name Value
svn:eol-style native