ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1504
Committed: Sat Oct 2 20:41:53 2010 UTC (14 years, 7 months ago) by gezelter
File size: 32127 byte(s)
Log Message:
The C++ side now compiles.  Moving on to doForces

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44    
45     #include <cmath>
46     #include "nonbonded/Electrostatic.hpp"
47     #include "utils/simError.h"
48     #include "types/NonBondedInteractionType.hpp"
49     #include "types/DirectionalAtomType.hpp"
50    
51    
52     namespace OpenMD {
53    
54     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
55     forceField_(NULL) {}
56    
57     void Electrostatic::initialize() {
58     // these prefactors convert the multipole interactions into kcal / mol
59     // all were computed assuming distances are measured in angstroms
60     // Charge-Charge, assuming charges are measured in electrons
61     pre11_ = 332.0637778;
62     // Charge-Dipole, assuming charges are measured in electrons, and
63     // dipoles are measured in debyes
64     pre12_ = 69.13373;
65     // Dipole-Dipole, assuming dipoles are measured in debyes
66     pre22_ = 14.39325;
67     // Charge-Quadrupole, assuming charges are measured in electrons, and
68     // quadrupoles are measured in 10^-26 esu cm^2
69     // This unit is also known affectionately as an esu centi-barn.
70     pre14_ = 69.13373;
71    
72     // conversions for the simulation box dipole moment
73     chargeToC_ = 1.60217733e-19;
74     angstromToM_ = 1.0e-10;
75     debyeToCm_ = 3.33564095198e-30;
76    
77     // number of points for electrostatic splines
78     np_ = 100;
79    
80     // variables to handle different summation methods for long-range
81     // electrostatics:
82     summationMethod_ = NONE;
83     screeningMethod_ = UNDAMPED;
84     dielectric_ = 1.0;
85     one_third_ = 1.0 / 3.0;
86     haveDefaultCutoff_ = false;
87     haveDampingAlpha_ = false;
88     haveDielectric_ = false;
89     haveElectroSpline_ = false;
90    
91     // find all of the Electrostatic atom Types:
92     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
93     ForceField::AtomTypeContainer::MapTypeIterator i;
94     AtomType* at;
95    
96     for (at = atomTypes->beginType(i); at != NULL;
97     at = atomTypes->nextType(i)) {
98    
99     if (at->isElectrostatic())
100     addType(at);
101     }
102    
103     // check to make sure a cutoff value has been set:
104     if (!haveDefaultCutoff_) {
105     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
106     "Cutoff value!\n");
107     painCave.severity = OPENMD_ERROR;
108     painCave.isFatal = 1;
109     simError();
110     }
111    
112     defaultCutoff2_ = defaultCutoff_ * defaultCutoff_;
113     rcuti_ = 1.0 / defaultCutoff_;
114     rcuti2_ = rcuti_ * rcuti_;
115     rcuti3_ = rcuti2_ * rcuti_;
116     rcuti4_ = rcuti2_ * rcuti2_;
117    
118     if (screeningMethod_ == DAMPED) {
119     if (!haveDampingAlpha_) {
120     sprintf( painCave.errMsg, "Electrostatic::initialize has no "
121     "DampingAlpha value!\n");
122     painCave.severity = OPENMD_ERROR;
123     painCave.isFatal = 1;
124     simError();
125     }
126    
127     alpha2_ = dampingAlpha_ * dampingAlpha_;
128     alpha4_ = alpha2_ * alpha2_;
129     alpha6_ = alpha4_ * alpha2_;
130     alpha8_ = alpha4_ * alpha4_;
131    
132     constEXP_ = exp(-alpha2_ * defaultCutoff2_);
133     invRootPi_ = 0.56418958354775628695;
134     alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
135    
136     c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_;
137     c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
138     c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
139     c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
140     c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
141     c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
142     } else {
143     c1c_ = rcuti_;
144     c2c_ = c1c_ * rcuti_;
145     c3c_ = 3.0 * c2c_ * rcuti_;
146     c4c_ = 5.0 * c3c_ * rcuti2_;
147     c5c_ = 7.0 * c4c_ * rcuti2_;
148     c6c_ = 9.0 * c5c_ * rcuti2_;
149     }
150    
151     if (summationMethod_ == REACTION_FIELD) {
152     if (haveDielectric_) {
153     preRF_ = (dielectric_ - 1.0) /
154     ((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_);
155     preRF2_ = 2.0 * preRF_;
156     } else {
157     sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric"
158     " value!\n");
159     painCave.severity = OPENMD_ERROR;
160     painCave.isFatal = 1;
161     simError();
162     }
163     }
164    
165     RealType dx = defaultCutoff_ / RealType(np_ - 1);
166     RealType rval;
167     vector<RealType> rvals;
168     vector<RealType> yvals;
169     for (int i = 0; i < np_; i++) {
170     rval = RealType(i) * dx;
171     rvals.push_back(rval);
172     yvals.push_back(erfc(dampingAlpha_ * rval));
173     }
174     erfcSpline_ = new CubicSpline();
175     erfcSpline_->addPoints(rvals, yvals);
176     haveElectroSpline_ = true;
177    
178     initialized_ = true;
179     }
180    
181     void Electrostatic::addType(AtomType* atomType){
182    
183     ElectrostaticAtomData electrostaticAtomData;
184     electrostaticAtomData.is_Charge = false;
185     electrostaticAtomData.is_Dipole = false;
186     electrostaticAtomData.is_SplitDipole = false;
187     electrostaticAtomData.is_Quadrupole = false;
188    
189     if (atomType->isCharge()) {
190     GenericData* data = atomType->getPropertyByName("Charge");
191    
192     if (data == NULL) {
193     sprintf( painCave.errMsg, "Electrostatic::addType could not find "
194     "Charge\n"
195     "\tparameters for atomType %s.\n",
196     atomType->getName().c_str());
197     painCave.severity = OPENMD_ERROR;
198     painCave.isFatal = 1;
199     simError();
200     }
201    
202     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
203     if (doubleData == NULL) {
204     sprintf( painCave.errMsg,
205     "Electrostatic::addType could not convert GenericData to "
206     "Charge for\n"
207     "\tatom type %s\n", atomType->getName().c_str());
208     painCave.severity = OPENMD_ERROR;
209     painCave.isFatal = 1;
210     simError();
211     }
212     electrostaticAtomData.is_Charge = true;
213     electrostaticAtomData.charge = doubleData->getData();
214     }
215    
216     if (atomType->isDirectional()) {
217     DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
218    
219     if (daType->isDipole()) {
220     GenericData* data = daType->getPropertyByName("Dipole");
221    
222     if (data == NULL) {
223     sprintf( painCave.errMsg,
224     "Electrostatic::addType could not find Dipole\n"
225     "\tparameters for atomType %s.\n",
226     daType->getName().c_str());
227     painCave.severity = OPENMD_ERROR;
228     painCave.isFatal = 1;
229     simError();
230     }
231    
232     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
233     if (doubleData == NULL) {
234     sprintf( painCave.errMsg,
235     "Electrostatic::addType could not convert GenericData to "
236     "Dipole Moment\n"
237     "\tfor atom type %s\n", daType->getName().c_str());
238     painCave.severity = OPENMD_ERROR;
239     painCave.isFatal = 1;
240     simError();
241     }
242     electrostaticAtomData.is_Dipole = true;
243     electrostaticAtomData.dipole_moment = doubleData->getData();
244     }
245    
246     if (daType->isSplitDipole()) {
247     GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
248    
249     if (data == NULL) {
250     sprintf(painCave.errMsg,
251     "Electrostatic::addType could not find SplitDipoleDistance\n"
252     "\tparameter for atomType %s.\n",
253     daType->getName().c_str());
254     painCave.severity = OPENMD_ERROR;
255     painCave.isFatal = 1;
256     simError();
257     }
258    
259     DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
260     if (doubleData == NULL) {
261     sprintf( painCave.errMsg,
262     "Electrostatic::addType could not convert GenericData to "
263     "SplitDipoleDistance for\n"
264     "\tatom type %s\n", daType->getName().c_str());
265     painCave.severity = OPENMD_ERROR;
266     painCave.isFatal = 1;
267     simError();
268     }
269     electrostaticAtomData.is_SplitDipole = true;
270     electrostaticAtomData.split_dipole_distance = doubleData->getData();
271     }
272    
273     if (daType->isQuadrupole()) {
274     GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
275    
276     if (data == NULL) {
277     sprintf( painCave.errMsg,
278     "Electrostatic::addType could not find QuadrupoleMoments\n"
279     "\tparameter for atomType %s.\n",
280     daType->getName().c_str());
281     painCave.severity = OPENMD_ERROR;
282     painCave.isFatal = 1;
283     simError();
284     }
285    
286     Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
287     if (v3dData == NULL) {
288     sprintf( painCave.errMsg,
289     "Electrostatic::addType could not convert GenericData to "
290     "Quadrupole Moments for\n"
291     "\tatom type %s\n", daType->getName().c_str());
292     painCave.severity = OPENMD_ERROR;
293     painCave.isFatal = 1;
294     simError();
295     }
296     electrostaticAtomData.is_Quadrupole = true;
297     electrostaticAtomData.quadrupole_moments = v3dData->getData();
298     }
299     }
300    
301     AtomTypeProperties atp = atomType->getATP();
302    
303     pair<map<int,AtomType*>::iterator,bool> ret;
304     ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
305     if (ret.second == false) {
306     sprintf( painCave.errMsg,
307     "Electrostatic already had a previous entry with ident %d\n",
308     atp.ident);
309     painCave.severity = OPENMD_INFO;
310     painCave.isFatal = 0;
311     simError();
312     }
313    
314     ElectrostaticMap[atomType] = electrostaticAtomData;
315     return;
316     }
317    
318     void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
319     RealType theRSW ) {
320     defaultCutoff_ = theECR;
321     rrf_ = defaultCutoff_;
322     rt_ = theRSW;
323     haveDefaultCutoff_ = true;
324     }
325     void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
326     summationMethod_ = esm;
327     }
328     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
329     screeningMethod_ = sm;
330     }
331     void Electrostatic::setDampingAlpha( RealType alpha ) {
332     dampingAlpha_ = alpha;
333     haveDampingAlpha_ = true;
334     }
335     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
336     dielectric_ = dielectric;
337     haveDielectric_ = true;
338     }
339    
340     void Electrostatic::calcForce(InteractionData idat) {
341    
342     // utility variables. Should clean these up and use the Vector3d and
343     // Mat3x3d to replace as many as we can in future versions:
344    
345     RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
346     RealType qxx_i, qyy_i, qzz_i;
347     RealType qxx_j, qyy_j, qzz_j;
348     RealType cx_i, cy_i, cz_i;
349     RealType cx_j, cy_j, cz_j;
350     RealType cx2, cy2, cz2;
351     RealType ct_i, ct_j, ct_ij, a1;
352     RealType riji, ri, ri2, ri3, ri4;
353     RealType pref, vterm, epot, dudr;
354     RealType scale, sc2;
355     RealType pot_term, preVal, rfVal;
356     RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
357     RealType preSw, preSwSc;
358     RealType c1, c2, c3, c4;
359     RealType erfcVal, derfcVal;
360     RealType BigR;
361    
362     Vector3d Q_i, Q_j;
363     Vector3d ux_i, uy_i, uz_i;
364     Vector3d ux_j, uy_j, uz_j;
365     Vector3d dudux_i, duduy_i, duduz_i;
366     Vector3d dudux_j, duduy_j, duduz_j;
367     Vector3d rhatdot2, rhatc4;
368     Vector3d dVdr;
369    
370     pair<RealType, RealType> res;
371    
372     if (!initialized_) initialize();
373    
374     ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
375     ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
376    
377     // some variables we'll need independent of electrostatic type:
378    
379     riji = 1.0 / idat.rij;
380     Vector3d rhat = idat.d * riji;
381    
382     // logicals
383    
384     bool i_is_Charge = data1.is_Charge;
385     bool i_is_Dipole = data1.is_Dipole;
386     bool i_is_SplitDipole = data1.is_SplitDipole;
387     bool i_is_Quadrupole = data1.is_Quadrupole;
388    
389     bool j_is_Charge = data2.is_Charge;
390     bool j_is_Dipole = data2.is_Dipole;
391     bool j_is_SplitDipole = data2.is_SplitDipole;
392     bool j_is_Quadrupole = data2.is_Quadrupole;
393    
394     if (i_is_Charge)
395     q_i = data1.charge;
396    
397     if (i_is_Dipole) {
398     mu_i = data1.dipole_moment;
399     uz_i = idat.eFrame1.getColumn(2);
400    
401     ct_i = dot(uz_i, rhat);
402    
403     if (i_is_SplitDipole)
404     d_i = data1.split_dipole_distance;
405    
406     duduz_i = V3Zero;
407     }
408    
409     if (i_is_Quadrupole) {
410     Q_i = data1.quadrupole_moments;
411     qxx_i = Q_i.x();
412     qyy_i = Q_i.y();
413     qzz_i = Q_i.z();
414    
415     ux_i = idat.eFrame1.getColumn(0);
416     uy_i = idat.eFrame1.getColumn(1);
417     uz_i = idat.eFrame1.getColumn(2);
418    
419     cx_i = dot(ux_i, rhat);
420     cy_i = dot(uy_i, rhat);
421     cz_i = dot(uz_i, rhat);
422    
423     dudux_i = V3Zero;
424     duduy_i = V3Zero;
425     duduz_i = V3Zero;
426     }
427    
428     if (j_is_Charge)
429     q_j = data2.charge;
430    
431     if (j_is_Dipole) {
432     mu_j = data2.dipole_moment;
433     uz_j = idat.eFrame2.getColumn(2);
434    
435     ct_j = dot(uz_j, rhat);
436    
437     if (j_is_SplitDipole)
438     d_j = data2.split_dipole_distance;
439    
440     duduz_j = V3Zero;
441     }
442    
443     if (j_is_Quadrupole) {
444     Q_j = data2.quadrupole_moments;
445     qxx_j = Q_j.x();
446     qyy_j = Q_j.y();
447     qzz_j = Q_j.z();
448    
449     ux_j = idat.eFrame2.getColumn(0);
450     uy_j = idat.eFrame2.getColumn(1);
451     uz_j = idat.eFrame2.getColumn(2);
452    
453     cx_j = dot(ux_j, rhat);
454     cy_j = dot(uy_j, rhat);
455     cz_j = dot(uz_j, rhat);
456    
457     dudux_j = V3Zero;
458     duduy_j = V3Zero;
459     duduz_j = V3Zero;
460     }
461    
462     epot = 0.0;
463     dVdr = V3Zero;
464    
465     if (i_is_Charge) {
466    
467     if (j_is_Charge) {
468     if (screeningMethod_ == DAMPED) {
469     // assemble the damping variables
470     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
471     erfcVal = res.first;
472     derfcVal = res.second;
473     c1 = erfcVal * riji;
474     c2 = (-derfcVal + c1) * riji;
475     } else {
476     c1 = riji;
477     c2 = c1 * riji;
478     }
479    
480     preVal = idat.electroMult * pre11_ * q_i * q_j;
481    
482     if (summationMethod_ == SHIFTED_POTENTIAL) {
483     vterm = preVal * (c1 - c1c_);
484     dudr = -idat.sw * preVal * c2;
485    
486     } else if (summationMethod_ == SHIFTED_FORCE) {
487     vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) );
488     dudr = idat.sw * preVal * (c2c_ - c2);
489    
490     } else if (summationMethod_ == REACTION_FIELD) {
491     rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
492     vterm = preVal * ( riji + rfVal );
493     dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
494    
495     } else {
496     vterm = preVal * riji * erfcVal;
497    
498     dudr = - idat.sw * preVal * c2;
499    
500     }
501    
502     idat.vpair += vterm;
503     epot += idat.sw * vterm;
504    
505     dVdr += dudr * rhat;
506     }
507    
508     if (j_is_Dipole) {
509     // pref is used by all the possible methods
510     pref = idat.electroMult * pre12_ * q_i * mu_j;
511     preSw = idat.sw * pref;
512    
513     if (summationMethod_ == REACTION_FIELD) {
514     ri2 = riji * riji;
515     ri3 = ri2 * riji;
516    
517     vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
518     idat.vpair += vterm;
519     epot += idat.sw * vterm;
520    
521     dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
522     duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);
523    
524     } else {
525     // determine the inverse r used if we have split dipoles
526     if (j_is_SplitDipole) {
527     BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
528     ri = 1.0 / BigR;
529     scale = idat.rij * ri;
530     } else {
531     ri = riji;
532     scale = 1.0;
533     }
534    
535     sc2 = scale * scale;
536    
537     if (screeningMethod_ == DAMPED) {
538     // assemble the damping variables
539     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
540     erfcVal = res.first;
541     derfcVal = res.second;
542     c1 = erfcVal * ri;
543     c2 = (-derfcVal + c1) * ri;
544     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
545     } else {
546     c1 = ri;
547     c2 = c1 * ri;
548     c3 = 3.0 * c2 * ri;
549     }
550    
551     c2ri = c2 * ri;
552    
553     // calculate the potential
554     pot_term = scale * c2;
555     vterm = -pref * ct_j * pot_term;
556     idat.vpair += vterm;
557     epot += idat.sw * vterm;
558    
559     // calculate derivatives for forces and torques
560    
561     dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
562     duduz_j += -preSw * pot_term * rhat;
563    
564     }
565     }
566    
567     if (j_is_Quadrupole) {
568     // first precalculate some necessary variables
569     cx2 = cx_j * cx_j;
570     cy2 = cy_j * cy_j;
571     cz2 = cz_j * cz_j;
572     pref = idat.electroMult * pre14_ * q_i * one_third_;
573    
574     if (screeningMethod_ == DAMPED) {
575     // assemble the damping variables
576     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
577     erfcVal = res.first;
578     derfcVal = res.second;
579     c1 = erfcVal * riji;
580     c2 = (-derfcVal + c1) * riji;
581     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
582     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
583     } else {
584     c1 = riji;
585     c2 = c1 * riji;
586     c3 = 3.0 * c2 * riji;
587     c4 = 5.0 * c3 * riji * riji;
588     }
589    
590     // precompute variables for convenience
591     preSw = idat.sw * pref;
592     c2ri = c2 * riji;
593     c3ri = c3 * riji;
594     c4rij = c4 * idat.rij;
595     rhatdot2 = 2.0 * rhat * c3;
596     rhatc4 = rhat * c4rij;
597    
598     // calculate the potential
599     pot_term = ( qxx_j * (cx2*c3 - c2ri) +
600     qyy_j * (cy2*c3 - c2ri) +
601     qzz_j * (cz2*c3 - c2ri) );
602     vterm = pref * pot_term;
603     idat.vpair += vterm;
604     epot += idat.sw * vterm;
605    
606     // calculate derivatives for the forces and torques
607    
608     dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
609     qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
610     qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
611    
612     dudux_j += preSw * qxx_j * cx_j * rhatdot2;
613     duduy_j += preSw * qyy_j * cy_j * rhatdot2;
614     duduz_j += preSw * qzz_j * cz_j * rhatdot2;
615     }
616     }
617    
618     if (i_is_Dipole) {
619    
620     if (j_is_Charge) {
621     // variables used by all the methods
622     pref = idat.electroMult * pre12_ * q_j * mu_i;
623     preSw = idat.sw * pref;
624    
625     if (summationMethod_ == REACTION_FIELD) {
626    
627     ri2 = riji * riji;
628     ri3 = ri2 * riji;
629    
630     vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
631     idat.vpair += vterm;
632     epot += idat.sw * vterm;
633    
634     dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
635    
636     duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
637    
638     } else {
639    
640     // determine inverse r if we are using split dipoles
641     if (i_is_SplitDipole) {
642     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
643     ri = 1.0 / BigR;
644     scale = idat.rij * ri;
645     } else {
646     ri = riji;
647     scale = 1.0;
648     }
649    
650     sc2 = scale * scale;
651    
652     if (screeningMethod_ == DAMPED) {
653     // assemble the damping variables
654     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
655     erfcVal = res.first;
656     derfcVal = res.second;
657     c1 = erfcVal * ri;
658     c2 = (-derfcVal + c1) * ri;
659     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
660     } else {
661     c1 = ri;
662     c2 = c1 * ri;
663     c3 = 3.0 * c2 * ri;
664     }
665    
666     c2ri = c2 * ri;
667    
668     // calculate the potential
669     pot_term = c2 * scale;
670     vterm = pref * ct_i * pot_term;
671     idat.vpair += vterm;
672     epot += idat.sw * vterm;
673    
674     // calculate derivatives for the forces and torques
675     dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
676     duduz_i += preSw * pot_term * rhat;
677     }
678     }
679    
680     if (j_is_Dipole) {
681     // variables used by all methods
682     ct_ij = dot(uz_i, uz_j);
683    
684     pref = idat.electroMult * pre22_ * mu_i * mu_j;
685     preSw = idat.sw * pref;
686    
687     if (summationMethod_ == REACTION_FIELD) {
688     ri2 = riji * riji;
689     ri3 = ri2 * riji;
690     ri4 = ri2 * ri2;
691    
692     vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
693     preRF2_ * ct_ij );
694     idat.vpair += vterm;
695     epot += idat.sw * vterm;
696    
697     a1 = 5.0 * ct_i * ct_j - ct_ij;
698    
699     dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
700    
701     duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
702     duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
703    
704     } else {
705    
706     if (i_is_SplitDipole) {
707     if (j_is_SplitDipole) {
708     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
709     } else {
710     BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
711     }
712     ri = 1.0 / BigR;
713     scale = idat.rij * ri;
714     } else {
715     if (j_is_SplitDipole) {
716     BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
717     ri = 1.0 / BigR;
718     scale = idat.rij * ri;
719     } else {
720     ri = riji;
721     scale = 1.0;
722     }
723     }
724     if (screeningMethod_ == DAMPED) {
725     // assemble damping variables
726     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
727     erfcVal = res.first;
728     derfcVal = res.second;
729     c1 = erfcVal * ri;
730     c2 = (-derfcVal + c1) * ri;
731     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
732     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
733     } else {
734     c1 = ri;
735     c2 = c1 * ri;
736     c3 = 3.0 * c2 * ri;
737     c4 = 5.0 * c3 * ri * ri;
738     }
739    
740     // precompute variables for convenience
741     sc2 = scale * scale;
742     cti3 = ct_i * sc2 * c3;
743     ctj3 = ct_j * sc2 * c3;
744     ctidotj = ct_i * ct_j * sc2;
745     preSwSc = preSw * scale;
746     c2ri = c2 * ri;
747     c3ri = c3 * ri;
748     c4rij = c4 * idat.rij;
749    
750     // calculate the potential
751     pot_term = (ct_ij * c2ri - ctidotj * c3);
752     vterm = pref * pot_term;
753     idat.vpair += vterm;
754     epot += idat.sw * vterm;
755    
756     // calculate derivatives for the forces and torques
757     dVdr += preSwSc * ( ctidotj * rhat * c4rij -
758     (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
759    
760     duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
761     duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
762     }
763     }
764     }
765    
766     if (i_is_Quadrupole) {
767     if (j_is_Charge) {
768     // precompute some necessary variables
769     cx2 = cx_i * cx_i;
770     cy2 = cy_i * cy_i;
771     cz2 = cz_i * cz_i;
772    
773     pref = idat.electroMult * pre14_ * q_j * one_third_;
774    
775     if (screeningMethod_ == DAMPED) {
776     // assemble the damping variables
777     res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
778     erfcVal = res.first;
779     derfcVal = res.second;
780     c1 = erfcVal * riji;
781     c2 = (-derfcVal + c1) * riji;
782     c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
783     c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
784     } else {
785     c1 = riji;
786     c2 = c1 * riji;
787     c3 = 3.0 * c2 * riji;
788     c4 = 5.0 * c3 * riji * riji;
789     }
790    
791     // precompute some variables for convenience
792     preSw = idat.sw * pref;
793     c2ri = c2 * riji;
794     c3ri = c3 * riji;
795     c4rij = c4 * idat.rij;
796     rhatdot2 = 2.0 * rhat * c3;
797     rhatc4 = rhat * c4rij;
798    
799     // calculate the potential
800     pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
801     qyy_i * (cy2 * c3 - c2ri) +
802     qzz_i * (cz2 * c3 - c2ri) );
803    
804     vterm = pref * pot_term;
805     idat.vpair += vterm;
806     epot += idat.sw * vterm;
807    
808     // calculate the derivatives for the forces and torques
809    
810     dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
811     qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
812     qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
813    
814     dudux_i += preSw * qxx_i * cx_i * rhatdot2;
815     duduy_i += preSw * qyy_i * cy_i * rhatdot2;
816     duduz_i += preSw * qzz_i * cz_i * rhatdot2;
817     }
818     }
819    
820     idat.pot += epot;
821     idat.f1 += dVdr;
822    
823     if (i_is_Dipole || i_is_Quadrupole)
824     idat.t1 -= cross(uz_i, duduz_i);
825     if (i_is_Quadrupole) {
826     idat.t1 -= cross(ux_i, dudux_i);
827     idat.t1 -= cross(uy_i, duduy_i);
828     }
829    
830     if (j_is_Dipole || j_is_Quadrupole)
831     idat.t2 -= cross(uz_j, duduz_j);
832     if (j_is_Quadrupole) {
833     idat.t2 -= cross(uz_j, dudux_j);
834     idat.t2 -= cross(uz_j, duduy_j);
835     }
836    
837     return;
838     }
839    
840     void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
841    
842     if (!initialized_) initialize();
843    
844     ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
845     ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
846    
847     // logicals
848    
849     bool i_is_Charge = data1.is_Charge;
850     bool i_is_Dipole = data1.is_Dipole;
851    
852     bool j_is_Charge = data2.is_Charge;
853     bool j_is_Dipole = data2.is_Dipole;
854    
855     RealType q_i, q_j;
856    
857     // The skippedCharge computation is needed by the real-space cutoff methods
858     // (i.e. shifted force and shifted potential)
859    
860     if (i_is_Charge) {
861     q_i = data1.charge;
862     skdat.skippedCharge2 += q_i;
863     }
864    
865     if (j_is_Charge) {
866     q_j = data2.charge;
867     skdat.skippedCharge1 += q_j;
868     }
869    
870     // the rest of this function should only be necessary for reaction field.
871    
872     if (summationMethod_ == REACTION_FIELD) {
873     RealType riji, ri2, ri3;
874     RealType q_i, mu_i, ct_i;
875     RealType q_j, mu_j, ct_j;
876     RealType preVal, rfVal, vterm, dudr, pref, myPot;
877     Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
878    
879     // some variables we'll need independent of electrostatic type:
880    
881     riji = 1.0 / skdat.rij;
882     rhat = skdat.d * riji;
883    
884     if (i_is_Dipole) {
885     mu_i = data1.dipole_moment;
886 gezelter 1504 uz_i = skdat.eFrame1.getColumn(2);
887 gezelter 1502 ct_i = dot(uz_i, rhat);
888     duduz_i = V3Zero;
889     }
890    
891     if (j_is_Dipole) {
892     mu_j = data2.dipole_moment;
893 gezelter 1504 uz_j = skdat.eFrame2.getColumn(2);
894 gezelter 1502 ct_j = dot(uz_j, rhat);
895     duduz_j = V3Zero;
896     }
897    
898     if (i_is_Charge) {
899     if (j_is_Charge) {
900     preVal = skdat.electroMult * pre11_ * q_i * q_j;
901     rfVal = preRF_ * skdat.rij * skdat.rij;
902     vterm = preVal * rfVal;
903     myPot += skdat.sw * vterm;
904     dudr = skdat.sw * preVal * 2.0 * rfVal * riji;
905     dVdr += dudr * rhat;
906     }
907    
908     if (j_is_Dipole) {
909     ri2 = riji * riji;
910     ri3 = ri2 * riji;
911     pref = skdat.electroMult * pre12_ * q_i * mu_j;
912     vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
913     myPot += skdat.sw * vterm;
914     dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
915     duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
916     }
917     }
918     if (i_is_Dipole) {
919     if (j_is_Charge) {
920     ri2 = riji * riji;
921     ri3 = ri2 * riji;
922     pref = skdat.electroMult * pre12_ * q_j * mu_i;
923     vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
924     myPot += skdat.sw * vterm;
925     dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
926     duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
927     }
928     }
929    
930     // accumulate the forces and torques resulting from the self term
931     skdat.pot += myPot;
932     skdat.f1 += dVdr;
933    
934     if (i_is_Dipole)
935 gezelter 1504 skdat.t1 -= cross(uz_i, duduz_i);
936 gezelter 1502 if (j_is_Dipole)
937 gezelter 1504 skdat.t2 -= cross(uz_j, duduz_j);
938 gezelter 1502 }
939     }
940    
941     void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
942     RealType mu1, preVal, chg1, self;
943    
944     if (!initialized_) initialize();
945    
946     ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
947    
948     // logicals
949    
950     bool i_is_Charge = data.is_Charge;
951     bool i_is_Dipole = data.is_Dipole;
952    
953     if (summationMethod_ == REACTION_FIELD) {
954     if (i_is_Dipole) {
955     mu1 = data.dipole_moment;
956     preVal = pre22_ * preRF2_ * mu1 * mu1;
957     scdat.pot -= 0.5 * preVal;
958    
959     // The self-correction term adds into the reaction field vector
960 gezelter 1504 Vector3d uz_i = scdat.eFrame.getColumn(2);
961 gezelter 1502 Vector3d ei = preVal * uz_i;
962    
963     // This looks very wrong. A vector crossed with itself is zero.
964 gezelter 1504 scdat.t -= cross(uz_i, ei);
965 gezelter 1502 }
966     } else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) {
967     if (i_is_Charge) {
968     chg1 = data.charge;
969     if (screeningMethod_ == DAMPED) {
970     self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
971     } else {
972     self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
973     }
974     scdat.pot += self;
975     }
976     }
977     }
978     }

Properties

Name Value
svn:eol-style native