1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/EAM.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
|
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
EAM::EAM() : name_("EAM"), initialized_(false), forceField_(NULL), |
55 |
mixMeth_(eamJohnson), eamRcut_(0.0), haveCutoffRadius_(false) {} |
56 |
|
57 |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
58 |
EAMAdapter ea1 = EAMAdapter(atomType1); |
59 |
EAMAdapter ea2 = EAMAdapter(atomType2); |
60 |
CubicSpline* z1 = ea1.getZ(); |
61 |
CubicSpline* z2 = ea2.getZ(); |
62 |
|
63 |
// make the r grid: |
64 |
|
65 |
|
66 |
// we need phi out to the largest value we'll encounter in the radial space; |
67 |
|
68 |
RealType rmax = 0.0; |
69 |
rmax = max(rmax, ea1.getRcut()); |
70 |
rmax = max(rmax, ea1.getNr() * ea1.getDr()); |
71 |
|
72 |
rmax = max(rmax, ea2.getRcut()); |
73 |
rmax = max(rmax, ea2.getNr() * ea2.getDr()); |
74 |
|
75 |
// use the smallest dr (finest grid) to build our grid: |
76 |
|
77 |
RealType dr = min(ea1.getDr(), ea2.getDr()); |
78 |
|
79 |
int nr = int(rmax/dr + 0.5); |
80 |
|
81 |
vector<RealType> rvals; |
82 |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i*dr)); |
83 |
|
84 |
// construct the pair potential: |
85 |
|
86 |
vector<RealType> phivals; |
87 |
RealType phi; |
88 |
RealType r; |
89 |
RealType zi, zj; |
90 |
|
91 |
phivals.push_back(0.0); |
92 |
|
93 |
for (int i = 1; i < rvals.size(); i++ ) { |
94 |
r = rvals[i]; |
95 |
|
96 |
// only use z(r) if we're inside this atom's cutoff radius, |
97 |
// otherwise, we'll use zero for the charge. This effectively |
98 |
// means that our phi grid goes out beyond the cutoff of the |
99 |
// pair potential |
100 |
|
101 |
zi = r <= ea1.getRcut() ? z1->getValueAt(r) : 0.0; |
102 |
zj = r <= ea2.getRcut() ? z2->getValueAt(r) : 0.0; |
103 |
|
104 |
phi = 331.999296 * (zi * zj) / r; |
105 |
|
106 |
phivals.push_back(phi); |
107 |
} |
108 |
|
109 |
CubicSpline* cs = new CubicSpline(); |
110 |
cs->addPoints(rvals, phivals); |
111 |
return cs; |
112 |
} |
113 |
|
114 |
void EAM::setCutoffRadius( RealType rCut ) { |
115 |
eamRcut_ = rCut; |
116 |
haveCutoffRadius_ = true; |
117 |
} |
118 |
|
119 |
void EAM::initialize() { |
120 |
|
121 |
// set up the mixing method: |
122 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
123 |
string EAMMixMeth = fopts.getEAMMixingMethod(); |
124 |
toUpper(EAMMixMeth); |
125 |
|
126 |
if (EAMMixMeth == "JOHNSON") |
127 |
mixMeth_ = eamJohnson; |
128 |
else if (EAMMixMeth == "DAW") |
129 |
mixMeth_ = eamDaw; |
130 |
else |
131 |
mixMeth_ = eamUnknown; |
132 |
|
133 |
// find all of the EAM atom Types: |
134 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
135 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
136 |
AtomType* at; |
137 |
|
138 |
for (at = atomTypes->beginType(i); at != NULL; |
139 |
at = atomTypes->nextType(i)) { |
140 |
|
141 |
if (at->isEAM()) |
142 |
addType(at); |
143 |
} |
144 |
|
145 |
// find all of the explicit EAM interactions (setfl): |
146 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
147 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
148 |
NonBondedInteractionType* nbt; |
149 |
|
150 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
151 |
nbt = nbiTypes->nextType(j)) { |
152 |
|
153 |
if (nbt->isEAM()) { |
154 |
|
155 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
156 |
|
157 |
GenericData* data = nbt->getPropertyByName("EAM"); |
158 |
if (data == NULL) { |
159 |
sprintf( painCave.errMsg, "EAM::rebuildMixingMap could not find\n" |
160 |
"\tEAM parameters for %s - %s interaction.\n", |
161 |
atypes.first->getName().c_str(), |
162 |
atypes.second->getName().c_str()); |
163 |
painCave.severity = OPENMD_ERROR; |
164 |
painCave.isFatal = 1; |
165 |
simError(); |
166 |
} |
167 |
|
168 |
EAMMixingData* eamData = dynamic_cast<EAMMixingData*>(data); |
169 |
if (eamData == NULL) { |
170 |
sprintf( painCave.errMsg, |
171 |
"EAM::rebuildMixingMap could not convert GenericData to\n" |
172 |
"\tEAMMixingData for %s - %s interaction.\n", |
173 |
atypes.first->getName().c_str(), |
174 |
atypes.second->getName().c_str()); |
175 |
painCave.severity = OPENMD_ERROR; |
176 |
painCave.isFatal = 1; |
177 |
simError(); |
178 |
} |
179 |
|
180 |
EAMMixingParam eamParam = eamData->getData(); |
181 |
|
182 |
vector<RealType> phiAB = eamParam.phi; |
183 |
RealType dr = eamParam.dr; |
184 |
int nr = eamParam.nr; |
185 |
|
186 |
addExplicitInteraction(atypes.first, atypes.second, dr, nr, phiAB); |
187 |
} |
188 |
} |
189 |
initialized_ = true; |
190 |
} |
191 |
|
192 |
|
193 |
|
194 |
void EAM::addType(AtomType* atomType){ |
195 |
|
196 |
EAMAdapter ea = EAMAdapter(atomType); |
197 |
EAMAtomData eamAtomData; |
198 |
|
199 |
eamAtomData.rho = ea.getRho(); |
200 |
eamAtomData.F = ea.getF(); |
201 |
eamAtomData.Z = ea.getZ(); |
202 |
eamAtomData.rcut = ea.getRcut(); |
203 |
|
204 |
// add it to the map: |
205 |
|
206 |
pair<map<int,AtomType*>::iterator,bool> ret; |
207 |
ret = EAMlist.insert( pair<int, AtomType*>(atomType->getIdent(), atomType) ); |
208 |
if (ret.second == false) { |
209 |
sprintf( painCave.errMsg, |
210 |
"EAM already had a previous entry with ident %d\n", |
211 |
atomType->getIdent()); |
212 |
painCave.severity = OPENMD_INFO; |
213 |
painCave.isFatal = 0; |
214 |
simError(); |
215 |
} |
216 |
|
217 |
EAMMap[atomType] = eamAtomData; |
218 |
|
219 |
// Now, iterate over all known types and add to the mixing map: |
220 |
|
221 |
map<AtomType*, EAMAtomData>::iterator it; |
222 |
for( it = EAMMap.begin(); it != EAMMap.end(); ++it) { |
223 |
|
224 |
AtomType* atype2 = (*it).first; |
225 |
|
226 |
EAMInteractionData mixer; |
227 |
mixer.phi = getPhi(atomType, atype2); |
228 |
mixer.explicitlySet = false; |
229 |
|
230 |
pair<AtomType*, AtomType*> key1, key2; |
231 |
key1 = make_pair(atomType, atype2); |
232 |
key2 = make_pair(atype2, atomType); |
233 |
|
234 |
MixingMap[key1] = mixer; |
235 |
if (key2 != key1) { |
236 |
MixingMap[key2] = mixer; |
237 |
} |
238 |
} |
239 |
return; |
240 |
} |
241 |
|
242 |
void EAM::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
243 |
RealType dr, int nr, |
244 |
vector<RealType> phiVals) { |
245 |
|
246 |
// in case these weren't already in the map |
247 |
addType(atype1); |
248 |
addType(atype2); |
249 |
|
250 |
EAMInteractionData mixer; |
251 |
CubicSpline* cs = new CubicSpline(); |
252 |
vector<RealType> rVals; |
253 |
|
254 |
for (int i = 0; i < nr; i++) rVals.push_back(i * dr); |
255 |
|
256 |
cs->addPoints(rVals, phiVals); |
257 |
mixer.phi = cs; |
258 |
mixer.explicitlySet = true; |
259 |
|
260 |
pair<AtomType*, AtomType*> key1, key2; |
261 |
key1 = make_pair(atype1, atype2); |
262 |
key2 = make_pair(atype2, atype1); |
263 |
|
264 |
MixingMap[key1] = mixer; |
265 |
if (key2 != key1) { |
266 |
MixingMap[key2] = mixer; |
267 |
} |
268 |
return; |
269 |
} |
270 |
|
271 |
void EAM::calcDensity(InteractionData &idat) { |
272 |
|
273 |
if (!initialized_) initialize(); |
274 |
|
275 |
EAMAtomData data1 = EAMMap[idat.atypes.first]; |
276 |
EAMAtomData data2 = EAMMap[idat.atypes.second]; |
277 |
|
278 |
if (haveCutoffRadius_) |
279 |
if ( *(idat.rij) > eamRcut_) return; |
280 |
|
281 |
if ( *(idat.rij) < data1.rcut) |
282 |
*(idat.rho1) += data1.rho->getValueAt( *(idat.rij)); |
283 |
|
284 |
|
285 |
if ( *(idat.rij) < data2.rcut) |
286 |
*(idat.rho2) += data2.rho->getValueAt( *(idat.rij)); |
287 |
|
288 |
return; |
289 |
} |
290 |
|
291 |
void EAM::calcFunctional(SelfData &sdat) { |
292 |
|
293 |
if (!initialized_) initialize(); |
294 |
|
295 |
EAMAtomData data1 = EAMMap[ sdat.atype ]; |
296 |
|
297 |
pair<RealType, RealType> result = data1.F->getValueAndDerivativeAt( *(sdat.rho) ); |
298 |
|
299 |
*(sdat.frho) = result.first; |
300 |
*(sdat.dfrhodrho) = result.second; |
301 |
|
302 |
(*(sdat.pot))[METALLIC_FAMILY] += result.first; |
303 |
if (sdat.doParticlePot) { |
304 |
*(sdat.particlePot) += result.first; |
305 |
} |
306 |
|
307 |
return; |
308 |
} |
309 |
|
310 |
|
311 |
void EAM::calcForce(InteractionData &idat) { |
312 |
|
313 |
if (!initialized_) initialize(); |
314 |
|
315 |
if (haveCutoffRadius_) |
316 |
if ( *(idat.rij) > eamRcut_) return; |
317 |
|
318 |
pair<RealType, RealType> res; |
319 |
|
320 |
EAMAtomData data1 = EAMMap[idat.atypes.first]; |
321 |
EAMAtomData data2 = EAMMap[idat.atypes.second]; |
322 |
|
323 |
// get type-specific cutoff radii |
324 |
|
325 |
RealType rci = data1.rcut; |
326 |
RealType rcj = data2.rcut; |
327 |
|
328 |
RealType rha(0.0), drha(0.0), rhb(0.0), drhb(0.0); |
329 |
RealType pha(0.0), dpha(0.0), phb(0.0), dphb(0.0); |
330 |
RealType phab(0.0), dvpdr(0.0); |
331 |
RealType drhoidr, drhojdr, dudr; |
332 |
|
333 |
if ( *(idat.rij) < rci) { |
334 |
res = data1.rho->getValueAndDerivativeAt( *(idat.rij)); |
335 |
rha = res.first; |
336 |
drha = res.second; |
337 |
|
338 |
res = MixingMap[make_pair(idat.atypes.first, idat.atypes.first)].phi->getValueAndDerivativeAt( *(idat.rij) ); |
339 |
pha = res.first; |
340 |
dpha = res.second; |
341 |
} |
342 |
|
343 |
if ( *(idat.rij) < rcj) { |
344 |
res = data2.rho->getValueAndDerivativeAt( *(idat.rij) ); |
345 |
rhb = res.first; |
346 |
drhb = res.second; |
347 |
|
348 |
res = MixingMap[make_pair(idat.atypes.second, idat.atypes.second)].phi->getValueAndDerivativeAt( *(idat.rij) ); |
349 |
phb = res.first; |
350 |
dphb = res.second; |
351 |
} |
352 |
|
353 |
switch(mixMeth_) { |
354 |
case eamJohnson: |
355 |
|
356 |
if ( *(idat.rij) < rci) { |
357 |
phab = phab + 0.5 * (rhb / rha) * pha; |
358 |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
359 |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
360 |
} |
361 |
|
362 |
|
363 |
|
364 |
if ( *(idat.rij) < rcj) { |
365 |
phab = phab + 0.5 * (rha / rhb) * phb; |
366 |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
367 |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
368 |
} |
369 |
|
370 |
break; |
371 |
|
372 |
case eamDaw: |
373 |
res = MixingMap[idat.atypes].phi->getValueAndDerivativeAt( *(idat.rij)); |
374 |
phab = res.first; |
375 |
dvpdr = res.second; |
376 |
|
377 |
break; |
378 |
case eamUnknown: |
379 |
default: |
380 |
|
381 |
sprintf(painCave.errMsg, |
382 |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
383 |
); |
384 |
painCave.severity = OPENMD_ERROR; |
385 |
painCave.isFatal = 1; |
386 |
simError(); |
387 |
|
388 |
} |
389 |
|
390 |
drhoidr = drha; |
391 |
drhojdr = drhb; |
392 |
|
393 |
dudr = drhojdr* *(idat.dfrho1) + drhoidr* *(idat.dfrho2) + dvpdr; |
394 |
|
395 |
*(idat.f1) += *(idat.d) * dudr / *(idat.rij); |
396 |
|
397 |
if (idat.doParticlePot) { |
398 |
// particlePot is the difference between the full potential and |
399 |
// the full potential without the presence of a particular |
400 |
// particle (atom1). |
401 |
// |
402 |
// This reduces the density at other particle locations, so we |
403 |
// need to recompute the density at atom2 assuming atom1 didn't |
404 |
// contribute. This then requires recomputing the density |
405 |
// functional for atom2 as well. |
406 |
|
407 |
*(idat.particlePot1) += data2.F->getValueAt( *(idat.rho2) - rha ) |
408 |
- *(idat.frho2); |
409 |
|
410 |
*(idat.particlePot2) += data1.F->getValueAt( *(idat.rho1) - rhb) |
411 |
- *(idat.frho1); |
412 |
} |
413 |
|
414 |
(*(idat.pot))[METALLIC_FAMILY] += phab; |
415 |
|
416 |
*(idat.vpair) += phab; |
417 |
|
418 |
return; |
419 |
|
420 |
} |
421 |
|
422 |
RealType EAM::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
423 |
if (!initialized_) initialize(); |
424 |
|
425 |
RealType cut = 0.0; |
426 |
|
427 |
map<AtomType*, EAMAtomData>::iterator it; |
428 |
|
429 |
it = EAMMap.find(atypes.first); |
430 |
if (it != EAMMap.end()) { |
431 |
EAMAtomData data1 = (*it).second; |
432 |
cut = data1.rcut; |
433 |
} |
434 |
|
435 |
it = EAMMap.find(atypes.second); |
436 |
if (it != EAMMap.end()) { |
437 |
EAMAtomData data2 = (*it).second; |
438 |
if (data2.rcut > cut) |
439 |
cut = data2.rcut; |
440 |
} |
441 |
|
442 |
return cut; |
443 |
} |
444 |
} |
445 |
|