1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/EAM.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "types/NonBondedInteractionType.hpp" |
49 |
|
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
EAM::EAM() : name_("EAM"), initialized_(false), forceField_(NULL), |
54 |
mixMeth_(eamJohnson), eamRcut_(0.0) {} |
55 |
|
56 |
EAMParam EAM::getEAMParam(AtomType* atomType) { |
57 |
|
58 |
// Do sanity checking on the AtomType we were passed before |
59 |
// building any data structures: |
60 |
if (!atomType->isEAM()) { |
61 |
sprintf( painCave.errMsg, |
62 |
"EAM::getEAMParam was passed an atomType (%s) that does not\n" |
63 |
"\tappear to be an embedded atom method (EAM) atom.\n", |
64 |
atomType->getName().c_str()); |
65 |
painCave.severity = OPENMD_ERROR; |
66 |
painCave.isFatal = 1; |
67 |
simError(); |
68 |
} |
69 |
|
70 |
GenericData* data = atomType->getPropertyByName("EAM"); |
71 |
if (data == NULL) { |
72 |
sprintf( painCave.errMsg, "EAM::getEAMParam could not find EAM\n" |
73 |
"\tparameters for atomType %s.\n", |
74 |
atomType->getName().c_str()); |
75 |
painCave.severity = OPENMD_ERROR; |
76 |
painCave.isFatal = 1; |
77 |
simError(); |
78 |
} |
79 |
|
80 |
EAMParamGenericData* eamData = dynamic_cast<EAMParamGenericData*>(data); |
81 |
if (eamData == NULL) { |
82 |
sprintf( painCave.errMsg, |
83 |
"EAM::getEAMParam could not convert GenericData to EAMParam for\n" |
84 |
"\tatom type %s\n", atomType->getName().c_str()); |
85 |
painCave.severity = OPENMD_ERROR; |
86 |
painCave.isFatal = 1; |
87 |
simError(); |
88 |
} |
89 |
|
90 |
return eamData->getData(); |
91 |
} |
92 |
|
93 |
CubicSpline* EAM::getZ(AtomType* atomType) { |
94 |
EAMParam eamParam = getEAMParam(atomType); |
95 |
int nr = eamParam.nr; |
96 |
RealType dr = eamParam.dr; |
97 |
vector<RealType> rvals; |
98 |
|
99 |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i) * dr); |
100 |
|
101 |
CubicSpline* cs = new CubicSpline(); |
102 |
cs->addPoints(rvals, eamParam.Z); |
103 |
return cs; |
104 |
} |
105 |
|
106 |
RealType EAM::getRcut(AtomType* atomType) { |
107 |
EAMParam eamParam = getEAMParam(atomType); |
108 |
return eamParam.rcut; |
109 |
} |
110 |
|
111 |
CubicSpline* EAM::getRho(AtomType* atomType) { |
112 |
EAMParam eamParam = getEAMParam(atomType); |
113 |
int nr = eamParam.nr; |
114 |
RealType dr = eamParam.dr; |
115 |
vector<RealType> rvals; |
116 |
|
117 |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i) * dr); |
118 |
|
119 |
CubicSpline* cs = new CubicSpline(); |
120 |
cs->addPoints(rvals, eamParam.rho); |
121 |
return cs; |
122 |
} |
123 |
|
124 |
CubicSpline* EAM::getF(AtomType* atomType) { |
125 |
EAMParam eamParam = getEAMParam(atomType); |
126 |
int nrho = eamParam.nrho; |
127 |
RealType drho = eamParam.drho; |
128 |
vector<RealType> rhovals; |
129 |
vector<RealType> scaledF; |
130 |
|
131 |
for (int i = 0; i < nrho; i++) { |
132 |
rhovals.push_back(RealType(i) * drho); |
133 |
scaledF.push_back( eamParam.F[i] * 23.06054 ); |
134 |
} |
135 |
|
136 |
CubicSpline* cs = new CubicSpline(); |
137 |
cs->addPoints(rhovals, scaledF); |
138 |
return cs; |
139 |
} |
140 |
|
141 |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
142 |
EAMParam eamParam1 = getEAMParam(atomType1); |
143 |
EAMParam eamParam2 = getEAMParam(atomType2); |
144 |
CubicSpline* z1 = getZ(atomType1); |
145 |
CubicSpline* z2 = getZ(atomType2); |
146 |
|
147 |
// make the r grid: |
148 |
|
149 |
|
150 |
// we need phi out to the largest value we'll encounter in the radial space; |
151 |
|
152 |
RealType rmax = 0.0; |
153 |
rmax = max(rmax, eamParam1.rcut); |
154 |
rmax = max(rmax, eamParam1.nr * eamParam1.dr); |
155 |
|
156 |
rmax = max(rmax, eamParam2.rcut); |
157 |
rmax = max(rmax, eamParam2.nr * eamParam2.dr); |
158 |
|
159 |
// use the smallest dr (finest grid) to build our grid: |
160 |
|
161 |
RealType dr = min(eamParam1.dr, eamParam2.dr); |
162 |
|
163 |
int nr = int(rmax/dr + 0.5); |
164 |
|
165 |
vector<RealType> rvals; |
166 |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i*dr)); |
167 |
|
168 |
// construct the pair potential: |
169 |
|
170 |
vector<RealType> phivals; |
171 |
RealType phi; |
172 |
RealType r; |
173 |
RealType zi, zj; |
174 |
|
175 |
phivals.push_back(0.0); |
176 |
|
177 |
for (int i = 1; i < rvals.size(); i++ ) { |
178 |
r = rvals[i]; |
179 |
|
180 |
// only use z(r) if we're inside this atom's cutoff radius, |
181 |
// otherwise, we'll use zero for the charge. This effectively |
182 |
// means that our phi grid goes out beyond the cutoff of the |
183 |
// pair potential |
184 |
|
185 |
zi = r <= eamParam1.rcut ? z1->getValueAt(r) : 0.0; |
186 |
zj = r <= eamParam2.rcut ? z2->getValueAt(r) : 0.0; |
187 |
|
188 |
phi = 331.999296 * (zi * zj) / r; |
189 |
|
190 |
phivals.push_back(phi); |
191 |
} |
192 |
|
193 |
CubicSpline* cs = new CubicSpline(); |
194 |
cs->addPoints(rvals, phivals); |
195 |
return cs; |
196 |
} |
197 |
|
198 |
void EAM::initialize() { |
199 |
|
200 |
// set up the mixing method: |
201 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
202 |
string EAMMixMeth = fopts.getEAMMixingMethod(); |
203 |
toUpper(EAMMixMeth); |
204 |
|
205 |
if (EAMMixMeth == "JOHNSON") |
206 |
mixMeth_ = eamJohnson; |
207 |
else if (EAMMixMeth == "DAW") |
208 |
mixMeth_ = eamDaw; |
209 |
else |
210 |
mixMeth_ = eamUnknown; |
211 |
|
212 |
// find all of the EAM atom Types: |
213 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
214 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
215 |
AtomType* at; |
216 |
|
217 |
for (at = atomTypes->beginType(i); at != NULL; |
218 |
at = atomTypes->nextType(i)) { |
219 |
|
220 |
if (at->isEAM()) |
221 |
addType(at); |
222 |
} |
223 |
|
224 |
// find all of the explicit EAM interactions (setfl): |
225 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
226 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
227 |
NonBondedInteractionType* nbt; |
228 |
|
229 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
230 |
nbt = nbiTypes->nextType(j)) { |
231 |
|
232 |
if (nbt->isEAM()) { |
233 |
|
234 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
235 |
|
236 |
GenericData* data = nbt->getPropertyByName("EAM"); |
237 |
if (data == NULL) { |
238 |
sprintf( painCave.errMsg, "EAM::rebuildMixingMap could not find\n" |
239 |
"\tEAM parameters for %s - %s interaction.\n", |
240 |
atypes.first->getName().c_str(), |
241 |
atypes.second->getName().c_str()); |
242 |
painCave.severity = OPENMD_ERROR; |
243 |
painCave.isFatal = 1; |
244 |
simError(); |
245 |
} |
246 |
|
247 |
EAMMixingData* eamData = dynamic_cast<EAMMixingData*>(data); |
248 |
if (eamData == NULL) { |
249 |
sprintf( painCave.errMsg, |
250 |
"EAM::rebuildMixingMap could not convert GenericData to\n" |
251 |
"\tEAMMixingData for %s - %s interaction.\n", |
252 |
atypes.first->getName().c_str(), |
253 |
atypes.second->getName().c_str()); |
254 |
painCave.severity = OPENMD_ERROR; |
255 |
painCave.isFatal = 1; |
256 |
simError(); |
257 |
} |
258 |
|
259 |
EAMMixingParam eamParam = eamData->getData(); |
260 |
|
261 |
vector<RealType> phiAB = eamParam.phi; |
262 |
RealType dr = eamParam.dr; |
263 |
int nr = eamParam.nr; |
264 |
|
265 |
addExplicitInteraction(atypes.first, atypes.second, dr, nr, phiAB); |
266 |
} |
267 |
} |
268 |
initialized_ = true; |
269 |
} |
270 |
|
271 |
|
272 |
|
273 |
void EAM::addType(AtomType* atomType){ |
274 |
|
275 |
EAMAtomData eamAtomData; |
276 |
|
277 |
eamAtomData.rho = getRho(atomType); |
278 |
eamAtomData.F = getF(atomType); |
279 |
eamAtomData.Z = getZ(atomType); |
280 |
eamAtomData.rcut = getRcut(atomType); |
281 |
|
282 |
// add it to the map: |
283 |
AtomTypeProperties atp = atomType->getATP(); |
284 |
|
285 |
pair<map<int,AtomType*>::iterator,bool> ret; |
286 |
ret = EAMlist.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
287 |
if (ret.second == false) { |
288 |
sprintf( painCave.errMsg, |
289 |
"EAM already had a previous entry with ident %d\n", |
290 |
atp.ident); |
291 |
painCave.severity = OPENMD_INFO; |
292 |
painCave.isFatal = 0; |
293 |
simError(); |
294 |
} |
295 |
|
296 |
EAMMap[atomType] = eamAtomData; |
297 |
|
298 |
// Now, iterate over all known types and add to the mixing map: |
299 |
|
300 |
map<AtomType*, EAMAtomData>::iterator it; |
301 |
for( it = EAMMap.begin(); it != EAMMap.end(); ++it) { |
302 |
|
303 |
AtomType* atype2 = (*it).first; |
304 |
|
305 |
EAMInteractionData mixer; |
306 |
mixer.phi = getPhi(atomType, atype2); |
307 |
mixer.explicitlySet = false; |
308 |
|
309 |
pair<AtomType*, AtomType*> key1, key2; |
310 |
key1 = make_pair(atomType, atype2); |
311 |
key2 = make_pair(atype2, atomType); |
312 |
|
313 |
MixingMap[key1] = mixer; |
314 |
if (key2 != key1) { |
315 |
MixingMap[key2] = mixer; |
316 |
} |
317 |
} |
318 |
return; |
319 |
} |
320 |
|
321 |
void EAM::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
322 |
RealType dr, int nr, |
323 |
vector<RealType> phiVals) { |
324 |
|
325 |
// in case these weren't already in the map |
326 |
addType(atype1); |
327 |
addType(atype2); |
328 |
|
329 |
EAMInteractionData mixer; |
330 |
CubicSpline* cs = new CubicSpline(); |
331 |
vector<RealType> rVals; |
332 |
|
333 |
for (int i = 0; i < nr; i++) rVals.push_back(i * dr); |
334 |
|
335 |
cs->addPoints(rVals, phiVals); |
336 |
mixer.phi = cs; |
337 |
mixer.explicitlySet = true; |
338 |
|
339 |
pair<AtomType*, AtomType*> key1, key2; |
340 |
key1 = make_pair(atype1, atype2); |
341 |
key2 = make_pair(atype2, atype1); |
342 |
|
343 |
MixingMap[key1] = mixer; |
344 |
if (key2 != key1) { |
345 |
MixingMap[key2] = mixer; |
346 |
} |
347 |
return; |
348 |
} |
349 |
|
350 |
void EAM::calcDensity(DensityData ddat) { |
351 |
|
352 |
if (!initialized_) initialize(); |
353 |
|
354 |
EAMAtomData data1 = EAMMap[ddat.atype1]; |
355 |
EAMAtomData data2 = EAMMap[ddat.atype2]; |
356 |
|
357 |
if (ddat.rij < data1.rcut) |
358 |
ddat.rho_i_at_j = data1.rho->getValueAt(ddat.rij); |
359 |
|
360 |
if (ddat.rij < data2.rcut) |
361 |
ddat.rho_j_at_i = data2.rho->getValueAt(ddat.rij); |
362 |
|
363 |
return; |
364 |
} |
365 |
|
366 |
void EAM::calcFunctional(FunctionalData fdat) { |
367 |
|
368 |
if (!initialized_) initialize(); |
369 |
|
370 |
EAMAtomData data1 = EAMMap[fdat.atype]; |
371 |
|
372 |
pair<RealType, RealType> result = data1.F->getValueAndDerivativeAt(fdat.rho); |
373 |
|
374 |
fdat.frho = result.first; |
375 |
fdat.dfrhodrho = result.second; |
376 |
return; |
377 |
} |
378 |
|
379 |
|
380 |
void EAM::calcForce(InteractionData idat) { |
381 |
|
382 |
if (!initialized_) initialize(); |
383 |
|
384 |
pair<RealType, RealType> res; |
385 |
|
386 |
if (idat.rij < eamRcut_) { |
387 |
|
388 |
EAMAtomData data1 = EAMMap[idat.atype1]; |
389 |
EAMAtomData data2 = EAMMap[idat.atype2]; |
390 |
|
391 |
// get type-specific cutoff radii |
392 |
|
393 |
RealType rci = data1.rcut; |
394 |
RealType rcj = data2.rcut; |
395 |
|
396 |
RealType rha, drha, rhb, drhb; |
397 |
RealType pha, dpha, phb, dphb; |
398 |
RealType phab, dvpdr; |
399 |
RealType drhoidr, drhojdr, dudr; |
400 |
|
401 |
if (idat.rij < rci) { |
402 |
res = data1.rho->getValueAndDerivativeAt(idat.rij); |
403 |
rha = res.first; |
404 |
drha = res.second; |
405 |
|
406 |
res = MixingMap[make_pair(idat.atype1, idat.atype1)].phi->getValueAndDerivativeAt(idat.rij); |
407 |
pha = res.first; |
408 |
dpha = res.second; |
409 |
} |
410 |
|
411 |
if (idat.rij < rcj) { |
412 |
res = data2.rho->getValueAndDerivativeAt(idat.rij); |
413 |
rhb = res.first; |
414 |
drhb = res.second; |
415 |
|
416 |
res = MixingMap[make_pair(idat.atype2, idat.atype2)].phi->getValueAndDerivativeAt(idat.rij); |
417 |
phb = res.first; |
418 |
dphb = res.second; |
419 |
} |
420 |
|
421 |
phab = 0.0; |
422 |
dvpdr = 0.0; |
423 |
|
424 |
switch(mixMeth_) { |
425 |
case eamJohnson: |
426 |
|
427 |
if (idat.rij < rci) { |
428 |
phab = phab + 0.5 * (rhb / rha) * pha; |
429 |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
430 |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
431 |
} |
432 |
|
433 |
if (idat.rij < rcj) { |
434 |
phab = phab + 0.5 * (rha / rhb) * phb; |
435 |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
436 |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
437 |
} |
438 |
|
439 |
break; |
440 |
|
441 |
case eamDaw: |
442 |
res = MixingMap[make_pair(idat.atype1,idat.atype2)].phi->getValueAndDerivativeAt(idat.rij); |
443 |
phab = res.first; |
444 |
dvpdr = res.second; |
445 |
|
446 |
break; |
447 |
case eamUnknown: |
448 |
default: |
449 |
|
450 |
sprintf(painCave.errMsg, |
451 |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
452 |
); |
453 |
painCave.severity = OPENMD_ERROR; |
454 |
painCave.isFatal = 1; |
455 |
simError(); |
456 |
|
457 |
} |
458 |
|
459 |
drhoidr = drha; |
460 |
drhojdr = drhb; |
461 |
|
462 |
dudr = drhojdr*idat.dfrho1 + drhoidr*idat.dfrho2 + dvpdr; |
463 |
|
464 |
idat.f1 = idat.d * dudr / idat.rij; |
465 |
|
466 |
// particle_pot is the difference between the full potential |
467 |
// and the full potential without the presence of a particular |
468 |
// particle (atom1). |
469 |
// |
470 |
// This reduces the density at other particle locations, so |
471 |
// we need to recompute the density at atom2 assuming atom1 |
472 |
// didn't contribute. This then requires recomputing the |
473 |
// density functional for atom2 as well. |
474 |
// |
475 |
// Most of the particle_pot heavy lifting comes from the |
476 |
// pair interaction, and will be handled by vpair. |
477 |
|
478 |
idat.fshift1 = data1.F->getValueAt( idat.rho1 - rhb ); |
479 |
idat.fshift2 = data1.F->getValueAt( idat.rho2 - rha ); |
480 |
|
481 |
idat.pot += phab; |
482 |
|
483 |
idat.vpair += phab; |
484 |
} |
485 |
|
486 |
return; |
487 |
|
488 |
} |
489 |
} |
490 |
|