1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/EAM.hpp" |
47 |
#include "utils/simError.h" |
48 |
|
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
bool EAM::initialized_ = false; |
53 |
ForceField* EAM::forceField_ = NULL; |
54 |
std::map<int, AtomType*> EAM::EAMlist; |
55 |
std::map<AtomType*, EAMAtomData> EAM::EAMMap; |
56 |
std::map<std::pair<AtomType*, AtomType*>, EAMInteractionData> EAM::MixingMap; |
57 |
|
58 |
EAM* EAM::_instance = NULL; |
59 |
|
60 |
EAM* EAM::Instance() { |
61 |
if (!_instance) { |
62 |
_instance = new EAM(); |
63 |
} |
64 |
return _instance; |
65 |
} |
66 |
|
67 |
EAMParam EAM::getEAMParam(AtomType* atomType) { |
68 |
|
69 |
// Do sanity checking on the AtomType we were passed before |
70 |
// building any data structures: |
71 |
if (!atomType->isEAM()) { |
72 |
sprintf( painCave.errMsg, |
73 |
"EAM::getEAMParam was passed an atomType (%s) that does not\n" |
74 |
"\tappear to be an embedded atom method (EAM) atom.\n", |
75 |
atomType->getName().c_str()); |
76 |
painCave.severity = OPENMD_ERROR; |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} |
80 |
|
81 |
GenericData* data = atomType->getPropertyByName("EAM"); |
82 |
if (data == NULL) { |
83 |
sprintf( painCave.errMsg, "EAM::getEAMParam could not find EAM\n" |
84 |
"\tparameters for atomType %s.\n", |
85 |
atomType->getName().c_str()); |
86 |
painCave.severity = OPENMD_ERROR; |
87 |
painCave.isFatal = 1; |
88 |
simError(); |
89 |
} |
90 |
|
91 |
EAMParamGenericData* eamData = dynamic_cast<EAMParamGenericData*>(data); |
92 |
if (eamData == NULL) { |
93 |
sprintf( painCave.errMsg, |
94 |
"EAM::getEAMParam could not convert GenericData to EAMParam for\n" |
95 |
"\tatom type %s\n", atomType->getName().c_str()); |
96 |
painCave.severity = OPENMD_ERROR; |
97 |
painCave.isFatal = 1; |
98 |
simError(); |
99 |
} |
100 |
|
101 |
return eamData->getData(); |
102 |
} |
103 |
|
104 |
CubicSpline* EAM::getZ(AtomType* atomType) { |
105 |
EAMParam eamParam = getEAMParam(atomType); |
106 |
int nr = eamParam.nr; |
107 |
RealType dr = eamParam.dr; |
108 |
vector<RealType> rvals; |
109 |
|
110 |
for (int i = 0; i < nr; i++) rvals.push_back(i * dr); |
111 |
|
112 |
CubicSpline* cs = new CubicSpline(); |
113 |
cs->addPoints(rvals, eamParam.Z); |
114 |
return cs; |
115 |
} |
116 |
|
117 |
CubicSpline* EAM::getRho(AtomType* atomType) { |
118 |
EAMParam eamParam = getEAMParam(atomType); |
119 |
int nr = eamParam.nr; |
120 |
RealType dr = eamParam.dr; |
121 |
vector<RealType> rvals; |
122 |
|
123 |
for (int i = 0; i < nr; i++) rvals.push_back(i * dr); |
124 |
|
125 |
CubicSpline* cs = new CubicSpline(); |
126 |
cs->addPoints(rvals, eamParam.rho); |
127 |
return cs; |
128 |
} |
129 |
|
130 |
CubicSpline* EAM::getF(AtomType* atomType) { |
131 |
EAMParam eamParam = getEAMParam(atomType); |
132 |
int nrho = eamParam.nrho; |
133 |
RealType drho = eamParam.drho; |
134 |
vector<RealType> rhovals; |
135 |
vector<RealType> scaledF; |
136 |
|
137 |
for (int i = 0; i < nrho; i++) { |
138 |
rhovals.push_back(i * drho); |
139 |
scaledF.push_back( eamParam.F[i] * 23.06054 ); |
140 |
} |
141 |
|
142 |
CubicSpline* cs = new CubicSpline(); |
143 |
cs->addPoints(rhovals, eamParam.F); |
144 |
return cs; |
145 |
} |
146 |
|
147 |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
148 |
EAMParam eamParam1 = getEAMParam(atomType1); |
149 |
EAMParam eamParam2 = getEAMParam(atomType2); |
150 |
CubicSpline* z1 = getZ(atomType1); |
151 |
CubicSpline* z2 = getZ(atomType2); |
152 |
|
153 |
// make the r grid: |
154 |
|
155 |
// set rcut to be the smaller of the two atomic rcuts |
156 |
|
157 |
RealType rcut = eamParam1.rcut < eamParam2.rcut ? |
158 |
eamParam1.rcut : eamParam2.rcut; |
159 |
|
160 |
// use the smallest dr (finest grid) to build our grid: |
161 |
|
162 |
RealType dr = eamParam1.dr < eamParam2.dr ? eamParam1.dr : eamParam2.dr; |
163 |
int nr = int(rcut/dr); |
164 |
vector<RealType> rvals; |
165 |
for (int i = 0; i < nr; i++) rvals.push_back(i*dr); |
166 |
|
167 |
// construct the pair potential: |
168 |
|
169 |
vector<RealType> phivals; |
170 |
RealType phi; |
171 |
RealType r; |
172 |
RealType zi, zj; |
173 |
|
174 |
phivals.push_back(0.0); |
175 |
|
176 |
for (int i = 1; i < rvals.size(); i++ ) { |
177 |
r = rvals[i]; |
178 |
zi = z1->getValueAt(r); |
179 |
zj = z2->getValueAt(r); |
180 |
|
181 |
phi = 331.999296 * (zi * zj) / r; |
182 |
phivals.push_back(phi); |
183 |
} |
184 |
|
185 |
CubicSpline* cs = new CubicSpline(); |
186 |
cs->addPoints(rvals, phivals); |
187 |
return cs; |
188 |
} |
189 |
|
190 |
void EAM::initialize() { |
191 |
|
192 |
// set up the mixing method: |
193 |
ForceFieldOptions ffo = forceField_->getForceFieldOptions(); |
194 |
string EAMMixMeth = toUpperCopy(ffo.getEAMMixingMethod()); |
195 |
|
196 |
if (EAMMixMeth == "JOHNSON") |
197 |
mixMeth_ = eamJohnson; |
198 |
else if (EAMMixMeth == "DAW") |
199 |
mixMeth_ = eamDaw; |
200 |
else |
201 |
mixMeth_ = eamUnknown; |
202 |
|
203 |
// find all of the EAM atom Types: |
204 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
205 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
206 |
AtomType* at; |
207 |
|
208 |
for (at = atomTypes->beginType(i); at != NULL; |
209 |
at = atomTypes->nextType(i)) { |
210 |
|
211 |
if (at->isEAM()) |
212 |
addType(at); |
213 |
} |
214 |
|
215 |
// find all of the explicit EAM interactions (setfl): |
216 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
217 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
218 |
NonBondedInteractionType* nbt; |
219 |
|
220 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
221 |
nbt = nbiTypes->nextType(j)) { |
222 |
|
223 |
if (nbt->isEAM()) { |
224 |
|
225 |
std::pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
226 |
|
227 |
GenericData* data = nbt->getPropertyByName("EAM"); |
228 |
if (data == NULL) { |
229 |
sprintf( painCave.errMsg, "EAM::rebuildMixingMap could not find\n" |
230 |
"\tEAM parameters for %s - %s interaction.\n", |
231 |
atypes.first->getName().c_str(), |
232 |
atypes.second->getName().c_str()); |
233 |
painCave.severity = OPENMD_ERROR; |
234 |
painCave.isFatal = 1; |
235 |
simError(); |
236 |
} |
237 |
|
238 |
EAMMixingData* eamData = dynamic_cast<EAMMixingData*>(data); |
239 |
if (eamData == NULL) { |
240 |
sprintf( painCave.errMsg, |
241 |
"EAM::rebuildMixingMap could not convert GenericData to\n" |
242 |
"\tEAMMixingData for %s - %s interaction.\n", |
243 |
atypes.first->getName().c_str(), |
244 |
atypes.second->getName().c_str()); |
245 |
painCave.severity = OPENMD_ERROR; |
246 |
painCave.isFatal = 1; |
247 |
simError(); |
248 |
} |
249 |
|
250 |
EAMMix eamParam = eamData->getData(); |
251 |
|
252 |
vector<RealType> phiAB = eamParam.phiAB; |
253 |
RealType dr = eamParam.dr; |
254 |
int nr = eamParam.nr; |
255 |
|
256 |
addExplicitInteraction(atypes.first, atypes.second, dr, nr, phiAB); |
257 |
} |
258 |
} |
259 |
initialized_ = true; |
260 |
} |
261 |
|
262 |
|
263 |
|
264 |
void EAM::addType(AtomType* atomType){ |
265 |
|
266 |
EAMAtomData eamAtomData; |
267 |
|
268 |
eamAtomData.rho = getRho(atomType); |
269 |
eamAtomData.F = getF(atomType); |
270 |
eamAtomData.Z = getZ(atomType); |
271 |
eamAtomData.rcut = getRcut(atomType); |
272 |
|
273 |
// add it to the map: |
274 |
AtomTypeProperties atp = atomType->getATP(); |
275 |
|
276 |
std::pair<std::map<int,AtomType*>::iterator,bool> ret; |
277 |
ret = EAMlist.insert( std::pair<int, AtomType*>(atp.ident, atomType) ); |
278 |
if (ret.second == false) { |
279 |
sprintf( painCave.errMsg, |
280 |
"EAM already had a previous entry with ident %d\n", |
281 |
atp.ident); |
282 |
painCave.severity = OPENMD_INFO; |
283 |
painCave.isFatal = 0; |
284 |
simError(); |
285 |
} |
286 |
|
287 |
EAMMap[atomType] = eamAtomData; |
288 |
|
289 |
// Now, iterate over all known types and add to the mixing map: |
290 |
|
291 |
std::map<int, AtomType*>::iterator it; |
292 |
for( it = EAMMap.begin(); it != EAMMap.end(); ++it) { |
293 |
|
294 |
AtomType* atype2 = (*it).second; |
295 |
|
296 |
EAMInteractionData mixer; |
297 |
mixer.phi = getPhi(atomType, atype2); |
298 |
mixer.explicitlySet = false; |
299 |
|
300 |
std::pair<AtomType*, AtomType*> key1, key2; |
301 |
key1 = std::make_pair(atomType, atype2); |
302 |
key2 = std::make_pair(atype2, atomType); |
303 |
|
304 |
MixingMap[key1] = mixer; |
305 |
if (key2 != key1) { |
306 |
MixingMap[key2] = mixer; |
307 |
} |
308 |
} |
309 |
return; |
310 |
} |
311 |
|
312 |
void EAM::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
313 |
RealType dr, int nr, |
314 |
vector<RealType> phiVals) { |
315 |
|
316 |
// in case these weren't already in the map |
317 |
addType(atype1); |
318 |
addType(atype2); |
319 |
|
320 |
EAMInteractionData mixer; |
321 |
CubicSpline* cs = new CubicSpline(); |
322 |
vector<RealType> rvals; |
323 |
|
324 |
for (int i = 0; i < nr; i++) rvals.push_back(i * dr); |
325 |
|
326 |
cs->addPoints(rVals, phiVals); |
327 |
mixer.phi = cs; |
328 |
mixer.explicitlySet = true; |
329 |
|
330 |
std::pair<AtomType*, AtomType*> key1, key2; |
331 |
key1 = std::make_pair(atype1, atype2); |
332 |
key2 = std::make_pair(atype2, atype1); |
333 |
|
334 |
MixingMap[key1] = mixer; |
335 |
if (key2 != key1) { |
336 |
MixingMap[key2] = mixer; |
337 |
} |
338 |
return; |
339 |
} |
340 |
|
341 |
void EAM::calcDensity(AtomType* at1, AtomType* at2, Vector3d d, |
342 |
RealType rij, RealType r2, RealType rho_i_at_j, |
343 |
RealType rho_j_at_i) { |
344 |
|
345 |
if (!initialized_) initialize(); |
346 |
|
347 |
EAMAtomData data1 = EAMMap[at1]; |
348 |
EAMAtomData data2 = EAMMap[at2]; |
349 |
|
350 |
if (rij < data1.rcut) rho_i_at_j = data1.rho->getValueAt(rij); |
351 |
if (rij < data2.rcut) rho_j_at_i = data2.rho->getValueAt(rij); |
352 |
return; |
353 |
} |
354 |
|
355 |
void EAM::calcFunctional(AtomType* at1, RealType rho, RealType frho, |
356 |
RealType dfrhodrho) { |
357 |
|
358 |
if (!initialized_) initialize(); |
359 |
|
360 |
EAMAtomData data1 = EAMMap[at1]; |
361 |
|
362 |
pair<RealType, RealType> result = data1.F->getValueAndDerivativeAt(rho); |
363 |
|
364 |
frho = result.first; |
365 |
dfrhodrho = result.second; |
366 |
return; |
367 |
} |
368 |
|
369 |
|
370 |
void EAM::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
371 |
RealType rij, RealType r2, RealType sw, |
372 |
RealType &vpair, RealType &pot, Vector3d &f1, |
373 |
RealType rho1, RealType rho2, RealType dfrho1, |
374 |
RealType dfrho2, RealType fshift1, RealType fshift2) { |
375 |
|
376 |
if (!initialized_) initialize(); |
377 |
|
378 |
pair<RealType, RealType> res; |
379 |
|
380 |
if (rij < eamRcut_) { |
381 |
|
382 |
EAMAtomData data1 = EAMMap[at1]; |
383 |
EAMAtomData data2 = EAMMap[at2]; |
384 |
|
385 |
// get type-specific cutoff radii |
386 |
|
387 |
RealType rci = data1.rcut; |
388 |
RealType rcj = data2.rcut; |
389 |
|
390 |
RealType rha, drha, rhb, drhb; |
391 |
RealType pha, dpha, phb, dphb; |
392 |
RealType phab, dvpdr; |
393 |
RealType drhoidr, drhojdr, dudr; |
394 |
|
395 |
if (rij < rci) { |
396 |
res = data1.rho->getValueAndDerivativeAt(rij); |
397 |
rha = res.first; |
398 |
drha = res.second; |
399 |
|
400 |
res = MixingMap[make_pair(at1, at1)].phi->getValueAndDerivativeAt(rij); |
401 |
pha = res.first; |
402 |
dpha = res.second; |
403 |
} |
404 |
|
405 |
if (rij < rcj) { |
406 |
res = data2.rho->getValueAndDerivativeAt(rij); |
407 |
rhb = res.first; |
408 |
drhb = res.second; |
409 |
|
410 |
res = MixingMap[make_pair(at2, at2)].phi->getValueAndDerivativeAt(rij); |
411 |
phb = res.first; |
412 |
dphb = res.second; |
413 |
} |
414 |
|
415 |
phab = 0.0; |
416 |
dvpdr = 0.0; |
417 |
|
418 |
switch(mixMeth_) { |
419 |
case eamJohnson: |
420 |
|
421 |
if (rij < rci) { |
422 |
phab = phab + 0.5 * (rhb / rha) * pha; |
423 |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
424 |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
425 |
} |
426 |
|
427 |
if (rij < rcj) { |
428 |
phab = phab + 0.5 * (rha / rhb) * phb; |
429 |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
430 |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
431 |
} |
432 |
|
433 |
break; |
434 |
|
435 |
case eamDaw: |
436 |
|
437 |
res = MixingMap[make_pair(at1,at2)].phi->getValueAndDerivativeAt(rij); |
438 |
phab = res.first; |
439 |
dvpdr = res.second; |
440 |
|
441 |
break; |
442 |
case eamUnknown: |
443 |
default: |
444 |
|
445 |
sprintf(painCave.errMsg, |
446 |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
447 |
); |
448 |
painCave.severity = OPENMD_ERROR; |
449 |
painCave.isFatal = 1; |
450 |
simError(); |
451 |
|
452 |
} |
453 |
|
454 |
drhoidr = drha; |
455 |
drhojdr = drhb; |
456 |
|
457 |
dudr = drhojdr*dfrhodrho_i + drhoidr*dfrhodrho_j + dvpdr; |
458 |
|
459 |
f1 = d * dudr / rij; |
460 |
|
461 |
// particle_pot is the difference between the full potential |
462 |
// and the full potential without the presence of a particular |
463 |
// particle (atom1). |
464 |
// |
465 |
// This reduces the density at other particle locations, so |
466 |
// we need to recompute the density at atom2 assuming atom1 |
467 |
// didn't contribute. This then requires recomputing the |
468 |
// density functional for atom2 as well. |
469 |
// |
470 |
// Most of the particle_pot heavy lifting comes from the |
471 |
// pair interaction, and will be handled by vpair. |
472 |
|
473 |
fshift_i = data1.F->getValueAt( rho_i - rhb ); |
474 |
fshift_j = data1.F->getValueAt( rho_j - rha ); |
475 |
|
476 |
pot += phab; |
477 |
|
478 |
vpair += phab; |
479 |
} |
480 |
|
481 |
return; |
482 |
|
483 |
} |
484 |
|
485 |
|
486 |
void EAM::calc_eam_prepair_rho(int *atid1, int *atid2, RealType *d, |
487 |
RealType *rij, RealType *r2, |
488 |
RealType* rho_i_at_j, RealType* rho_j_at_i){ |
489 |
if (!initialized_) initialize(); |
490 |
|
491 |
AtomType* atype1 = EAMlist[*atid1]; |
492 |
AtomType* atype2 = EAMlist[*atid2]; |
493 |
|
494 |
Vector3d disp(d[0], d[1], d[2]); |
495 |
|
496 |
calcDensity(atype1, atype2, disp, *rij, *r2, *rho_i_at_j, *rho_j_at_i); |
497 |
|
498 |
return; |
499 |
} |
500 |
|
501 |
void EAM::calc_eam_preforce_Frho(int *atid1, RealType *rho, RealType *frho, |
502 |
RealType *dfrhodrho) { |
503 |
|
504 |
if (!initialized_) initialize(); |
505 |
|
506 |
AtomType* atype1 = EAMlist[*atid1]; |
507 |
|
508 |
calcFunctional(atype1, *rho, *frho, *dfrhodrho); |
509 |
|
510 |
return; |
511 |
} |
512 |
|
513 |
void EAM::do_eam_pair(int *atid1, int *atid2, RealType *d, RealType *rij, |
514 |
RealType *r2, RealType *sw, RealType *vpair, |
515 |
RealType *pot, RealType *f1, RealType *rho1, |
516 |
RealType *rho2, RealType *dfrho1, RealType *dfrho2, |
517 |
RealType *fshift1, RealType *fshift2) { |
518 |
|
519 |
if (!initialized_) initialize(); |
520 |
|
521 |
AtomType* atype1 = EAMMap[*atid1]; |
522 |
AtomType* atype2 = EAMMap[*atid2]; |
523 |
|
524 |
Vector3d disp(d[0], d[1], d[2]); |
525 |
Vector3d frc(f1[0], f1[1], f1[2]); |
526 |
|
527 |
calcForce(atype1, atype2, disp, *rij, *r2, *sw, *vpair, *pot, frc, |
528 |
*rho1, *rho2, *dfrho1, *dfrho2, *fshift1, *fshift2); |
529 |
|
530 |
f1[0] = frc.x(); |
531 |
f1[1] = frc.y(); |
532 |
f1[2] = frc.z(); |
533 |
|
534 |
return; |
535 |
} |
536 |
|
537 |
void EAM::setCutoffEAM(RealType *thisRcut) { |
538 |
eamRcut_ = thisRcut; |
539 |
} |
540 |
} |
541 |
|
542 |
extern "C" { |
543 |
|
544 |
#define fortranCalcDensity FC_FUNC(calc_eam_prepair_rho, CALC_EAM_PREPAIR_RHO) |
545 |
#define fortranCalcFunctional FC_FUNC(calc_eam_preforce_frho, CALC_EAM_PREFORCE_FRHO) |
546 |
#define fortranCalcForce FC_FUNC(do_eam_pair, DO_EAM_PAIR) |
547 |
#define fortranSetCutoffEAM FC_FUNC(setcutoffeam, SETCUTOFFEAM) |
548 |
|
549 |
RealType fortranCalcDensity(int *atid1, int *atid2, RealType *d, |
550 |
RealType *rij, RealType *r2, |
551 |
RealType *rho_i_at_j, RealType *rho_j_at_i) { |
552 |
|
553 |
return OpenMD::EAM::Instance()->calc_eam_prepair_rho(*atid1, *atid2, *d, |
554 |
*rij, *r2, |
555 |
*rho_i_at_j, |
556 |
*rho_j_at_i); |
557 |
} |
558 |
RealType fortranCalcFunctional(int *atid1, RealType *rho, RealType *frho, |
559 |
RealType *dfrhodrho) { |
560 |
|
561 |
return OpenMD::EAM::Instance()->calc_eam_preforce_Frho(*atid1, |
562 |
*rho, |
563 |
*frho, |
564 |
*dfrhodrho); |
565 |
|
566 |
} |
567 |
void fortranSetEAMCutoff(RealType *rcut) { |
568 |
return OpenMD::EAM::Instance()->setCutoffEAM(rcut); |
569 |
} |
570 |
void fortranDoEAMPair(int *atid1, int *atid2, RealType *d, RealType *rij, |
571 |
RealType *r2, RealType *sw, RealType *vpair, |
572 |
RealType *pot, RealType *f1, RealType *rho1, |
573 |
RealType *rho2, RealType *dfrho1, RealType *dfrho2, |
574 |
RealType *fshift1, RealType *fshift2){ |
575 |
|
576 |
return OpenMD::EAM::Instance()->do_eam_pair(*atid1, *atid2, *d, *rij, |
577 |
*r2, *sw, *vpair, |
578 |
*pot, *f1, *rho1, |
579 |
*rho2, *dfrho1, *dfrho2, |
580 |
*fshift1, *fshift2); |
581 |
} |
582 |
} |