1 |
< |
#include "OOPSEMinimizer.hpp" |
2 |
< |
#include "Utility.hpp" |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
> |
* notice, this list of conditions and the following disclaimer. |
11 |
> |
* |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
> |
* notice, this list of conditions and the following disclaimer in the |
14 |
> |
* documentation and/or other materials provided with the |
15 |
> |
* distribution. |
16 |
> |
* |
17 |
> |
* This software is provided "AS IS," without a warranty of any |
18 |
> |
* kind. All express or implied conditions, representations and |
19 |
> |
* warranties, including any implied warranty of merchantability, |
20 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
> |
* be liable for any damages suffered by licensee as a result of |
23 |
> |
* using, modifying or distributing the software or its |
24 |
> |
* derivatives. In no event will the University of Notre Dame or its |
25 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
> |
* direct, indirect, special, consequential, incidental or punitive |
27 |
> |
* damages, however caused and regardless of the theory of liability, |
28 |
> |
* arising out of the use of or inability to use software, even if the |
29 |
> |
* University of Notre Dame has been advised of the possibility of |
30 |
> |
* such damages. |
31 |
> |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
#include "minimizers/SDMinimizer.hpp" |
43 |
> |
#include "utils/Utility.hpp" |
44 |
> |
#ifdef IS_MPI |
45 |
> |
#include <mpi.h> |
46 |
> |
#endif |
47 |
|
|
4 |
– |
SDMinimizer::SDMinimizer(SimInfo *theInfo, ForceFields* the_ff , |
5 |
– |
MinimizerParameterSet * param) |
6 |
– |
:OOPSEMinimizer(theInfo, the_ff, param){ |
48 |
|
|
49 |
< |
direction.resize(ndim); |
50 |
< |
stepSize = paramSet->getStepSize(); |
51 |
< |
} |
49 |
> |
namespace OpenMD { |
50 |
> |
SDMinimizer::SDMinimizer(SimInfo* info) : Minimizer(info) { |
51 |
> |
direction.resize(ndim); |
52 |
> |
stepSize = paramSet->getStepSize(); |
53 |
> |
} |
54 |
|
|
55 |
< |
void SDMinimizer::init(){ |
55 |
> |
void SDMinimizer::init() { |
56 |
> |
calcG(); |
57 |
|
|
58 |
< |
calcG(); |
59 |
< |
|
60 |
< |
for(int i = 0; i < direction.size(); i++){ |
61 |
< |
direction[i] = -curG[i]; |
18 |
< |
} |
19 |
< |
} |
58 |
> |
for(int i = 0; i < direction.size(); i++) { |
59 |
> |
direction[i] = -curG[i]; |
60 |
> |
} |
61 |
> |
} |
62 |
|
|
63 |
< |
int SDMinimizer::step(){ |
64 |
< |
int lsStatus; |
23 |
< |
|
24 |
< |
prevF = curF; |
25 |
< |
|
26 |
< |
//optimize along the search direction and reset minimum point value |
27 |
< |
lsStatus = doLineSearch(direction, stepSize); |
63 |
> |
int SDMinimizer::step() { |
64 |
> |
int lsStatus; |
65 |
|
|
66 |
< |
if (lsStatus < 0) |
30 |
< |
return -1; |
31 |
< |
else |
32 |
< |
return 1; |
33 |
< |
} |
66 |
> |
prevF = curF; |
67 |
|
|
68 |
< |
void SDMinimizer::prepareStep(){ |
69 |
< |
|
37 |
< |
for(int i = 0; i < direction.size(); i++){ |
38 |
< |
direction[i] = -curG[i]; |
39 |
< |
} |
40 |
< |
} |
41 |
< |
int SDMinimizer::checkConvg(){ |
42 |
< |
double fTol; |
43 |
< |
double relativeFTol; // relative tolerance |
44 |
< |
double deltaF; |
45 |
< |
double gTol; |
46 |
< |
double relativeGTol; |
47 |
< |
double gnorm; |
48 |
< |
|
68 |
> |
//optimize along the search direction and reset minimum point value |
69 |
> |
lsStatus = doLineSearch(direction, stepSize); |
70 |
|
|
71 |
< |
// test function tolerance test |
72 |
< |
fTol =paramSet->getFTol(); |
73 |
< |
relativeFTol = fTol * std::max(1.0,fabs(curF)); // relative tolerance |
74 |
< |
deltaF = prevF - curF; |
75 |
< |
|
55 |
< |
if (fabs(deltaF) <= relativeFTol) { |
71 |
> |
if (lsStatus < 0) |
72 |
> |
return -1; |
73 |
> |
else |
74 |
> |
return 1; |
75 |
> |
} |
76 |
|
|
77 |
< |
if (bVerbose){ |
78 |
< |
cout << "function value tolerance test passed" << endl; |
79 |
< |
cout << "ftol = " << fTol |
60 |
< |
<< "\tdeltaf = " << deltaF<< endl; |
77 |
> |
void SDMinimizer::prepareStep() { |
78 |
> |
for(int i = 0; i < direction.size(); i++) { |
79 |
> |
direction[i] = -curG[i]; |
80 |
|
} |
62 |
– |
return CONVG_FTOL; |
81 |
|
} |
64 |
– |
|
65 |
– |
//gradient tolerance test |
66 |
– |
gTol = paramSet->getGTol(); |
67 |
– |
relativeGTol = gTol * std::max(1.0,fabs(curF)); |
82 |
|
|
83 |
+ |
int SDMinimizer::checkConvg() { |
84 |
+ |
RealType fTol; |
85 |
+ |
RealType relativeFTol; // relative tolerance |
86 |
+ |
RealType deltaF; |
87 |
+ |
RealType gTol; |
88 |
+ |
RealType relativeGTol; |
89 |
+ |
RealType gnorm; |
90 |
+ |
|
91 |
+ |
// test function tolerance test |
92 |
+ |
fTol = paramSet->getFTol(); |
93 |
+ |
relativeFTol = fTol * std::max(1.0, fabs(curF)); // relative tolerance |
94 |
+ |
deltaF = prevF - curF; |
95 |
+ |
|
96 |
+ |
if (fabs(deltaF) <= relativeFTol) { |
97 |
+ |
if (bVerbose) { |
98 |
+ |
std::cout << "function value tolerance test passed" << std::endl; |
99 |
+ |
std::cout << "ftol = " << fTol << "\tdeltaf = " << deltaF << std::endl; |
100 |
+ |
} |
101 |
+ |
|
102 |
+ |
return CONVG_FTOL; |
103 |
+ |
} |
104 |
+ |
|
105 |
+ |
//gradient tolerance test |
106 |
+ |
gTol = paramSet->getGTol(); |
107 |
+ |
relativeGTol = gTol * std::max(1.0, fabs(curF)); |
108 |
+ |
|
109 |
|
#ifndef IS_MPI |
110 |
< |
gnorm = sqrt(dotProduct(curG, curG)); |
110 |
> |
|
111 |
> |
gnorm = sqrt(dotProduct(curG, curG)); |
112 |
> |
|
113 |
|
#else |
72 |
– |
double localDP; |
73 |
– |
double globalDP; |
114 |
|
|
115 |
< |
localDP = dotProduct(curG, curG); |
116 |
< |
MPI_Allreduce(&localDP, &globalDP, 1, MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
117 |
< |
gnorm = sqrt(globalDP); |
115 |
> |
RealType localDP; |
116 |
> |
RealType globalDP; |
117 |
> |
|
118 |
> |
localDP = dotProduct(curG, curG); |
119 |
> |
MPI_Allreduce(&localDP, &globalDP, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
120 |
> |
gnorm = sqrt(globalDP); |
121 |
> |
|
122 |
|
#endif |
123 |
|
|
124 |
< |
if (gnorm <= relativeGTol) { |
125 |
< |
cout << "gradient tolerance test" << endl; |
126 |
< |
cout << "gnorm = " << gnorm |
127 |
< |
<< "\trelativeGTol = " << relativeGTol<< endl; |
128 |
< |
return CONVG_GTOL; |
129 |
< |
} |
86 |
< |
|
87 |
< |
//absolute gradient tolerance test |
124 |
> |
if (gnorm <= relativeGTol) { |
125 |
> |
std::cout << "gradient tolerance test" << std::endl; |
126 |
> |
std::cout << "gnorm = " << gnorm << "\trelativeGTol = " << relativeGTol |
127 |
> |
<< std::endl; |
128 |
> |
return CONVG_GTOL; |
129 |
> |
} |
130 |
|
|
131 |
< |
if (gnorm <= gTol) { |
132 |
< |
cout << "absolute gradient tolerance test" << endl; |
133 |
< |
cout << "gnorm = " << gnorm |
134 |
< |
<< "\tgTol = " << gTol<< endl; |
135 |
< |
return CONVG_ABSGTOL; |
131 |
> |
//absolute gradient tolerance test |
132 |
> |
|
133 |
> |
if (gnorm <= gTol) { |
134 |
> |
std::cout << "absolute gradient tolerance test" << std::endl; |
135 |
> |
std::cout << "gnorm = " << gnorm << "\tgTol = " << gTol << std::endl; |
136 |
> |
return CONVG_ABSGTOL; |
137 |
> |
} |
138 |
> |
|
139 |
> |
return CONVG_UNCONVG; |
140 |
|
} |
141 |
|
|
96 |
– |
return CONVG_UNCONVG; |
142 |
|
} |
98 |
– |
|