1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <cmath> |
44 |
|
45 |
|
46 |
#include "io/StatWriter.hpp" |
47 |
#include "minimizers/Minimizer.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#ifdef IS_MPI |
50 |
#include <mpi.h> |
51 |
#endif |
52 |
namespace OpenMD { |
53 |
RealType dotProduct(const std::vector<RealType>& v1, const std::vector<RealType>& v2) { |
54 |
if (v1.size() != v2.size()) { |
55 |
|
56 |
} |
57 |
|
58 |
|
59 |
RealType result = 0.0; |
60 |
for (unsigned int i = 0; i < v1.size(); ++i) { |
61 |
result += v1[i] * v2[i]; |
62 |
} |
63 |
|
64 |
return result; |
65 |
} |
66 |
|
67 |
Minimizer::Minimizer(SimInfo* rhs) : |
68 |
info(rhs), usingShake(false) { |
69 |
|
70 |
forceMan = new ForceManager(info); |
71 |
paramSet= new MinimizerParameterSet(info), calcDim(); |
72 |
curX = getCoor(); |
73 |
curG.resize(ndim); |
74 |
|
75 |
} |
76 |
|
77 |
Minimizer::~Minimizer() { |
78 |
delete forceMan; |
79 |
delete paramSet; |
80 |
} |
81 |
|
82 |
void Minimizer::calcEnergyGradient(std::vector<RealType> &x, |
83 |
std::vector<RealType> &grad, RealType&energy, int&status) { |
84 |
|
85 |
SimInfo::MoleculeIterator i; |
86 |
Molecule::IntegrableObjectIterator j; |
87 |
Molecule* mol; |
88 |
StuntDouble* integrableObject; |
89 |
std::vector<RealType> myGrad; |
90 |
int shakeStatus; |
91 |
|
92 |
status = 1; |
93 |
|
94 |
setCoor(x); |
95 |
|
96 |
if (usingShake) { |
97 |
shakeStatus = shakeR(); |
98 |
} |
99 |
|
100 |
energy = calcPotential(); |
101 |
|
102 |
if (usingShake) { |
103 |
shakeStatus = shakeF(); |
104 |
} |
105 |
|
106 |
x = getCoor(); |
107 |
|
108 |
int index = 0; |
109 |
|
110 |
for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) { |
111 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
112 |
integrableObject = mol->nextIntegrableObject(j)) { |
113 |
|
114 |
myGrad = integrableObject->getGrad(); |
115 |
for (unsigned int k = 0; k < myGrad.size(); ++k) { |
116 |
|
117 |
grad[index++] = myGrad[k]; |
118 |
} |
119 |
} |
120 |
} |
121 |
|
122 |
} |
123 |
|
124 |
void Minimizer::setCoor(std::vector<RealType> &x) { |
125 |
Vector3d position; |
126 |
Vector3d eulerAngle; |
127 |
SimInfo::MoleculeIterator i; |
128 |
Molecule::IntegrableObjectIterator j; |
129 |
Molecule* mol; |
130 |
StuntDouble* integrableObject; |
131 |
int index = 0; |
132 |
|
133 |
for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) { |
134 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
135 |
integrableObject = mol->nextIntegrableObject(j)) { |
136 |
|
137 |
position[0] = x[index++]; |
138 |
position[1] = x[index++]; |
139 |
position[2] = x[index++]; |
140 |
|
141 |
integrableObject->setPos(position); |
142 |
|
143 |
if (integrableObject->isDirectional()) { |
144 |
eulerAngle[0] = x[index++]; |
145 |
eulerAngle[1] = x[index++]; |
146 |
eulerAngle[2] = x[index++]; |
147 |
|
148 |
integrableObject->setEuler(eulerAngle); |
149 |
} |
150 |
} |
151 |
} |
152 |
|
153 |
} |
154 |
|
155 |
std::vector<RealType> Minimizer::getCoor() { |
156 |
Vector3d position; |
157 |
Vector3d eulerAngle; |
158 |
SimInfo::MoleculeIterator i; |
159 |
Molecule::IntegrableObjectIterator j; |
160 |
Molecule* mol; |
161 |
StuntDouble* integrableObject; |
162 |
int index = 0; |
163 |
std::vector<RealType> x(getDim()); |
164 |
|
165 |
for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) { |
166 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
167 |
integrableObject = mol->nextIntegrableObject(j)) { |
168 |
|
169 |
position = integrableObject->getPos(); |
170 |
x[index++] = position[0]; |
171 |
x[index++] = position[1]; |
172 |
x[index++] = position[2]; |
173 |
|
174 |
if (integrableObject->isDirectional()) { |
175 |
eulerAngle = integrableObject->getEuler(); |
176 |
x[index++] = eulerAngle[0]; |
177 |
x[index++] = eulerAngle[1]; |
178 |
x[index++] = eulerAngle[2]; |
179 |
} |
180 |
} |
181 |
} |
182 |
return x; |
183 |
} |
184 |
|
185 |
|
186 |
/* |
187 |
int Minimizer::shakeR() { |
188 |
int i, j; |
189 |
|
190 |
int done; |
191 |
|
192 |
RealType posA[3], posB[3]; |
193 |
|
194 |
RealType velA[3], velB[3]; |
195 |
|
196 |
RealType pab[3]; |
197 |
|
198 |
RealType rab[3]; |
199 |
|
200 |
int a, b, |
201 |
ax, ay, |
202 |
az, bx, |
203 |
by, bz; |
204 |
|
205 |
RealType rma, rmb; |
206 |
|
207 |
RealType dx, dy, |
208 |
dz; |
209 |
|
210 |
RealType rpab; |
211 |
|
212 |
RealType rabsq, pabsq, |
213 |
rpabsq; |
214 |
|
215 |
RealType diffsq; |
216 |
|
217 |
RealType gab; |
218 |
|
219 |
int iteration; |
220 |
|
221 |
for(i = 0; i < nAtoms; i++) { |
222 |
moving[i] = 0; |
223 |
|
224 |
moved[i] = 1; |
225 |
} |
226 |
|
227 |
iteration = 0; |
228 |
|
229 |
done = 0; |
230 |
|
231 |
while (!done && (iteration < maxIteration)) { |
232 |
done = 1; |
233 |
|
234 |
for(i = 0; i < nConstrained; i++) { |
235 |
a = constrainedA[i]; |
236 |
|
237 |
b = constrainedB[i]; |
238 |
|
239 |
ax = (a * 3) + 0; |
240 |
|
241 |
ay = (a * 3) + 1; |
242 |
|
243 |
az = (a * 3) + 2; |
244 |
|
245 |
bx = (b * 3) + 0; |
246 |
|
247 |
by = (b * 3) + 1; |
248 |
|
249 |
bz = (b * 3) + 2; |
250 |
|
251 |
if (moved[a] || moved[b]) { |
252 |
posA = atoms[a]->getPos(); |
253 |
|
254 |
posB = atoms[b]->getPos(); |
255 |
|
256 |
for(j = 0; j < 3; j++) |
257 |
pab[j] = posA[j] - posB[j]; |
258 |
|
259 |
//periodic boundary condition |
260 |
|
261 |
info->wrapVector(pab); |
262 |
|
263 |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
264 |
|
265 |
rabsq = constrainedDsqr[i]; |
266 |
|
267 |
diffsq = rabsq - pabsq; |
268 |
|
269 |
// the original rattle code from alan tidesley |
270 |
|
271 |
if (fabs(diffsq) > (tol * rabsq * 2)) { |
272 |
rab[0] = oldPos[ax] - oldPos[bx]; |
273 |
|
274 |
rab[1] = oldPos[ay] - oldPos[by]; |
275 |
|
276 |
rab[2] = oldPos[az] - oldPos[bz]; |
277 |
|
278 |
info->wrapVector(rab); |
279 |
|
280 |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
281 |
|
282 |
rpabsq = rpab * rpab; |
283 |
|
284 |
if (rpabsq < (rabsq * -diffsq)) { |
285 |
|
286 |
#ifdef IS_MPI |
287 |
|
288 |
a = atoms[a]->getGlobalIndex(); |
289 |
|
290 |
b = atoms[b]->getGlobalIndex(); |
291 |
|
292 |
#endif //is_mpi |
293 |
|
294 |
//std::cerr << "Waring: constraint failure" << std::endl; |
295 |
|
296 |
gab = sqrt(rabsq / pabsq); |
297 |
|
298 |
rab[0] = (posA[0] - posB[0]) |
299 |
* gab; |
300 |
|
301 |
rab[1] = (posA[1] - posB[1]) |
302 |
* gab; |
303 |
|
304 |
rab[2] = (posA[2] - posB[2]) |
305 |
* gab; |
306 |
|
307 |
info->wrapVector(rab); |
308 |
|
309 |
rpab = |
310 |
rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
311 |
} |
312 |
|
313 |
//rma = 1.0 / atoms[a]->getMass(); |
314 |
|
315 |
//rmb = 1.0 / atoms[b]->getMass(); |
316 |
|
317 |
rma = 1.0; |
318 |
|
319 |
rmb = 1.0; |
320 |
|
321 |
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
322 |
|
323 |
dx = rab[0]* |
324 |
gab; |
325 |
|
326 |
dy = rab[1]* |
327 |
gab; |
328 |
|
329 |
dz = rab[2]* |
330 |
gab; |
331 |
|
332 |
posA[0] += rma *dx; |
333 |
|
334 |
posA[1] += rma *dy; |
335 |
|
336 |
posA[2] += rma *dz; |
337 |
|
338 |
atoms[a]->setPos(posA); |
339 |
|
340 |
posB[0] -= rmb *dx; |
341 |
|
342 |
posB[1] -= rmb *dy; |
343 |
|
344 |
posB[2] -= rmb *dz; |
345 |
|
346 |
atoms[b]->setPos(posB); |
347 |
|
348 |
moving[a] = 1; |
349 |
|
350 |
moving[b] = 1; |
351 |
|
352 |
done = 0; |
353 |
} |
354 |
} |
355 |
} |
356 |
|
357 |
for(i = 0; i < nAtoms; i++) { |
358 |
moved[i] = moving[i]; |
359 |
|
360 |
moving[i] = 0; |
361 |
} |
362 |
|
363 |
iteration++; |
364 |
} |
365 |
|
366 |
if (!done) { |
367 |
std::cerr << "Waring: can not constraint within maxIteration" |
368 |
<< std::endl; |
369 |
|
370 |
return -1; |
371 |
} else |
372 |
return 1; |
373 |
} |
374 |
|
375 |
//remove constraint force along the bond direction |
376 |
|
377 |
|
378 |
int Minimizer::shakeF() { |
379 |
int i, j; |
380 |
|
381 |
int done; |
382 |
|
383 |
RealType posA[3], posB[3]; |
384 |
|
385 |
RealType frcA[3], frcB[3]; |
386 |
|
387 |
RealType rab[3], fpab[3]; |
388 |
|
389 |
int a, b, |
390 |
ax, ay, |
391 |
az, bx, |
392 |
by, bz; |
393 |
|
394 |
RealType rma, rmb; |
395 |
|
396 |
RealType rvab; |
397 |
|
398 |
RealType gab; |
399 |
|
400 |
RealType rabsq; |
401 |
|
402 |
RealType rfab; |
403 |
|
404 |
int iteration; |
405 |
|
406 |
for(i = 0; i < nAtoms; i++) { |
407 |
moving[i] = 0; |
408 |
|
409 |
moved[i] = 1; |
410 |
} |
411 |
|
412 |
done = 0; |
413 |
|
414 |
iteration = 0; |
415 |
|
416 |
while (!done && (iteration < maxIteration)) { |
417 |
done = 1; |
418 |
|
419 |
for(i = 0; i < nConstrained; i++) { |
420 |
a = constrainedA[i]; |
421 |
|
422 |
b = constrainedB[i]; |
423 |
|
424 |
ax = (a * 3) + 0; |
425 |
|
426 |
ay = (a * 3) + 1; |
427 |
|
428 |
az = (a * 3) + 2; |
429 |
|
430 |
bx = (b * 3) + 0; |
431 |
|
432 |
by = (b * 3) + 1; |
433 |
|
434 |
bz = (b * 3) + 2; |
435 |
|
436 |
if (moved[a] || moved[b]) { |
437 |
posA = atoms[a]->getPos(); |
438 |
|
439 |
posB = atoms[b]->getPos(); |
440 |
|
441 |
for(j = 0; j < 3; j++) |
442 |
rab[j] = posA[j] - posB[j]; |
443 |
|
444 |
info->wrapVector(rab); |
445 |
|
446 |
atoms[a]->getFrc(frcA); |
447 |
|
448 |
atoms[b]->getFrc(frcB); |
449 |
|
450 |
//rma = 1.0 / atoms[a]->getMass(); |
451 |
|
452 |
//rmb = 1.0 / atoms[b]->getMass(); |
453 |
|
454 |
rma = 1.0; |
455 |
|
456 |
rmb = 1.0; |
457 |
|
458 |
fpab[0] = frcA[0] * rma - frcB[0] * rmb; |
459 |
|
460 |
fpab[1] = frcA[1] * rma - frcB[1] * rmb; |
461 |
|
462 |
fpab[2] = frcA[2] * rma - frcB[2] * rmb; |
463 |
|
464 |
gab = fpab[0] * fpab[0] + fpab[1] * fpab[1] + fpab[2] * fpab[2]; |
465 |
|
466 |
if (gab < 1.0) |
467 |
gab = 1.0; |
468 |
|
469 |
rabsq = rab[0] * rab[0] + rab[1] * rab[1] + rab[2] * rab[2]; |
470 |
|
471 |
rfab = rab[0] * fpab[0] + rab[1] * fpab[1] + rab[2] * fpab[2]; |
472 |
|
473 |
if (fabs(rfab) > sqrt(rabsq*gab) * 0.00001) { |
474 |
gab = -rfab / (rabsq * (rma + rmb)); |
475 |
|
476 |
frcA[0] = rab[0]* |
477 |
gab; |
478 |
|
479 |
frcA[1] = rab[1]* |
480 |
gab; |
481 |
|
482 |
frcA[2] = rab[2]* |
483 |
gab; |
484 |
|
485 |
atoms[a]->addFrc(frcA); |
486 |
|
487 |
frcB[0] = -rab[0]*gab; |
488 |
|
489 |
frcB[1] = -rab[1]*gab; |
490 |
|
491 |
frcB[2] = -rab[2]*gab; |
492 |
|
493 |
atoms[b]->addFrc(frcB); |
494 |
|
495 |
moving[a] = 1; |
496 |
|
497 |
moving[b] = 1; |
498 |
|
499 |
done = 0; |
500 |
} |
501 |
} |
502 |
} |
503 |
|
504 |
for(i = 0; i < nAtoms; i++) { |
505 |
moved[i] = moving[i]; |
506 |
|
507 |
moving[i] = 0; |
508 |
} |
509 |
|
510 |
iteration++; |
511 |
} |
512 |
|
513 |
if (!done) { |
514 |
std::cerr << "Waring: can not constraint within maxIteration" |
515 |
<< std::endl; |
516 |
|
517 |
return -1; |
518 |
} else |
519 |
return 1; |
520 |
} |
521 |
|
522 |
*/ |
523 |
|
524 |
//calculate the value of object function |
525 |
|
526 |
void Minimizer::calcF() { |
527 |
calcEnergyGradient(curX, curG, curF, egEvalStatus); |
528 |
} |
529 |
|
530 |
void Minimizer::calcF(std::vector < RealType > &x, RealType&f, int&status) { |
531 |
std::vector < RealType > tempG; |
532 |
|
533 |
tempG.resize(x.size()); |
534 |
|
535 |
calcEnergyGradient(x, tempG, f, status); |
536 |
} |
537 |
|
538 |
//calculate the gradient |
539 |
|
540 |
void Minimizer::calcG() { |
541 |
calcEnergyGradient(curX, curG, curF, egEvalStatus); |
542 |
} |
543 |
|
544 |
void Minimizer::calcG(std::vector<RealType>& x, std::vector<RealType>& g, RealType&f, int&status) { |
545 |
calcEnergyGradient(x, g, f, status); |
546 |
} |
547 |
|
548 |
void Minimizer::calcDim() { |
549 |
|
550 |
SimInfo::MoleculeIterator i; |
551 |
Molecule::IntegrableObjectIterator j; |
552 |
Molecule* mol; |
553 |
StuntDouble* integrableObject; |
554 |
ndim = 0; |
555 |
|
556 |
for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) { |
557 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
558 |
integrableObject = mol->nextIntegrableObject(j)) { |
559 |
|
560 |
ndim += 3; |
561 |
|
562 |
if (integrableObject->isDirectional()) { |
563 |
ndim += 3; |
564 |
} |
565 |
} |
566 |
|
567 |
} |
568 |
} |
569 |
|
570 |
void Minimizer::setX(std::vector < RealType > &x) { |
571 |
if (x.size() != ndim) { |
572 |
sprintf(painCave.errMsg, "Minimizer Error: dimesion of x and curX does not match\n"); |
573 |
painCave.isFatal = 1; |
574 |
simError(); |
575 |
} |
576 |
|
577 |
curX = x; |
578 |
} |
579 |
|
580 |
void Minimizer::setG(std::vector < RealType > &g) { |
581 |
if (g.size() != ndim) { |
582 |
sprintf(painCave.errMsg, "Minimizer Error: dimesion of g and curG does not match\n"); |
583 |
painCave.isFatal = 1; |
584 |
simError(); |
585 |
} |
586 |
|
587 |
curG = g; |
588 |
} |
589 |
|
590 |
|
591 |
/** |
592 |
|
593 |
* In thoery, we need to find the minimum along the search direction |
594 |
* However, function evaluation is too expensive. |
595 |
* At the very begining of the problem, we check the search direction and make sure |
596 |
* it is a descent direction |
597 |
* we will compare the energy of two end points, |
598 |
* if the right end point has lower energy, we just take it |
599 |
* @todo optimize this line search algorithm |
600 |
*/ |
601 |
|
602 |
int Minimizer::doLineSearch(std::vector<RealType> &direction, |
603 |
RealType stepSize) { |
604 |
|
605 |
std::vector<RealType> xa; |
606 |
std::vector<RealType> xb; |
607 |
std::vector<RealType> xc; |
608 |
std::vector<RealType> ga; |
609 |
std::vector<RealType> gb; |
610 |
std::vector<RealType> gc; |
611 |
RealType fa; |
612 |
RealType fb; |
613 |
RealType fc; |
614 |
RealType a; |
615 |
RealType b; |
616 |
RealType c; |
617 |
int status; |
618 |
RealType initSlope; |
619 |
RealType slopeA; |
620 |
RealType slopeB; |
621 |
RealType slopeC; |
622 |
bool foundLower; |
623 |
int iter; |
624 |
int maxLSIter; |
625 |
RealType mu; |
626 |
RealType eta; |
627 |
RealType ftol; |
628 |
RealType lsTol; |
629 |
|
630 |
xa.resize(ndim); |
631 |
xb.resize(ndim); |
632 |
xc.resize(ndim); |
633 |
ga.resize(ndim); |
634 |
gb.resize(ndim); |
635 |
gc.resize(ndim); |
636 |
|
637 |
a = 0.0; |
638 |
|
639 |
fa = curF; |
640 |
|
641 |
xa = curX; |
642 |
|
643 |
ga = curG; |
644 |
|
645 |
c = a + stepSize; |
646 |
|
647 |
ftol = paramSet->getFTol(); |
648 |
|
649 |
lsTol = paramSet->getLineSearchTol(); |
650 |
|
651 |
//calculate the derivative at a = 0 |
652 |
|
653 |
slopeA = 0; |
654 |
|
655 |
for(size_t i = 0; i < ndim; i++) { |
656 |
slopeA += curG[i] * direction[i]; |
657 |
} |
658 |
|
659 |
initSlope = slopeA; |
660 |
|
661 |
// if going uphill, use negative gradient as searching direction |
662 |
|
663 |
if (slopeA > 0) { |
664 |
|
665 |
for(size_t i = 0; i < ndim; i++) { |
666 |
direction[i] = -curG[i]; |
667 |
} |
668 |
|
669 |
for(size_t i = 0; i < ndim; i++) { |
670 |
slopeA += curG[i] * direction[i]; |
671 |
} |
672 |
|
673 |
initSlope = slopeA; |
674 |
} |
675 |
|
676 |
// Take a trial step |
677 |
|
678 |
for(size_t i = 0; i < ndim; i++) { |
679 |
xc[i] = curX[i] + direction[i]* c; |
680 |
} |
681 |
|
682 |
calcG(xc, gc, fc, status); |
683 |
|
684 |
if (status < 0) { |
685 |
if (bVerbose) |
686 |
std::cerr << "Function Evaluation Error" << std::endl; |
687 |
} |
688 |
|
689 |
//calculate the derivative at c |
690 |
|
691 |
slopeC = 0; |
692 |
|
693 |
for(size_t i = 0; i < ndim; i++) { |
694 |
slopeC += gc[i] * direction[i]; |
695 |
} |
696 |
// found a lower point |
697 |
|
698 |
if (fc < fa) { |
699 |
curX = xc; |
700 |
|
701 |
curG = gc; |
702 |
|
703 |
curF = fc; |
704 |
|
705 |
return LS_SUCCEED; |
706 |
} else { |
707 |
if (slopeC > 0) |
708 |
stepSize *= 0.618034; |
709 |
} |
710 |
|
711 |
maxLSIter = paramSet->getLineSearchMaxIteration(); |
712 |
|
713 |
iter = 0; |
714 |
|
715 |
do { |
716 |
|
717 |
// Select a new trial point. |
718 |
|
719 |
// If the derivatives at points a & c have different sign we use cubic interpolate |
720 |
|
721 |
//if (slopeC > 0){ |
722 |
|
723 |
eta = 3 * (fa - fc) / (c - a) + slopeA + slopeC; |
724 |
|
725 |
mu = sqrt(eta * eta - slopeA * slopeC); |
726 |
|
727 |
b = a + (c - a) |
728 |
* (1 - (slopeC + mu - eta) / (slopeC - slopeA + 2 * mu)); |
729 |
|
730 |
if (b < lsTol) { |
731 |
break; |
732 |
} |
733 |
|
734 |
//} |
735 |
|
736 |
// Take a trial step to this new point - new coords in xb |
737 |
|
738 |
for(size_t i = 0; i < ndim; i++) { |
739 |
xb[i] = curX[i] + direction[i]* b; |
740 |
} |
741 |
|
742 |
//function evaluation |
743 |
|
744 |
calcG(xb, gb, fb, status); |
745 |
|
746 |
if (status < 0) { |
747 |
if (bVerbose) |
748 |
std::cerr << "Function Evaluation Error" << std::endl; |
749 |
} |
750 |
|
751 |
//calculate the derivative at c |
752 |
|
753 |
slopeB = 0; |
754 |
|
755 |
for(size_t i = 0; i < ndim; i++) { |
756 |
slopeB += gb[i] * direction[i]; |
757 |
} |
758 |
|
759 |
//Amijo Rule to stop the line search |
760 |
|
761 |
if (fb <= curF + initSlope * ftol * b) { |
762 |
curF = fb; |
763 |
|
764 |
curX = xb; |
765 |
|
766 |
curG = gb; |
767 |
|
768 |
return LS_SUCCEED; |
769 |
} |
770 |
|
771 |
if (slopeB < 0 && fb < fa) { |
772 |
|
773 |
//replace a by b |
774 |
|
775 |
fa = fb; |
776 |
|
777 |
a = b; |
778 |
|
779 |
slopeA = slopeB; |
780 |
|
781 |
// swap coord a/b |
782 |
|
783 |
std::swap(xa, xb); |
784 |
|
785 |
std::swap(ga, gb); |
786 |
} else { |
787 |
|
788 |
//replace c by b |
789 |
|
790 |
fc = fb; |
791 |
|
792 |
c = b; |
793 |
|
794 |
slopeC = slopeB; |
795 |
|
796 |
// swap coord b/c |
797 |
|
798 |
std::swap(gb, gc); |
799 |
|
800 |
std::swap(xb, xc); |
801 |
} |
802 |
|
803 |
iter++; |
804 |
} while ((fb > fa || fb > fc) && (iter < maxLSIter)); |
805 |
|
806 |
if (fb < curF || iter >= maxLSIter) { |
807 |
|
808 |
//could not find a lower value, we might just go uphill. |
809 |
|
810 |
return LS_ERROR; |
811 |
} |
812 |
|
813 |
//select the end point |
814 |
|
815 |
if (fa <= fc) { |
816 |
curX = xa; |
817 |
|
818 |
curG = ga; |
819 |
|
820 |
curF = fa; |
821 |
} else { |
822 |
curX = xc; |
823 |
|
824 |
curG = gc; |
825 |
|
826 |
curF = fc; |
827 |
} |
828 |
|
829 |
return LS_SUCCEED; |
830 |
} |
831 |
|
832 |
void Minimizer::minimize() { |
833 |
int convgStatus; |
834 |
int stepStatus; |
835 |
int maxIter; |
836 |
int writeFreq; |
837 |
int nextWriteIter; |
838 |
Snapshot* curSnapshot =info->getSnapshotManager()->getCurrentSnapshot(); |
839 |
DumpWriter dumpWriter(info); |
840 |
StatsBitSet mask; |
841 |
mask.set(Stats::TIME); |
842 |
mask.set(Stats::POTENTIAL_ENERGY); |
843 |
StatWriter statWriter(info->getStatFileName(), mask); |
844 |
|
845 |
init(); |
846 |
|
847 |
writeFreq = paramSet->getWriteFreq(); |
848 |
|
849 |
nextWriteIter = writeFreq; |
850 |
|
851 |
maxIter = paramSet->getMaxIteration(); |
852 |
|
853 |
for(curIter = 1; curIter <= maxIter; curIter++) { |
854 |
stepStatus = step(); |
855 |
|
856 |
//if (usingShake) |
857 |
// preMove(); |
858 |
|
859 |
if (stepStatus < 0) { |
860 |
saveResult(); |
861 |
|
862 |
minStatus = MIN_LSERROR; |
863 |
|
864 |
std::cerr |
865 |
<< "Minimizer Error: line search error, please try a small stepsize" |
866 |
<< std::endl; |
867 |
|
868 |
return; |
869 |
} |
870 |
|
871 |
//save snapshot |
872 |
info->getSnapshotManager()->advance(); |
873 |
//increase time |
874 |
curSnapshot->increaseTime(1); |
875 |
|
876 |
if (curIter == nextWriteIter) { |
877 |
nextWriteIter += writeFreq; |
878 |
calcF(); |
879 |
dumpWriter.writeDumpAndEor(); |
880 |
statWriter.writeStat(curSnapshot->statData); |
881 |
} |
882 |
|
883 |
convgStatus = checkConvg(); |
884 |
|
885 |
if (convgStatus > 0) { |
886 |
saveResult(); |
887 |
|
888 |
minStatus = MIN_CONVERGE; |
889 |
|
890 |
return; |
891 |
} |
892 |
|
893 |
prepareStep(); |
894 |
} |
895 |
|
896 |
if (bVerbose) { |
897 |
std::cout << "Minimizer Warning: " << minimizerName |
898 |
<< " algorithm did not converge within " << maxIter << " iteration" |
899 |
<< std::endl; |
900 |
} |
901 |
|
902 |
minStatus = MIN_MAXITER; |
903 |
|
904 |
saveResult(); |
905 |
} |
906 |
|
907 |
|
908 |
RealType Minimizer::calcPotential() { |
909 |
forceMan->calcForces(); |
910 |
|
911 |
Snapshot* curSnapshot = info->getSnapshotManager()->getCurrentSnapshot(); |
912 |
RealType potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] + |
913 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
914 |
RealType potential; |
915 |
|
916 |
#ifdef IS_MPI |
917 |
MPI_Allreduce(&potential_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
918 |
MPI_COMM_WORLD); |
919 |
#else |
920 |
potential = potential_local; |
921 |
#endif |
922 |
|
923 |
//save total potential |
924 |
curSnapshot->statData[Stats::POTENTIAL_ENERGY] = potential; |
925 |
return potential; |
926 |
} |
927 |
|
928 |
} |