ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Vector.hpp
Revision: 1665
Committed: Tue Nov 22 20:38:56 2011 UTC (13 years, 8 months ago) by gezelter
File size: 16075 byte(s)
Log Message:
updated copyright notices

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file Vector.hpp
45 * @author Teng Lin
46 * @date 09/14/2004
47 * @version 1.0
48 */
49
50 #ifndef MATH_VECTOR_HPP
51 #define MATH_VECTOR_HPP
52
53 #include <cassert>
54 #include <cmath>
55 #include <iostream>
56 #include <math.h>
57 #include "config.h"
58 namespace OpenMD {
59
60 static const RealType epsilon = 0.000001;
61
62 template<typename T>
63 inline bool equal(T e1, T e2) {
64 return e1 == e2;
65 }
66
67 //template<>
68 //inline bool equal(float e1, float e2) {
69 // return fabs(e1 - e2) < epsilon;
70 //}
71
72 template<>
73 inline bool equal(RealType e1, RealType e2) {
74 return fabs(e1 - e2) < epsilon;
75 }
76
77
78 /**
79 * @class Vector Vector.hpp "math/Vector.hpp"
80 * @brief Fix length vector class
81 */
82 template<typename Real, unsigned int Dim>
83 class Vector{
84 public:
85
86 typedef Real ElemType;
87 typedef Real* ElemPoinerType;
88
89 /** default constructor */
90 inline Vector(){
91 for (unsigned int i = 0; i < Dim; i++)
92 this->data_[i] = 0;
93 }
94
95 /** Constructs and initializes a Vector from a vector */
96 inline Vector(const Vector<Real, Dim>& v) {
97 *this = v;
98 }
99
100 /** copy assignment operator */
101 inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
102 if (this == &v)
103 return *this;
104
105 for (unsigned int i = 0; i < Dim; i++)
106 this->data_[i] = v[i];
107
108 return *this;
109 }
110
111 template<typename T>
112 inline Vector(const T& s){
113 for (unsigned int i = 0; i < Dim; i++)
114 this->data_[i] = s;
115 }
116
117 /** Constructs and initializes a Vector from an array */
118 inline Vector( Real* v) {
119 for (unsigned int i = 0; i < Dim; i++)
120 this->data_[i] = v[i];
121 }
122
123 /**
124 * Returns reference of ith element.
125 * @return reference of ith element
126 * @param i index
127 */
128 inline Real& operator[](unsigned int i) {
129 assert( i < Dim);
130 return this->data_[i];
131 }
132
133 /**
134 * Returns reference of ith element.
135 * @return reference of ith element
136 * @param i index
137 */
138 inline Real& operator()(unsigned int i) {
139 assert( i < Dim);
140 return this->data_[i];
141 }
142
143 /**
144 * Returns constant reference of ith element.
145 * @return reference of ith element
146 * @param i index
147 */
148 inline const Real& operator[](unsigned int i) const {
149 assert( i < Dim);
150 return this->data_[i];
151 }
152
153 /**
154 * Returns constant reference of ith element.
155 * @return reference of ith element
156 * @param i index
157 */
158 inline const Real& operator()(unsigned int i) const {
159 assert( i < Dim);
160 return this->data_[i];
161 }
162
163 /** Copy the internal data to an array*/
164 void getArray(Real* array) {
165 for (unsigned int i = 0; i < Dim; i ++) {
166 array[i] = this->data_[i];
167 }
168 }
169
170 /** Returns the pointer of internal array */
171 Real* getArrayPointer() {
172 return this->data_;
173 }
174
175 /**
176 * Tests if this vetor is equal to other vector
177 * @return true if equal, otherwise return false
178 * @param v vector to be compared
179 */
180 inline bool operator ==(const Vector<Real, Dim>& v) {
181
182 for (unsigned int i = 0; i < Dim; i ++) {
183 if (!equal(this->data_[i], v[i])) {
184 return false;
185 }
186 }
187
188 return true;
189 }
190
191 /**
192 * Tests if this vetor is not equal to other vector
193 * @return true if equal, otherwise return false
194 * @param v vector to be compared
195 */
196 inline bool operator !=(const Vector<Real, Dim>& v) {
197 return !(*this == v);
198 }
199
200 /** Negates the value of this vector in place. */
201 inline void negate() {
202 for (unsigned int i = 0; i < Dim; i++)
203 this->data_[i] = -this->data_[i];
204 }
205
206 /**
207 * Sets the value of this vector to the negation of vector v1.
208 * @param v1 the source vector
209 */
210 inline void negate(const Vector<Real, Dim>& v1) {
211 for (unsigned int i = 0; i < Dim; i++)
212 this->data_[i] = -v1.data_[i];
213
214 }
215
216 /**
217 * Sets the value of this vector to the sum of itself and v1 (*this += v1).
218 * @param v1 the other vector
219 */
220 inline void add( const Vector<Real, Dim>& v1 ) {
221 for (unsigned int i = 0; i < Dim; i++)
222 this->data_[i] += v1.data_[i];
223 }
224
225 /**
226 * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
227 * @param v1 the first vector
228 * @param v2 the second vector
229 */
230 inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
231 for (unsigned int i = 0; i < Dim; i++)
232 this->data_[i] = v1.data_[i] + v2.data_[i];
233 }
234
235 /**
236 * Sets the value of this vector to the difference of itself and v1 (*this -= v1).
237 * @param v1 the other vector
238 */
239 inline void sub( const Vector<Real, Dim>& v1 ) {
240 for (unsigned int i = 0; i < Dim; i++)
241 this->data_[i] -= v1.data_[i];
242 }
243
244 /**
245 * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
246 * @param v1 the first vector
247 * @param v2 the second vector
248 */
249 inline void sub( const Vector<Real, Dim>& v1, const Vector &v2 ){
250 for (unsigned int i = 0; i < Dim; i++)
251 this->data_[i] = v1.data_[i] - v2.data_[i];
252 }
253
254 /**
255 * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
256 * @param s the scalar value
257 */
258 inline void mul( Real s ) {
259 for (unsigned int i = 0; i < Dim; i++)
260 this->data_[i] *= s;
261 }
262
263 /**
264 * Sets the value of this vector to the scalar multiplication of vector v1
265 * (*this = s * v1).
266 * @param v1 the vector
267 * @param s the scalar value
268 */
269 inline void mul( const Vector<Real, Dim>& v1, Real s) {
270 for (unsigned int i = 0; i < Dim; i++)
271 this->data_[i] = s * v1.data_[i];
272 }
273
274 /**
275 * Sets the elements of this vector to the multiplication of
276 * elements of two other vectors. Not to be confused with scalar
277 * multiplication (mul) or dot products.
278 *
279 * (*this.data_[i] = v1.data_[i] * v2.data_[i]).
280 * @param v1 the first vector
281 * @param v2 the second vector
282 */
283 inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
284 for (unsigned int i = 0; i < Dim; i++)
285 this->data_[i] = v1.data_[i] * v2.data_[i];
286 }
287
288 /**
289 * Sets the value of this vector to the scalar division of itself (*this /= s ).
290 * @param s the scalar value
291 */
292 inline void div( Real s) {
293 for (unsigned int i = 0; i < Dim; i++)
294 this->data_[i] /= s;
295 }
296
297 /**
298 * Sets the value of this vector to the scalar division of vector v1 (*this = v1 / s ).
299 * @param v1 the source vector
300 * @param s the scalar value
301 */
302 inline void div( const Vector<Real, Dim>& v1, Real s ) {
303 for (unsigned int i = 0; i < Dim; i++)
304 this->data_[i] = v1.data_[i] / s;
305 }
306
307 /**
308 * Sets the elements of this vector to the division of
309 * elements of two other vectors. Not to be confused with scalar
310 * division (div)
311 *
312 * (*this.data_[i] = v1.data_[i] / v2.data_[i]).
313 * @param v1 the first vector
314 * @param v2 the second vector
315 */
316 inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
317 for (unsigned int i = 0; i < Dim; i++)
318 this->data_[i] = v1.data_[i] / v2.data_[i];
319 }
320
321
322 /** @see #add */
323 inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
324 add(v1);
325 return *this;
326 }
327
328 /** @see #sub */
329 inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
330 sub(v1);
331 return *this;
332 }
333
334 /** @see #mul */
335 inline Vector<Real, Dim>& operator *=( Real s) {
336 mul(s);
337 return *this;
338 }
339
340 /** @see #div */
341 inline Vector<Real, Dim>& operator /=( Real s ) {
342 div(s);
343 return *this;
344 }
345
346 /**
347 * Returns the sum of all elements of this vector.
348 * @return the sum of all elements of this vector
349 */
350 inline Real sum() {
351 Real tmp;
352 tmp = 0;
353 for (unsigned int i = 0; i < Dim; i++)
354 tmp += this->data_[i];
355 return tmp;
356 }
357
358 /**
359 * Returns the product of all elements of this vector.
360 * @return the product of all elements of this vector
361 */
362 inline Real componentProduct() {
363 Real tmp;
364 tmp = 1;
365 for (unsigned int i = 0; i < Dim; i++)
366 tmp *= this->data_[i];
367 return tmp;
368 }
369
370 /**
371 * Returns the length of this vector.
372 * @return the length of this vector
373 */
374 inline Real length() {
375 return sqrt(lengthSquare());
376 }
377
378 /**
379 * Returns the squared length of this vector.
380 * @return the squared length of this vector
381 */
382 inline Real lengthSquare() {
383 return dot(*this, *this);
384 }
385
386 /** Normalizes this vector in place */
387 inline void normalize() {
388 Real len;
389
390 len = length();
391
392 //if (len < OpenMD::NumericConstant::epsilon)
393 // throw();
394
395 *this /= len;
396 }
397
398 /**
399 * Tests if this vector is normalized
400 * @return true if this vector is normalized, otherwise return false
401 */
402 inline bool isNormalized() {
403 return equal(lengthSquare(), (RealType)1);
404 }
405
406 unsigned int size() {return Dim;}
407 protected:
408 Real data_[Dim];
409
410 };
411
412 /** unary minus*/
413 template<typename Real, unsigned int Dim>
414 inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
415 Vector<Real, Dim> tmp(v1);
416 tmp.negate();
417 return tmp;
418 }
419
420 /**
421 * Return the sum of two vectors (v1 - v2).
422 * @return the sum of two vectors
423 * @param v1 the first vector
424 * @param v2 the second vector
425 */
426 template<typename Real, unsigned int Dim>
427 inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
428 Vector<Real, Dim> result;
429
430 result.add(v1, v2);
431 return result;
432 }
433
434 /**
435 * Return the difference of two vectors (v1 - v2).
436 * @return the difference of two vectors
437 * @param v1 the first vector
438 * @param v2 the second vector
439 */
440 template<typename Real, unsigned int Dim>
441 Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
442 Vector<Real, Dim> result;
443 result.sub(v1, v2);
444 return result;
445 }
446
447 /**
448 * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
449 * @return the vaule of scalar multiplication of this vector
450 * @param v1 the source vector
451 * @param s the scalar value
452 */
453 template<typename Real, unsigned int Dim>
454 Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) {
455 Vector<Real, Dim> result;
456 result.mul(v1,s);
457 return result;
458 }
459
460 /**
461 * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
462 * @return the vaule of scalar multiplication of this vector
463 * @param s the scalar value
464 * @param v1 the source vector
465 */
466 template<typename Real, unsigned int Dim>
467 Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) {
468 Vector<Real, Dim> result;
469 result.mul(v1, s);
470 return result;
471 }
472
473 /**
474 * Returns the value of division of a vector by a scalar.
475 * @return the vaule of scalar division of this vector
476 * @param v1 the source vector
477 * @param s the scalar value
478 */
479 template<typename Real, unsigned int Dim>
480 Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) {
481 Vector<Real, Dim> result;
482 result.div( v1,s);
483 return result;
484 }
485
486 /**
487 * Returns the dot product of two Vectors
488 * @param v1 first vector
489 * @param v2 second vector
490 * @return the dot product of v1 and v2
491 */
492 template<typename Real, unsigned int Dim>
493 inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
494 Real tmp;
495 tmp = 0;
496
497 for (unsigned int i = 0; i < Dim; i++)
498 tmp += v1[i] * v2[i];
499
500 return tmp;
501 }
502
503
504
505
506 /**
507 * Returns the wide dot product of three Vectors. Compare with
508 * Rapaport's VWDot function.
509 *
510 * @param v1 first vector
511 * @param v2 second vector
512 * @param v3 third vector
513 * @return the wide dot product of v1, v2, and v3.
514 */
515 template<typename Real, unsigned int Dim>
516 inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) {
517 Real tmp;
518 tmp = 0;
519
520 for (unsigned int i = 0; i < Dim; i++)
521 tmp += v1[i] * v2[i] * v3[i];
522
523 return tmp;
524 }
525
526
527 /**
528 * Returns the distance between two Vectors
529 * @param v1 first vector
530 * @param v2 second vector
531 * @return the distance between v1 and v2
532 */
533 template<typename Real, unsigned int Dim>
534 inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
535 Vector<Real, Dim> tempVector = v1 - v2;
536 return tempVector.length();
537 }
538
539 /**
540 * Returns the squared distance between two Vectors
541 * @param v1 first vector
542 * @param v2 second vector
543 * @return the squared distance between v1 and v2
544 */
545 template<typename Real, unsigned int Dim>
546 inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
547 Vector<Real, Dim> tempVector = v1 - v2;
548 return tempVector.lengthSquare();
549 }
550
551 /**
552 * Write to an output stream
553 */
554 template<typename Real, unsigned int Dim>
555 std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) {
556
557 o << "[ ";
558
559 for (unsigned int i = 0 ; i< Dim; i++) {
560 o << v[i];
561
562 if (i != Dim -1) {
563 o<< ", ";
564 }
565 }
566
567 o << " ]";
568 return o;
569 }
570
571 }
572 #endif

Properties

Name Value
svn:keywords Author Id Revision Date