1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Vector.hpp |
45 |
* @author Teng Lin |
46 |
* @date 09/14/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef MATH_VECTOR_HPP |
51 |
#define MATH_VECTOR_HPP |
52 |
|
53 |
#include <cassert> |
54 |
#include <cmath> |
55 |
#include <iostream> |
56 |
#include <math.h> |
57 |
#include "config.h" |
58 |
namespace OpenMD { |
59 |
|
60 |
static const RealType epsilon = 0.000001; |
61 |
|
62 |
template<typename T> |
63 |
inline bool equal(T e1, T e2) { |
64 |
return e1 == e2; |
65 |
} |
66 |
|
67 |
//template<> |
68 |
//inline bool equal(float e1, float e2) { |
69 |
// return fabs(e1 - e2) < epsilon; |
70 |
//} |
71 |
|
72 |
template<> |
73 |
inline bool equal(RealType e1, RealType e2) { |
74 |
return fabs(e1 - e2) < epsilon; |
75 |
} |
76 |
|
77 |
/** |
78 |
* @class Vector Vector.hpp "math/Vector.hpp" |
79 |
* @brief Fix length vector class |
80 |
*/ |
81 |
template<typename Real, unsigned int Dim> |
82 |
class Vector{ |
83 |
public: |
84 |
|
85 |
typedef Real ElemType; |
86 |
typedef Real* ElemPoinerType; |
87 |
|
88 |
/** default constructor */ |
89 |
inline Vector(){ |
90 |
for (unsigned int i = 0; i < Dim; i++) |
91 |
this->data_[i] = 0; |
92 |
} |
93 |
|
94 |
/** Constructs and initializes a Vector from a vector */ |
95 |
inline Vector(const Vector<Real, Dim>& v) { |
96 |
*this = v; |
97 |
} |
98 |
|
99 |
/** copy assignment operator */ |
100 |
inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) { |
101 |
if (this == &v) |
102 |
return *this; |
103 |
|
104 |
for (unsigned int i = 0; i < Dim; i++) |
105 |
this->data_[i] = v[i]; |
106 |
|
107 |
return *this; |
108 |
} |
109 |
|
110 |
// template<typename T> |
111 |
// inline Vector(const T& s){ |
112 |
inline Vector(const Real& s) { |
113 |
for (unsigned int i = 0; i < Dim; i++) |
114 |
this->data_[i] = s; |
115 |
} |
116 |
|
117 |
/** Constructs and initializes a Vector from an array */ |
118 |
inline Vector( Real* v) { |
119 |
for (unsigned int i = 0; i < Dim; i++) |
120 |
this->data_[i] = v[i]; |
121 |
} |
122 |
|
123 |
/** |
124 |
* Returns reference of ith element. |
125 |
* @return reference of ith element |
126 |
* @param i index |
127 |
*/ |
128 |
inline Real& operator[](unsigned int i) { |
129 |
assert( i < Dim); |
130 |
return this->data_[i]; |
131 |
} |
132 |
|
133 |
/** |
134 |
* Returns reference of ith element. |
135 |
* @return reference of ith element |
136 |
* @param i index |
137 |
*/ |
138 |
inline Real& operator()(unsigned int i) { |
139 |
assert( i < Dim); |
140 |
return this->data_[i]; |
141 |
} |
142 |
|
143 |
/** |
144 |
* Returns constant reference of ith element. |
145 |
* @return reference of ith element |
146 |
* @param i index |
147 |
*/ |
148 |
inline const Real& operator[](unsigned int i) const { |
149 |
assert( i < Dim); |
150 |
return this->data_[i]; |
151 |
} |
152 |
|
153 |
/** |
154 |
* Returns constant reference of ith element. |
155 |
* @return reference of ith element |
156 |
* @param i index |
157 |
*/ |
158 |
inline const Real& operator()(unsigned int i) const { |
159 |
assert( i < Dim); |
160 |
return this->data_[i]; |
161 |
} |
162 |
|
163 |
/** Copy the internal data to an array*/ |
164 |
void getArray(Real* array) { |
165 |
for (unsigned int i = 0; i < Dim; i ++) { |
166 |
array[i] = this->data_[i]; |
167 |
} |
168 |
} |
169 |
|
170 |
/** Returns the pointer of internal array */ |
171 |
Real* getArrayPointer() { |
172 |
return this->data_; |
173 |
} |
174 |
|
175 |
/** |
176 |
* Tests if this vetor is equal to other vector |
177 |
* @return true if equal, otherwise return false |
178 |
* @param v vector to be compared |
179 |
*/ |
180 |
inline bool operator ==(const Vector<Real, Dim>& v) { |
181 |
|
182 |
for (unsigned int i = 0; i < Dim; i ++) { |
183 |
if (!equal(this->data_[i], v[i])) { |
184 |
return false; |
185 |
} |
186 |
} |
187 |
|
188 |
return true; |
189 |
} |
190 |
|
191 |
/** |
192 |
* Tests if this vetor is not equal to other vector |
193 |
* @return true if equal, otherwise return false |
194 |
* @param v vector to be compared |
195 |
*/ |
196 |
inline bool operator !=(const Vector<Real, Dim>& v) { |
197 |
return !(*this == v); |
198 |
} |
199 |
|
200 |
/** Zeros out the values in this vector in place */ |
201 |
inline void zero() { |
202 |
for (unsigned int i = 0; i < Dim; i++) |
203 |
this->data_[i] = 0; |
204 |
} |
205 |
|
206 |
/** Negates the value of this vector in place. */ |
207 |
inline void negate() { |
208 |
for (unsigned int i = 0; i < Dim; i++) |
209 |
this->data_[i] = -this->data_[i]; |
210 |
} |
211 |
|
212 |
/** |
213 |
* Sets the value of this vector to the negation of vector v1. |
214 |
* @param v1 the source vector |
215 |
*/ |
216 |
inline void negate(const Vector<Real, Dim>& v1) { |
217 |
for (unsigned int i = 0; i < Dim; i++) |
218 |
this->data_[i] = -v1.data_[i]; |
219 |
|
220 |
} |
221 |
|
222 |
/** |
223 |
* Sets the value of this vector to the sum of itself and v1 (*this += v1). |
224 |
* @param v1 the other vector |
225 |
*/ |
226 |
inline void add( const Vector<Real, Dim>& v1 ) { |
227 |
for (unsigned int i = 0; i < Dim; i++) |
228 |
this->data_[i] += v1.data_[i]; |
229 |
} |
230 |
|
231 |
/** |
232 |
* Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2). |
233 |
* @param v1 the first vector |
234 |
* @param v2 the second vector |
235 |
*/ |
236 |
inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
237 |
for (unsigned int i = 0; i < Dim; i++) |
238 |
this->data_[i] = v1.data_[i] + v2.data_[i]; |
239 |
} |
240 |
|
241 |
/** |
242 |
* Sets the value of this vector to the difference of itself and v1 (*this -= v1). |
243 |
* @param v1 the other vector |
244 |
*/ |
245 |
inline void sub( const Vector<Real, Dim>& v1 ) { |
246 |
for (unsigned int i = 0; i < Dim; i++) |
247 |
this->data_[i] -= v1.data_[i]; |
248 |
} |
249 |
|
250 |
/** |
251 |
* Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2). |
252 |
* @param v1 the first vector |
253 |
* @param v2 the second vector |
254 |
*/ |
255 |
inline void sub( const Vector<Real, Dim>& v1, const Vector &v2 ){ |
256 |
for (unsigned int i = 0; i < Dim; i++) |
257 |
this->data_[i] = v1.data_[i] - v2.data_[i]; |
258 |
} |
259 |
|
260 |
/** |
261 |
* Sets the value of this vector to the scalar multiplication of itself (*this *= s). |
262 |
* @param s the scalar value |
263 |
*/ |
264 |
inline void mul( Real s ) { |
265 |
for (unsigned int i = 0; i < Dim; i++) |
266 |
this->data_[i] *= s; |
267 |
} |
268 |
|
269 |
/** |
270 |
* Sets the value of this vector to the scalar multiplication of vector v1 |
271 |
* (*this = s * v1). |
272 |
* @param v1 the vector |
273 |
* @param s the scalar value |
274 |
*/ |
275 |
inline void mul( const Vector<Real, Dim>& v1, Real s) { |
276 |
for (unsigned int i = 0; i < Dim; i++) |
277 |
this->data_[i] = s * v1.data_[i]; |
278 |
} |
279 |
|
280 |
/** |
281 |
* Sets the elements of this vector to the multiplication of |
282 |
* elements of two other vectors. Not to be confused with scalar |
283 |
* multiplication (mul) or dot products. |
284 |
* |
285 |
* (*this.data_[i] = v1.data_[i] * v2.data_[i]). |
286 |
* @param v1 the first vector |
287 |
* @param v2 the second vector |
288 |
*/ |
289 |
inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
290 |
for (unsigned int i = 0; i < Dim; i++) |
291 |
this->data_[i] = v1.data_[i] * v2.data_[i]; |
292 |
} |
293 |
|
294 |
/* replaces the elements with the absolute values of those elements */ |
295 |
inline Vector<Real, Dim>& abs() { |
296 |
for (unsigned int i = 0; i < Dim; i++) { |
297 |
this->data_[i] = std::abs(this->data_[i]); |
298 |
} |
299 |
return *this; |
300 |
} |
301 |
|
302 |
/* returns the maximum value in this vector */ |
303 |
inline Real max() { |
304 |
Real val = this->data_[0]; |
305 |
for (unsigned int i = 0; i < Dim; i++) { |
306 |
if (this->data_[i] > val) val = this->data_[i]; |
307 |
} |
308 |
return val; |
309 |
} |
310 |
|
311 |
/** |
312 |
* Sets the value of this vector to the scalar division of itself (*this /= s ). |
313 |
* @param s the scalar value |
314 |
*/ |
315 |
inline void div( Real s) { |
316 |
for (unsigned int i = 0; i < Dim; i++) |
317 |
this->data_[i] /= s; |
318 |
} |
319 |
|
320 |
/** |
321 |
* Sets the value of this vector to the scalar division of vector v1 (*this = v1 / s ). |
322 |
* @param v1 the source vector |
323 |
* @param s the scalar value |
324 |
*/ |
325 |
inline void div( const Vector<Real, Dim>& v1, Real s ) { |
326 |
for (unsigned int i = 0; i < Dim; i++) |
327 |
this->data_[i] = v1.data_[i] / s; |
328 |
} |
329 |
|
330 |
/** |
331 |
* Sets the elements of this vector to the division of |
332 |
* elements of two other vectors. Not to be confused with scalar |
333 |
* division (div) |
334 |
* |
335 |
* (*this.data_[i] = v1.data_[i] / v2.data_[i]). |
336 |
* @param v1 the first vector |
337 |
* @param v2 the second vector |
338 |
*/ |
339 |
inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
340 |
for (unsigned int i = 0; i < Dim; i++) |
341 |
this->data_[i] = v1.data_[i] / v2.data_[i]; |
342 |
} |
343 |
|
344 |
|
345 |
/** @see #add */ |
346 |
inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) { |
347 |
add(v1); |
348 |
return *this; |
349 |
} |
350 |
|
351 |
/** @see #sub */ |
352 |
inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) { |
353 |
sub(v1); |
354 |
return *this; |
355 |
} |
356 |
|
357 |
/** @see #mul */ |
358 |
inline Vector<Real, Dim>& operator *=( Real s) { |
359 |
mul(s); |
360 |
return *this; |
361 |
} |
362 |
|
363 |
/** @see #div */ |
364 |
inline Vector<Real, Dim>& operator /=( Real s ) { |
365 |
div(s); |
366 |
return *this; |
367 |
} |
368 |
|
369 |
/** |
370 |
* Returns the sum of all elements of this vector. |
371 |
* @return the sum of all elements of this vector |
372 |
*/ |
373 |
inline Real sum() { |
374 |
Real tmp; |
375 |
tmp = 0; |
376 |
for (unsigned int i = 0; i < Dim; i++) |
377 |
tmp += this->data_[i]; |
378 |
return tmp; |
379 |
} |
380 |
|
381 |
/** |
382 |
* Returns the product of all elements of this vector. |
383 |
* @return the product of all elements of this vector |
384 |
*/ |
385 |
inline Real componentProduct() { |
386 |
Real tmp; |
387 |
tmp = 1; |
388 |
for (unsigned int i = 0; i < Dim; i++) |
389 |
tmp *= this->data_[i]; |
390 |
return tmp; |
391 |
} |
392 |
|
393 |
/** |
394 |
* Returns the length of this vector. |
395 |
* @return the length of this vector |
396 |
*/ |
397 |
inline Real length() { |
398 |
return sqrt(lengthSquare()); |
399 |
} |
400 |
|
401 |
/** |
402 |
* Returns the squared length of this vector. |
403 |
* @return the squared length of this vector |
404 |
*/ |
405 |
inline Real lengthSquare() { |
406 |
return dot(*this, *this); |
407 |
} |
408 |
|
409 |
/** Normalizes this vector in place */ |
410 |
inline void normalize() { |
411 |
Real len; |
412 |
|
413 |
len = length(); |
414 |
|
415 |
//if (len < OpenMD::NumericConstant::epsilon) |
416 |
// throw(); |
417 |
|
418 |
*this /= len; |
419 |
} |
420 |
|
421 |
/** |
422 |
* Tests if this vector is normalized |
423 |
* @return true if this vector is normalized, otherwise return false |
424 |
*/ |
425 |
inline bool isNormalized() { |
426 |
return equal(lengthSquare(), (RealType)1); |
427 |
} |
428 |
|
429 |
unsigned int size() {return Dim;} |
430 |
protected: |
431 |
Real data_[Dim]; |
432 |
|
433 |
}; |
434 |
|
435 |
/** unary minus*/ |
436 |
template<typename Real, unsigned int Dim> |
437 |
inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){ |
438 |
Vector<Real, Dim> tmp(v1); |
439 |
tmp.negate(); |
440 |
return tmp; |
441 |
} |
442 |
|
443 |
/** |
444 |
* Return the sum of two vectors (v1 - v2). |
445 |
* @return the sum of two vectors |
446 |
* @param v1 the first vector |
447 |
* @param v2 the second vector |
448 |
*/ |
449 |
template<typename Real, unsigned int Dim> |
450 |
inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
451 |
Vector<Real, Dim> result; |
452 |
|
453 |
result.add(v1, v2); |
454 |
return result; |
455 |
} |
456 |
|
457 |
/** |
458 |
* Return the difference of two vectors (v1 - v2). |
459 |
* @return the difference of two vectors |
460 |
* @param v1 the first vector |
461 |
* @param v2 the second vector |
462 |
*/ |
463 |
template<typename Real, unsigned int Dim> |
464 |
Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
465 |
Vector<Real, Dim> result; |
466 |
result.sub(v1, v2); |
467 |
return result; |
468 |
} |
469 |
|
470 |
/** |
471 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
472 |
* @return the vaule of scalar multiplication of this vector |
473 |
* @param v1 the source vector |
474 |
* @param s the scalar value |
475 |
*/ |
476 |
template<typename Real, unsigned int Dim> |
477 |
Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) { |
478 |
Vector<Real, Dim> result; |
479 |
result.mul(v1,s); |
480 |
return result; |
481 |
} |
482 |
|
483 |
/** |
484 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
485 |
* @return the vaule of scalar multiplication of this vector |
486 |
* @param s the scalar value |
487 |
* @param v1 the source vector |
488 |
*/ |
489 |
template<typename Real, unsigned int Dim> |
490 |
Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) { |
491 |
Vector<Real, Dim> result; |
492 |
result.mul(v1, s); |
493 |
return result; |
494 |
} |
495 |
|
496 |
/** |
497 |
* Returns the value of division of a vector by a scalar. |
498 |
* @return the vaule of scalar division of this vector |
499 |
* @param v1 the source vector |
500 |
* @param s the scalar value |
501 |
*/ |
502 |
template<typename Real, unsigned int Dim> |
503 |
Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) { |
504 |
Vector<Real, Dim> result; |
505 |
result.div( v1,s); |
506 |
return result; |
507 |
} |
508 |
|
509 |
/** |
510 |
* Returns the dot product of two Vectors |
511 |
* @param v1 first vector |
512 |
* @param v2 second vector |
513 |
* @return the dot product of v1 and v2 |
514 |
*/ |
515 |
template<typename Real, unsigned int Dim> |
516 |
inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
517 |
Real tmp; |
518 |
tmp = 0; |
519 |
|
520 |
for (unsigned int i = 0; i < Dim; i++) |
521 |
tmp += v1[i] * v2[i]; |
522 |
|
523 |
return tmp; |
524 |
} |
525 |
|
526 |
|
527 |
|
528 |
|
529 |
/** |
530 |
* Returns the wide dot product of three Vectors. Compare with |
531 |
* Rapaport's VWDot function. |
532 |
* |
533 |
* @param v1 first vector |
534 |
* @param v2 second vector |
535 |
* @param v3 third vector |
536 |
* @return the wide dot product of v1, v2, and v3. |
537 |
*/ |
538 |
template<typename Real, unsigned int Dim> |
539 |
inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) { |
540 |
Real tmp; |
541 |
tmp = 0; |
542 |
|
543 |
for (unsigned int i = 0; i < Dim; i++) |
544 |
tmp += v1[i] * v2[i] * v3[i]; |
545 |
|
546 |
return tmp; |
547 |
} |
548 |
|
549 |
|
550 |
/** |
551 |
* Returns the distance between two Vectors |
552 |
* @param v1 first vector |
553 |
* @param v2 second vector |
554 |
* @return the distance between v1 and v2 |
555 |
*/ |
556 |
template<typename Real, unsigned int Dim> |
557 |
inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
558 |
Vector<Real, Dim> tempVector = v1 - v2; |
559 |
return tempVector.length(); |
560 |
} |
561 |
|
562 |
/** |
563 |
* Returns the squared distance between two Vectors |
564 |
* @param v1 first vector |
565 |
* @param v2 second vector |
566 |
* @return the squared distance between v1 and v2 |
567 |
*/ |
568 |
template<typename Real, unsigned int Dim> |
569 |
inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
570 |
Vector<Real, Dim> tempVector = v1 - v2; |
571 |
return tempVector.lengthSquare(); |
572 |
} |
573 |
|
574 |
/** |
575 |
* Write to an output stream |
576 |
*/ |
577 |
template<typename Real, unsigned int Dim> |
578 |
std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) { |
579 |
|
580 |
o << "[ "; |
581 |
|
582 |
for (unsigned int i = 0 ; i< Dim; i++) { |
583 |
o << v[i]; |
584 |
|
585 |
if (i != Dim -1) { |
586 |
o<< ", "; |
587 |
} |
588 |
} |
589 |
|
590 |
o << " ]"; |
591 |
return o; |
592 |
} |
593 |
|
594 |
} |
595 |
#endif |