1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Vector.hpp |
45 |
* @author Teng Lin |
46 |
* @date 09/14/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef MATH_VECTOR_HPP |
51 |
#define MATH_VECTOR_HPP |
52 |
|
53 |
#include <cassert> |
54 |
#include <cmath> |
55 |
#include <iostream> |
56 |
#include <math.h> |
57 |
#include "config.h" |
58 |
namespace OpenMD { |
59 |
|
60 |
static const RealType epsilon = 0.000001; |
61 |
|
62 |
template<typename T> |
63 |
inline bool equal(T e1, T e2) { |
64 |
return e1 == e2; |
65 |
} |
66 |
|
67 |
//template<> |
68 |
//inline bool equal(float e1, float e2) { |
69 |
// return fabs(e1 - e2) < epsilon; |
70 |
//} |
71 |
|
72 |
template<> |
73 |
inline bool equal(RealType e1, RealType e2) { |
74 |
return fabs(e1 - e2) < epsilon; |
75 |
} |
76 |
|
77 |
/** |
78 |
* @class Vector Vector.hpp "math/Vector.hpp" |
79 |
* @brief Fix length vector class |
80 |
*/ |
81 |
template<typename Real, unsigned int Dim> |
82 |
class Vector{ |
83 |
public: |
84 |
|
85 |
typedef Real ElemType; |
86 |
typedef Real* ElemPoinerType; |
87 |
|
88 |
/** default constructor */ |
89 |
inline Vector(){ |
90 |
for (unsigned int i = 0; i < Dim; i++) |
91 |
this->data_[i] = 0; |
92 |
} |
93 |
|
94 |
/** Constructs and initializes a Vector from a vector */ |
95 |
inline Vector(const Vector<Real, Dim>& v) { |
96 |
*this = v; |
97 |
} |
98 |
|
99 |
/** copy assignment operator */ |
100 |
inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) { |
101 |
if (this == &v) |
102 |
return *this; |
103 |
|
104 |
for (unsigned int i = 0; i < Dim; i++) |
105 |
this->data_[i] = v[i]; |
106 |
|
107 |
return *this; |
108 |
} |
109 |
|
110 |
template<typename T> |
111 |
inline Vector(const T& s){ |
112 |
for (unsigned int i = 0; i < Dim; i++) |
113 |
this->data_[i] = s; |
114 |
} |
115 |
|
116 |
/** Constructs and initializes a Vector from an array */ |
117 |
inline Vector( Real* v) { |
118 |
for (unsigned int i = 0; i < Dim; i++) |
119 |
this->data_[i] = v[i]; |
120 |
} |
121 |
|
122 |
/** |
123 |
* Returns reference of ith element. |
124 |
* @return reference of ith element |
125 |
* @param i index |
126 |
*/ |
127 |
inline Real& operator[](unsigned int i) { |
128 |
assert( i < Dim); |
129 |
return this->data_[i]; |
130 |
} |
131 |
|
132 |
/** |
133 |
* Returns reference of ith element. |
134 |
* @return reference of ith element |
135 |
* @param i index |
136 |
*/ |
137 |
inline Real& operator()(unsigned int i) { |
138 |
assert( i < Dim); |
139 |
return this->data_[i]; |
140 |
} |
141 |
|
142 |
/** |
143 |
* Returns constant reference of ith element. |
144 |
* @return reference of ith element |
145 |
* @param i index |
146 |
*/ |
147 |
inline const Real& operator[](unsigned int i) const { |
148 |
assert( i < Dim); |
149 |
return this->data_[i]; |
150 |
} |
151 |
|
152 |
/** |
153 |
* Returns constant reference of ith element. |
154 |
* @return reference of ith element |
155 |
* @param i index |
156 |
*/ |
157 |
inline const Real& operator()(unsigned int i) const { |
158 |
assert( i < Dim); |
159 |
return this->data_[i]; |
160 |
} |
161 |
|
162 |
/** Copy the internal data to an array*/ |
163 |
void getArray(Real* array) { |
164 |
for (unsigned int i = 0; i < Dim; i ++) { |
165 |
array[i] = this->data_[i]; |
166 |
} |
167 |
} |
168 |
|
169 |
/** Returns the pointer of internal array */ |
170 |
Real* getArrayPointer() { |
171 |
return this->data_; |
172 |
} |
173 |
|
174 |
/** |
175 |
* Tests if this vetor is equal to other vector |
176 |
* @return true if equal, otherwise return false |
177 |
* @param v vector to be compared |
178 |
*/ |
179 |
inline bool operator ==(const Vector<Real, Dim>& v) { |
180 |
|
181 |
for (unsigned int i = 0; i < Dim; i ++) { |
182 |
if (!equal(this->data_[i], v[i])) { |
183 |
return false; |
184 |
} |
185 |
} |
186 |
|
187 |
return true; |
188 |
} |
189 |
|
190 |
/** |
191 |
* Tests if this vetor is not equal to other vector |
192 |
* @return true if equal, otherwise return false |
193 |
* @param v vector to be compared |
194 |
*/ |
195 |
inline bool operator !=(const Vector<Real, Dim>& v) { |
196 |
return !(*this == v); |
197 |
} |
198 |
|
199 |
/** Negates the value of this vector in place. */ |
200 |
inline void negate() { |
201 |
for (unsigned int i = 0; i < Dim; i++) |
202 |
this->data_[i] = -this->data_[i]; |
203 |
} |
204 |
|
205 |
/** |
206 |
* Sets the value of this vector to the negation of vector v1. |
207 |
* @param v1 the source vector |
208 |
*/ |
209 |
inline void negate(const Vector<Real, Dim>& v1) { |
210 |
for (unsigned int i = 0; i < Dim; i++) |
211 |
this->data_[i] = -v1.data_[i]; |
212 |
|
213 |
} |
214 |
|
215 |
/** |
216 |
* Sets the value of this vector to the sum of itself and v1 (*this += v1). |
217 |
* @param v1 the other vector |
218 |
*/ |
219 |
inline void add( const Vector<Real, Dim>& v1 ) { |
220 |
for (unsigned int i = 0; i < Dim; i++) |
221 |
this->data_[i] += v1.data_[i]; |
222 |
} |
223 |
|
224 |
/** |
225 |
* Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2). |
226 |
* @param v1 the first vector |
227 |
* @param v2 the second vector |
228 |
*/ |
229 |
inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
230 |
for (unsigned int i = 0; i < Dim; i++) |
231 |
this->data_[i] = v1.data_[i] + v2.data_[i]; |
232 |
} |
233 |
|
234 |
/** |
235 |
* Sets the value of this vector to the difference of itself and v1 (*this -= v1). |
236 |
* @param v1 the other vector |
237 |
*/ |
238 |
inline void sub( const Vector<Real, Dim>& v1 ) { |
239 |
for (unsigned int i = 0; i < Dim; i++) |
240 |
this->data_[i] -= v1.data_[i]; |
241 |
} |
242 |
|
243 |
/** |
244 |
* Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2). |
245 |
* @param v1 the first vector |
246 |
* @param v2 the second vector |
247 |
*/ |
248 |
inline void sub( const Vector<Real, Dim>& v1, const Vector &v2 ){ |
249 |
for (unsigned int i = 0; i < Dim; i++) |
250 |
this->data_[i] = v1.data_[i] - v2.data_[i]; |
251 |
} |
252 |
|
253 |
/** |
254 |
* Sets the value of this vector to the scalar multiplication of itself (*this *= s). |
255 |
* @param s the scalar value |
256 |
*/ |
257 |
inline void mul( Real s ) { |
258 |
for (unsigned int i = 0; i < Dim; i++) |
259 |
this->data_[i] *= s; |
260 |
} |
261 |
|
262 |
/** |
263 |
* Sets the value of this vector to the scalar multiplication of vector v1 |
264 |
* (*this = s * v1). |
265 |
* @param v1 the vector |
266 |
* @param s the scalar value |
267 |
*/ |
268 |
inline void mul( const Vector<Real, Dim>& v1, Real s) { |
269 |
for (unsigned int i = 0; i < Dim; i++) |
270 |
this->data_[i] = s * v1.data_[i]; |
271 |
} |
272 |
|
273 |
/** |
274 |
* Sets the elements of this vector to the multiplication of |
275 |
* elements of two other vectors. Not to be confused with scalar |
276 |
* multiplication (mul) or dot products. |
277 |
* |
278 |
* (*this.data_[i] = v1.data_[i] * v2.data_[i]). |
279 |
* @param v1 the first vector |
280 |
* @param v2 the second vector |
281 |
*/ |
282 |
inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
283 |
for (unsigned int i = 0; i < Dim; i++) |
284 |
this->data_[i] = v1.data_[i] * v2.data_[i]; |
285 |
} |
286 |
|
287 |
/* replaces the elements with the absolute values of those elements */ |
288 |
inline Vector<Real, Dim>& abs() { |
289 |
for (unsigned int i = 0; i < Dim; i++) { |
290 |
this->data_[i] = std::abs(this->data_[i]); |
291 |
} |
292 |
return *this; |
293 |
} |
294 |
|
295 |
/* returns the maximum value in this vector */ |
296 |
inline Real max() { |
297 |
Real val = this->data_[0]; |
298 |
for (unsigned int i = 0; i < Dim; i++) { |
299 |
if (this->data_[i] > val) val = this->data_[i]; |
300 |
} |
301 |
return val; |
302 |
} |
303 |
|
304 |
/** |
305 |
* Sets the value of this vector to the scalar division of itself (*this /= s ). |
306 |
* @param s the scalar value |
307 |
*/ |
308 |
inline void div( Real s) { |
309 |
for (unsigned int i = 0; i < Dim; i++) |
310 |
this->data_[i] /= s; |
311 |
} |
312 |
|
313 |
/** |
314 |
* Sets the value of this vector to the scalar division of vector v1 (*this = v1 / s ). |
315 |
* @param v1 the source vector |
316 |
* @param s the scalar value |
317 |
*/ |
318 |
inline void div( const Vector<Real, Dim>& v1, Real s ) { |
319 |
for (unsigned int i = 0; i < Dim; i++) |
320 |
this->data_[i] = v1.data_[i] / s; |
321 |
} |
322 |
|
323 |
/** |
324 |
* Sets the elements of this vector to the division of |
325 |
* elements of two other vectors. Not to be confused with scalar |
326 |
* division (div) |
327 |
* |
328 |
* (*this.data_[i] = v1.data_[i] / v2.data_[i]). |
329 |
* @param v1 the first vector |
330 |
* @param v2 the second vector |
331 |
*/ |
332 |
inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
333 |
for (unsigned int i = 0; i < Dim; i++) |
334 |
this->data_[i] = v1.data_[i] / v2.data_[i]; |
335 |
} |
336 |
|
337 |
|
338 |
/** @see #add */ |
339 |
inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) { |
340 |
add(v1); |
341 |
return *this; |
342 |
} |
343 |
|
344 |
/** @see #sub */ |
345 |
inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) { |
346 |
sub(v1); |
347 |
return *this; |
348 |
} |
349 |
|
350 |
/** @see #mul */ |
351 |
inline Vector<Real, Dim>& operator *=( Real s) { |
352 |
mul(s); |
353 |
return *this; |
354 |
} |
355 |
|
356 |
/** @see #div */ |
357 |
inline Vector<Real, Dim>& operator /=( Real s ) { |
358 |
div(s); |
359 |
return *this; |
360 |
} |
361 |
|
362 |
/** |
363 |
* Returns the sum of all elements of this vector. |
364 |
* @return the sum of all elements of this vector |
365 |
*/ |
366 |
inline Real sum() { |
367 |
Real tmp; |
368 |
tmp = 0; |
369 |
for (unsigned int i = 0; i < Dim; i++) |
370 |
tmp += this->data_[i]; |
371 |
return tmp; |
372 |
} |
373 |
|
374 |
/** |
375 |
* Returns the product of all elements of this vector. |
376 |
* @return the product of all elements of this vector |
377 |
*/ |
378 |
inline Real componentProduct() { |
379 |
Real tmp; |
380 |
tmp = 1; |
381 |
for (unsigned int i = 0; i < Dim; i++) |
382 |
tmp *= this->data_[i]; |
383 |
return tmp; |
384 |
} |
385 |
|
386 |
/** |
387 |
* Returns the length of this vector. |
388 |
* @return the length of this vector |
389 |
*/ |
390 |
inline Real length() { |
391 |
return sqrt(lengthSquare()); |
392 |
} |
393 |
|
394 |
/** |
395 |
* Returns the squared length of this vector. |
396 |
* @return the squared length of this vector |
397 |
*/ |
398 |
inline Real lengthSquare() { |
399 |
return dot(*this, *this); |
400 |
} |
401 |
|
402 |
/** Normalizes this vector in place */ |
403 |
inline void normalize() { |
404 |
Real len; |
405 |
|
406 |
len = length(); |
407 |
|
408 |
//if (len < OpenMD::NumericConstant::epsilon) |
409 |
// throw(); |
410 |
|
411 |
*this /= len; |
412 |
} |
413 |
|
414 |
/** |
415 |
* Tests if this vector is normalized |
416 |
* @return true if this vector is normalized, otherwise return false |
417 |
*/ |
418 |
inline bool isNormalized() { |
419 |
return equal(lengthSquare(), (RealType)1); |
420 |
} |
421 |
|
422 |
unsigned int size() {return Dim;} |
423 |
protected: |
424 |
Real data_[Dim]; |
425 |
|
426 |
}; |
427 |
|
428 |
/** unary minus*/ |
429 |
template<typename Real, unsigned int Dim> |
430 |
inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){ |
431 |
Vector<Real, Dim> tmp(v1); |
432 |
tmp.negate(); |
433 |
return tmp; |
434 |
} |
435 |
|
436 |
/** |
437 |
* Return the sum of two vectors (v1 - v2). |
438 |
* @return the sum of two vectors |
439 |
* @param v1 the first vector |
440 |
* @param v2 the second vector |
441 |
*/ |
442 |
template<typename Real, unsigned int Dim> |
443 |
inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
444 |
Vector<Real, Dim> result; |
445 |
|
446 |
result.add(v1, v2); |
447 |
return result; |
448 |
} |
449 |
|
450 |
/** |
451 |
* Return the difference of two vectors (v1 - v2). |
452 |
* @return the difference of two vectors |
453 |
* @param v1 the first vector |
454 |
* @param v2 the second vector |
455 |
*/ |
456 |
template<typename Real, unsigned int Dim> |
457 |
Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { |
458 |
Vector<Real, Dim> result; |
459 |
result.sub(v1, v2); |
460 |
return result; |
461 |
} |
462 |
|
463 |
/** |
464 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
465 |
* @return the vaule of scalar multiplication of this vector |
466 |
* @param v1 the source vector |
467 |
* @param s the scalar value |
468 |
*/ |
469 |
template<typename Real, unsigned int Dim> |
470 |
Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) { |
471 |
Vector<Real, Dim> result; |
472 |
result.mul(v1,s); |
473 |
return result; |
474 |
} |
475 |
|
476 |
/** |
477 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
478 |
* @return the vaule of scalar multiplication of this vector |
479 |
* @param s the scalar value |
480 |
* @param v1 the source vector |
481 |
*/ |
482 |
template<typename Real, unsigned int Dim> |
483 |
Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) { |
484 |
Vector<Real, Dim> result; |
485 |
result.mul(v1, s); |
486 |
return result; |
487 |
} |
488 |
|
489 |
/** |
490 |
* Returns the value of division of a vector by a scalar. |
491 |
* @return the vaule of scalar division of this vector |
492 |
* @param v1 the source vector |
493 |
* @param s the scalar value |
494 |
*/ |
495 |
template<typename Real, unsigned int Dim> |
496 |
Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) { |
497 |
Vector<Real, Dim> result; |
498 |
result.div( v1,s); |
499 |
return result; |
500 |
} |
501 |
|
502 |
/** |
503 |
* Returns the dot product of two Vectors |
504 |
* @param v1 first vector |
505 |
* @param v2 second vector |
506 |
* @return the dot product of v1 and v2 |
507 |
*/ |
508 |
template<typename Real, unsigned int Dim> |
509 |
inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
510 |
Real tmp; |
511 |
tmp = 0; |
512 |
|
513 |
for (unsigned int i = 0; i < Dim; i++) |
514 |
tmp += v1[i] * v2[i]; |
515 |
|
516 |
return tmp; |
517 |
} |
518 |
|
519 |
|
520 |
|
521 |
|
522 |
/** |
523 |
* Returns the wide dot product of three Vectors. Compare with |
524 |
* Rapaport's VWDot function. |
525 |
* |
526 |
* @param v1 first vector |
527 |
* @param v2 second vector |
528 |
* @param v3 third vector |
529 |
* @return the wide dot product of v1, v2, and v3. |
530 |
*/ |
531 |
template<typename Real, unsigned int Dim> |
532 |
inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) { |
533 |
Real tmp; |
534 |
tmp = 0; |
535 |
|
536 |
for (unsigned int i = 0; i < Dim; i++) |
537 |
tmp += v1[i] * v2[i] * v3[i]; |
538 |
|
539 |
return tmp; |
540 |
} |
541 |
|
542 |
|
543 |
/** |
544 |
* Returns the distance between two Vectors |
545 |
* @param v1 first vector |
546 |
* @param v2 second vector |
547 |
* @return the distance between v1 and v2 |
548 |
*/ |
549 |
template<typename Real, unsigned int Dim> |
550 |
inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
551 |
Vector<Real, Dim> tempVector = v1 - v2; |
552 |
return tempVector.length(); |
553 |
} |
554 |
|
555 |
/** |
556 |
* Returns the squared distance between two Vectors |
557 |
* @param v1 first vector |
558 |
* @param v2 second vector |
559 |
* @return the squared distance between v1 and v2 |
560 |
*/ |
561 |
template<typename Real, unsigned int Dim> |
562 |
inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { |
563 |
Vector<Real, Dim> tempVector = v1 - v2; |
564 |
return tempVector.lengthSquare(); |
565 |
} |
566 |
|
567 |
/** |
568 |
* Write to an output stream |
569 |
*/ |
570 |
template<typename Real, unsigned int Dim> |
571 |
std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) { |
572 |
|
573 |
o << "[ "; |
574 |
|
575 |
for (unsigned int i = 0 ; i< Dim; i++) { |
576 |
o << v[i]; |
577 |
|
578 |
if (i != Dim -1) { |
579 |
o<< ", "; |
580 |
} |
581 |
} |
582 |
|
583 |
o << " ]"; |
584 |
return o; |
585 |
} |
586 |
|
587 |
} |
588 |
#endif |