ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix3.hpp
Revision: 1767
Committed: Fri Jul 6 22:01:58 2012 UTC (12 years, 9 months ago) by gezelter
File size: 18689 byte(s)
Log Message:
Various fixes required to compile OpenMD with the MS Visual C++ compiler

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SquareMatrix3.hpp
45 * @author Teng Lin
46 * @date 10/11/2004
47 * @version 1.0
48 */
49 #ifndef MATH_SQUAREMATRIX3_HPP
50 #define MATH_SQUAREMATRIX3_HPP
51 #include "config.h"
52 #include <cmath>
53 #include <vector>
54 #include "Quaternion.hpp"
55 #include "SquareMatrix.hpp"
56 #include "Vector3.hpp"
57 #include "utils/NumericConstant.hpp"
58 namespace OpenMD {
59
60 template<typename Real>
61 class SquareMatrix3 : public SquareMatrix<Real, 3> {
62 public:
63
64 typedef Real ElemType;
65 typedef Real* ElemPoinerType;
66
67 /** default constructor */
68 SquareMatrix3() : SquareMatrix<Real, 3>() {
69 }
70
71 /** Constructs and initializes every element of this matrix to a scalar */
72 SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
73 }
74
75 /** Constructs and initializes from an array */
76 SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
77 }
78
79
80 /** copy constructor */
81 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
82 }
83
84 SquareMatrix3( const Vector3<Real>& eulerAngles) {
85 setupRotMat(eulerAngles);
86 }
87
88 SquareMatrix3(Real phi, Real theta, Real psi) {
89 setupRotMat(phi, theta, psi);
90 }
91
92 SquareMatrix3(const Quaternion<Real>& q) {
93 setupRotMat(q);
94
95 }
96
97 SquareMatrix3(Real w, Real x, Real y, Real z) {
98 setupRotMat(w, x, y, z);
99 }
100
101 /** copy assignment operator */
102 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
103 if (this == &m)
104 return *this;
105 SquareMatrix<Real, 3>::operator=(m);
106 return *this;
107 }
108
109
110 SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
111 this->setupRotMat(q);
112 return *this;
113 }
114
115
116 /**
117 * Sets this matrix to a rotation matrix by three euler angles
118 * @ param euler
119 */
120 void setupRotMat(const Vector3<Real>& eulerAngles) {
121 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
122 }
123
124 /**
125 * Sets this matrix to a rotation matrix by three euler angles
126 * @param phi
127 * @param theta
128 * @psi theta
129 */
130 void setupRotMat(Real phi, Real theta, Real psi) {
131 Real sphi, stheta, spsi;
132 Real cphi, ctheta, cpsi;
133
134 sphi = sin(phi);
135 stheta = sin(theta);
136 spsi = sin(psi);
137 cphi = cos(phi);
138 ctheta = cos(theta);
139 cpsi = cos(psi);
140
141 this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
142 this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
143 this->data_[0][2] = spsi * stheta;
144
145 this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
146 this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
147 this->data_[1][2] = cpsi * stheta;
148
149 this->data_[2][0] = stheta * sphi;
150 this->data_[2][1] = -stheta * cphi;
151 this->data_[2][2] = ctheta;
152 }
153
154
155 /**
156 * Sets this matrix to a rotation matrix by quaternion
157 * @param quat
158 */
159 void setupRotMat(const Quaternion<Real>& quat) {
160 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
161 }
162
163 /**
164 * Sets this matrix to a rotation matrix by quaternion
165 * @param w the first element
166 * @param x the second element
167 * @param y the third element
168 * @param z the fourth element
169 */
170 void setupRotMat(Real w, Real x, Real y, Real z) {
171 Quaternion<Real> q(w, x, y, z);
172 *this = q.toRotationMatrix3();
173 }
174
175 void setupSkewMat(Vector3<Real> v) {
176 setupSkewMat(v[0], v[1], v[2]);
177 }
178
179 void setupSkewMat(Real v1, Real v2, Real v3) {
180 this->data_[0][0] = 0;
181 this->data_[0][1] = -v3;
182 this->data_[0][2] = v2;
183 this->data_[1][0] = v3;
184 this->data_[1][1] = 0;
185 this->data_[1][2] = -v1;
186 this->data_[2][0] = -v2;
187 this->data_[2][1] = v1;
188 this->data_[2][2] = 0;
189
190
191 }
192
193
194 /**
195 * Returns the quaternion from this rotation matrix
196 * @return the quaternion from this rotation matrix
197 * @exception invalid rotation matrix
198 */
199 Quaternion<Real> toQuaternion() {
200 Quaternion<Real> q;
201 Real t, s;
202 Real ad1, ad2, ad3;
203 t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0;
204
205 if( t > NumericConstant::epsilon ){
206
207 s = 0.5 / sqrt( t );
208 q[0] = 0.25 / s;
209 q[1] = (this->data_[1][2] - this->data_[2][1]) * s;
210 q[2] = (this->data_[2][0] - this->data_[0][2]) * s;
211 q[3] = (this->data_[0][1] - this->data_[1][0]) * s;
212 } else {
213
214 ad1 = this->data_[0][0];
215 ad2 = this->data_[1][1];
216 ad3 = this->data_[2][2];
217
218 if( ad1 >= ad2 && ad1 >= ad3 ){
219
220 s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] );
221 q[0] = (this->data_[1][2] - this->data_[2][1]) * s;
222 q[1] = 0.25 / s;
223 q[2] = (this->data_[0][1] + this->data_[1][0]) * s;
224 q[3] = (this->data_[0][2] + this->data_[2][0]) * s;
225 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
226 s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] );
227 q[0] = (this->data_[2][0] - this->data_[0][2] ) * s;
228 q[1] = (this->data_[0][1] + this->data_[1][0]) * s;
229 q[2] = 0.25 / s;
230 q[3] = (this->data_[1][2] + this->data_[2][1]) * s;
231 } else {
232
233 s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] );
234 q[0] = (this->data_[0][1] - this->data_[1][0]) * s;
235 q[1] = (this->data_[0][2] + this->data_[2][0]) * s;
236 q[2] = (this->data_[1][2] + this->data_[2][1]) * s;
237 q[3] = 0.25 / s;
238 }
239 }
240
241 return q;
242
243 }
244
245 /**
246 * Returns the euler angles from this rotation matrix
247 * @return the euler angles in a vector
248 * @exception invalid rotation matrix
249 * We use so-called "x-convention", which is the most common definition.
250 * In this convention, the rotation given by Euler angles (phi, theta,
251 * psi), where the first rotation is by an angle phi about the z-axis,
252 * the second is by an angle theta (0 <= theta <= 180) about the x-axis,
253 * and the third is by an angle psi about the z-axis (again).
254 */
255 Vector3<Real> toEulerAngles() {
256 Vector3<Real> myEuler;
257 Real phi;
258 Real theta;
259 Real psi;
260 Real ctheta;
261 Real stheta;
262
263 // set the tolerance for Euler angles and rotation elements
264
265 theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2])));
266 ctheta = this->data_[2][2];
267 stheta = sqrt(1.0 - ctheta * ctheta);
268
269 // when sin(theta) is close to 0, we need to consider
270 // singularity In this case, we can assign an arbitary value to
271 // phi (or psi), and then determine the psi (or phi) or
272 // vice-versa. We'll assume that phi always gets the rotation,
273 // and psi is 0 in cases of singularity.
274 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
275 // Since 0 <= theta <= 180, sin(theta) will be always
276 // non-negative. Therefore, it will never change the sign of both of
277 // the parameters passed to atan2.
278
279 if (fabs(stheta) < 1e-6){
280 psi = 0.0;
281 phi = atan2(-this->data_[1][0], this->data_[0][0]);
282 }
283 // we only have one unique solution
284 else{
285 phi = atan2(this->data_[2][0], -this->data_[2][1]);
286 psi = atan2(this->data_[0][2], this->data_[1][2]);
287 }
288
289 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
290 if (phi < 0)
291 phi += 2.0 * M_PI;
292
293 if (psi < 0)
294 psi += 2.0 * M_PI;
295
296 myEuler[0] = phi;
297 myEuler[1] = theta;
298 myEuler[2] = psi;
299
300 return myEuler;
301 }
302
303 /** Returns the determinant of this matrix. */
304 Real determinant() const {
305 Real x,y,z;
306
307 x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]);
308 y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]);
309 z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]);
310
311 return(x + y + z);
312 }
313
314 /** Returns the trace of this matrix. */
315 Real trace() const {
316 return this->data_[0][0] + this->data_[1][1] + this->data_[2][2];
317 }
318
319 /**
320 * Sets the value of this matrix to the inversion of itself.
321 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
322 * implementation of inverse in SquareMatrix class
323 */
324 SquareMatrix3<Real> inverse() const {
325 SquareMatrix3<Real> m;
326 RealType det = determinant();
327 if (fabs(det) <= OpenMD::epsilon) {
328 //"The method was called on a matrix with |determinant| <= 1e-6.",
329 //"This is a runtime or a programming error in your application.");
330 std::vector<int> zeroDiagElementIndex;
331 for (int i =0; i < 3; ++i) {
332 if (fabs(this->data_[i][i]) <= OpenMD::epsilon) {
333 zeroDiagElementIndex.push_back(i);
334 }
335 }
336
337 if (zeroDiagElementIndex.size() == 2) {
338 int index = zeroDiagElementIndex[0];
339 m(index, index) = 1.0 / this->data_[index][index];
340 }else if (zeroDiagElementIndex.size() == 1) {
341
342 int a = (zeroDiagElementIndex[0] + 1) % 3;
343 int b = (zeroDiagElementIndex[0] + 2) %3;
344 RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b];
345 m(a, a) = this->data_[b][b] /denom;
346 m(b, a) = -this->data_[b][a]/denom;
347
348 m(a,b) = -this->data_[a][b]/denom;
349 m(b, b) = this->data_[a][a]/denom;
350
351 }
352
353 /*
354 for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) {
355 if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] ||
356 this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) {
357 std::cout << "can not inverse matrix" << std::endl;
358 }
359 }
360 */
361 } else {
362
363 m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
364 m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
365 m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
366 m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
367 m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
368 m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
369 m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
370 m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
371 m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
372
373 m /= det;
374 }
375 return m;
376 }
377
378 SquareMatrix3<Real> transpose() const{
379 SquareMatrix3<Real> result;
380
381 for (unsigned int i = 0; i < 3; i++)
382 for (unsigned int j = 0; j < 3; j++)
383 result(j, i) = this->data_[i][j];
384
385 return result;
386 }
387 /**
388 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
389 * The eigenvectors (the columns of V) will be normalized.
390 * The eigenvectors are aligned optimally with the x, y, and z
391 * axes respectively.
392 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
393 * overwritten
394 * @param w will contain the eigenvalues of the matrix On return of this function
395 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
396 * normalized and mutually orthogonal.
397 * @warning a will be overwritten
398 */
399 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
400 };
401 /*=========================================================================
402
403 Program: Visualization Toolkit
404 Module: $RCSfile: SquareMatrix3.hpp,v $
405
406 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
407 All rights reserved.
408 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
409
410 This software is distributed WITHOUT ANY WARRANTY; without even
411 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
412 PURPOSE. See the above copyright notice for more information.
413
414 =========================================================================*/
415 template<typename Real>
416 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
417 SquareMatrix3<Real>& v) {
418 int i,j,k,maxI;
419 Real tmp, maxVal;
420 Vector3<Real> v_maxI, v_k, v_j;
421
422 // diagonalize using Jacobi
423 SquareMatrix3<Real>::jacobi(a, w, v);
424 // if all the eigenvalues are the same, return identity matrix
425 if (w[0] == w[1] && w[0] == w[2] ) {
426 v = SquareMatrix3<Real>::identity();
427 return;
428 }
429
430 // transpose temporarily, it makes it easier to sort the eigenvectors
431 v = v.transpose();
432
433 // if two eigenvalues are the same, re-orthogonalize to optimally line
434 // up the eigenvectors with the x, y, and z axes
435 for (i = 0; i < 3; i++) {
436 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
437 // find maximum element of the independant eigenvector
438 maxVal = fabs(v(i, 0));
439 maxI = 0;
440 for (j = 1; j < 3; j++) {
441 if (maxVal < (tmp = fabs(v(i, j)))){
442 maxVal = tmp;
443 maxI = j;
444 }
445 }
446
447 // swap the eigenvector into its proper position
448 if (maxI != i) {
449 tmp = w(maxI);
450 w(maxI) = w(i);
451 w(i) = tmp;
452
453 v.swapRow(i, maxI);
454 }
455 // maximum element of eigenvector should be positive
456 if (v(maxI, maxI) < 0) {
457 v(maxI, 0) = -v(maxI, 0);
458 v(maxI, 1) = -v(maxI, 1);
459 v(maxI, 2) = -v(maxI, 2);
460 }
461
462 // re-orthogonalize the other two eigenvectors
463 j = (maxI+1)%3;
464 k = (maxI+2)%3;
465
466 v(j, 0) = 0.0;
467 v(j, 1) = 0.0;
468 v(j, 2) = 0.0;
469 v(j, j) = 1.0;
470
471 /** @todo */
472 v_maxI = v.getRow(maxI);
473 v_j = v.getRow(j);
474 v_k = cross(v_maxI, v_j);
475 v_k.normalize();
476 v_j = cross(v_k, v_maxI);
477 v.setRow(j, v_j);
478 v.setRow(k, v_k);
479
480
481 // transpose vectors back to columns
482 v = v.transpose();
483 return;
484 }
485 }
486
487 // the three eigenvalues are different, just sort the eigenvectors
488 // to align them with the x, y, and z axes
489
490 // find the vector with the largest x element, make that vector
491 // the first vector
492 maxVal = fabs(v(0, 0));
493 maxI = 0;
494 for (i = 1; i < 3; i++) {
495 if (maxVal < (tmp = fabs(v(i, 0)))) {
496 maxVal = tmp;
497 maxI = i;
498 }
499 }
500
501 // swap eigenvalue and eigenvector
502 if (maxI != 0) {
503 tmp = w(maxI);
504 w(maxI) = w(0);
505 w(0) = tmp;
506 v.swapRow(maxI, 0);
507 }
508 // do the same for the y element
509 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
510 tmp = w(2);
511 w(2) = w(1);
512 w(1) = tmp;
513 v.swapRow(2, 1);
514 }
515
516 // ensure that the sign of the eigenvectors is correct
517 for (i = 0; i < 2; i++) {
518 if (v(i, i) < 0) {
519 v(i, 0) = -v(i, 0);
520 v(i, 1) = -v(i, 1);
521 v(i, 2) = -v(i, 2);
522 }
523 }
524
525 // set sign of final eigenvector to ensure that determinant is positive
526 if (v.determinant() < 0) {
527 v(2, 0) = -v(2, 0);
528 v(2, 1) = -v(2, 1);
529 v(2, 2) = -v(2, 2);
530 }
531
532 // transpose the eigenvectors back again
533 v = v.transpose();
534 return ;
535 }
536
537 /**
538 * Return the multiplication of two matrixes (m1 * m2).
539 * @return the multiplication of two matrixes
540 * @param m1 the first matrix
541 * @param m2 the second matrix
542 */
543 template<typename Real>
544 inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
545 SquareMatrix3<Real> result;
546
547 for (unsigned int i = 0; i < 3; i++)
548 for (unsigned int j = 0; j < 3; j++)
549 for (unsigned int k = 0; k < 3; k++)
550 result(i, j) += m1(i, k) * m2(k, j);
551
552 return result;
553 }
554
555 template<typename Real>
556 inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
557 SquareMatrix3<Real> result;
558
559 for (unsigned int i = 0; i < 3; i++) {
560 for (unsigned int j = 0; j < 3; j++) {
561 result(i, j) = v1[i] * v2[j];
562 }
563 }
564
565 return result;
566 }
567
568
569 typedef SquareMatrix3<RealType> Mat3x3d;
570 typedef SquareMatrix3<RealType> RotMat3x3d;
571
572 } //namespace OpenMD
573 #endif // MATH_SQUAREMATRIX_HPP
574

Properties

Name Value
svn:keywords Author Id Revision Date