1 |
< |
/* |
2 |
< |
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
< |
* |
4 |
< |
* Contact: oopse@oopse.org |
5 |
< |
* |
6 |
< |
* This program is free software; you can redistribute it and/or |
7 |
< |
* modify it under the terms of the GNU Lesser General Public License |
8 |
< |
* as published by the Free Software Foundation; either version 2.1 |
9 |
< |
* of the License, or (at your option) any later version. |
10 |
< |
* All we ask is that proper credit is given for our work, which includes |
11 |
< |
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
< |
* of your source code files, and to any copyright notice that you may distribute |
13 |
< |
* with programs based on this work. |
14 |
< |
* |
15 |
< |
* This program is distributed in the hope that it will be useful, |
16 |
< |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
< |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
< |
* GNU Lesser General Public License for more details. |
19 |
< |
* |
20 |
< |
* You should have received a copy of the GNU Lesser General Public License |
21 |
< |
* along with this program; if not, write to the Free Software |
22 |
< |
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Acknowledgement of the program authors must be made in any |
10 |
+ |
* publication of scientific results based in part on use of the |
11 |
+ |
* program. An acceptable form of acknowledgement is citation of |
12 |
+ |
* the article in which the program was described (Matthew |
13 |
+ |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
+ |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
+ |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
+ |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
+ |
* |
18 |
+ |
* 2. Redistributions of source code must retain the above copyright |
19 |
+ |
* notice, this list of conditions and the following disclaimer. |
20 |
+ |
* |
21 |
+ |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
+ |
* notice, this list of conditions and the following disclaimer in the |
23 |
+ |
* documentation and/or other materials provided with the |
24 |
+ |
* distribution. |
25 |
+ |
* |
26 |
+ |
* This software is provided "AS IS," without a warranty of any |
27 |
+ |
* kind. All express or implied conditions, representations and |
28 |
+ |
* warranties, including any implied warranty of merchantability, |
29 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
+ |
* be liable for any damages suffered by licensee as a result of |
32 |
+ |
* using, modifying or distributing the software or its |
33 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
34 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
36 |
+ |
* damages, however caused and regardless of the theory of liability, |
37 |
+ |
* arising out of the use of or inability to use software, even if the |
38 |
+ |
* University of Notre Dame has been advised of the possibility of |
39 |
+ |
* such damages. |
40 |
|
*/ |
41 |
< |
|
41 |
> |
|
42 |
|
/** |
43 |
|
* @file SquareMatrix3.hpp |
44 |
|
* @author Teng Lin |
51 |
|
#include "Quaternion.hpp" |
52 |
|
#include "SquareMatrix.hpp" |
53 |
|
#include "Vector3.hpp" |
54 |
< |
|
54 |
> |
#include "utils/NumericConstant.hpp" |
55 |
|
namespace oopse { |
56 |
|
|
57 |
|
template<typename Real> |
58 |
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
59 |
|
public: |
60 |
+ |
|
61 |
+ |
typedef Real ElemType; |
62 |
+ |
typedef Real* ElemPoinerType; |
63 |
|
|
64 |
|
/** default constructor */ |
65 |
|
SquareMatrix3() : SquareMatrix<Real, 3>() { |
66 |
|
} |
67 |
|
|
68 |
+ |
/** Constructs and initializes every element of this matrix to a scalar */ |
69 |
+ |
SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 |
+ |
} |
71 |
+ |
|
72 |
+ |
/** Constructs and initializes from an array */ |
73 |
+ |
SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 |
+ |
} |
75 |
+ |
|
76 |
+ |
|
77 |
|
/** copy constructor */ |
78 |
|
SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
79 |
|
} |
80 |
< |
|
80 |
> |
|
81 |
|
SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 |
|
setupRotMat(eulerAngles); |
83 |
|
} |
103 |
|
return *this; |
104 |
|
} |
105 |
|
|
106 |
+ |
|
107 |
+ |
SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 |
+ |
this->setupRotMat(q); |
109 |
+ |
return *this; |
110 |
+ |
} |
111 |
+ |
|
112 |
|
/** |
113 |
|
* Sets this matrix to a rotation matrix by three euler angles |
114 |
|
* @ param euler |
134 |
|
ctheta = cos(theta); |
135 |
|
cpsi = cos(psi); |
136 |
|
|
137 |
< |
data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 |
< |
data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 |
< |
data_[0][2] = spsi * stheta; |
137 |
> |
this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 |
> |
this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 |
> |
this->data_[0][2] = spsi * stheta; |
140 |
|
|
141 |
< |
data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 |
< |
data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 |
< |
data_[1][2] = cpsi * stheta; |
141 |
> |
this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 |
> |
this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 |
> |
this->data_[1][2] = cpsi * stheta; |
144 |
|
|
145 |
< |
data_[2][0] = stheta * sphi; |
146 |
< |
data_[2][1] = -stheta * cphi; |
147 |
< |
data_[2][2] = ctheta; |
145 |
> |
this->data_[2][0] = stheta * sphi; |
146 |
> |
this->data_[2][1] = -stheta * cphi; |
147 |
> |
this->data_[2][2] = ctheta; |
148 |
|
} |
149 |
|
|
150 |
|
|
177 |
|
Quaternion<Real> q; |
178 |
|
Real t, s; |
179 |
|
Real ad1, ad2, ad3; |
180 |
< |
t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; |
180 |
> |
t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
181 |
|
|
182 |
< |
if( t > 0.0 ){ |
182 |
> |
if( t > NumericConstant::epsilon ){ |
183 |
|
|
184 |
|
s = 0.5 / sqrt( t ); |
185 |
|
q[0] = 0.25 / s; |
186 |
< |
q[1] = (data_[1][2] - data_[2][1]) * s; |
187 |
< |
q[2] = (data_[2][0] - data_[0][2]) * s; |
188 |
< |
q[3] = (data_[0][1] - data_[1][0]) * s; |
186 |
> |
q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
187 |
> |
q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
188 |
> |
q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
189 |
|
} else { |
190 |
|
|
191 |
< |
ad1 = fabs( data_[0][0] ); |
192 |
< |
ad2 = fabs( data_[1][1] ); |
193 |
< |
ad3 = fabs( data_[2][2] ); |
191 |
> |
ad1 = fabs( this->data_[0][0] ); |
192 |
> |
ad2 = fabs( this->data_[1][1] ); |
193 |
> |
ad3 = fabs( this->data_[2][2] ); |
194 |
|
|
195 |
|
if( ad1 >= ad2 && ad1 >= ad3 ){ |
196 |
|
|
197 |
< |
s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); |
198 |
< |
q[0] = (data_[1][2] + data_[2][1]) / s; |
199 |
< |
q[1] = 0.5 / s; |
200 |
< |
q[2] = (data_[0][1] + data_[1][0]) / s; |
201 |
< |
q[3] = (data_[0][2] + data_[2][0]) / s; |
197 |
> |
s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
198 |
> |
q[0] = (this->data_[1][2] - this->data_[2][1]) * s; |
199 |
> |
q[1] = 0.25 / s; |
200 |
> |
q[2] = (this->data_[0][1] + this->data_[1][0]) * s; |
201 |
> |
q[3] = (this->data_[0][2] + this->data_[2][0]) * s; |
202 |
|
} else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
203 |
< |
s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; |
204 |
< |
q[0] = (data_[0][2] + data_[2][0]) / s; |
205 |
< |
q[1] = (data_[0][1] + data_[1][0]) / s; |
206 |
< |
q[2] = 0.5 / s; |
207 |
< |
q[3] = (data_[1][2] + data_[2][1]) / s; |
203 |
> |
s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); |
204 |
> |
q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; |
205 |
> |
q[1] = (this->data_[0][1] + this->data_[1][0]) * s; |
206 |
> |
q[2] = 0.25 / s; |
207 |
> |
q[3] = (this->data_[1][2] + this->data_[2][1]) * s; |
208 |
|
} else { |
209 |
|
|
210 |
< |
s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; |
211 |
< |
q[0] = (data_[0][1] + data_[1][0]) / s; |
212 |
< |
q[1] = (data_[0][2] + data_[2][0]) / s; |
213 |
< |
q[2] = (data_[1][2] + data_[2][1]) / s; |
214 |
< |
q[3] = 0.5 / s; |
210 |
> |
s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); |
211 |
> |
q[0] = (this->data_[0][1] - this->data_[1][0]) * s; |
212 |
> |
q[1] = (this->data_[0][2] + this->data_[2][0]) * s; |
213 |
> |
q[2] = (this->data_[1][2] + this->data_[2][1]) * s; |
214 |
> |
q[3] = 0.25 / s; |
215 |
|
} |
216 |
|
} |
217 |
|
|
231 |
|
*/ |
232 |
|
Vector3<Real> toEulerAngles() { |
233 |
|
Vector3<Real> myEuler; |
234 |
< |
Real phi,theta,psi,eps; |
235 |
< |
Real ctheta,stheta; |
234 |
> |
Real phi; |
235 |
> |
Real theta; |
236 |
> |
Real psi; |
237 |
> |
Real ctheta; |
238 |
> |
Real stheta; |
239 |
|
|
240 |
|
// set the tolerance for Euler angles and rotation elements |
241 |
|
|
242 |
< |
theta = acos(std::min(1.0, std::max(-1.0,data_[2][2]))); |
243 |
< |
ctheta = data_[2][2]; |
242 |
> |
theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
243 |
> |
ctheta = this->data_[2][2]; |
244 |
|
stheta = sqrt(1.0 - ctheta * ctheta); |
245 |
|
|
246 |
|
// when sin(theta) is close to 0, we need to consider singularity |
253 |
|
|
254 |
|
if (fabs(stheta) <= oopse::epsilon){ |
255 |
|
psi = 0.0; |
256 |
< |
phi = atan2(-data_[1][0], data_[0][0]); |
256 |
> |
phi = atan2(-this->data_[1][0], this->data_[0][0]); |
257 |
|
} |
258 |
|
// we only have one unique solution |
259 |
|
else{ |
260 |
< |
phi = atan2(data_[2][0], -data_[2][1]); |
261 |
< |
psi = atan2(data_[0][2], data_[1][2]); |
260 |
> |
phi = atan2(this->data_[2][0], -this->data_[2][1]); |
261 |
> |
psi = atan2(this->data_[0][2], this->data_[1][2]); |
262 |
|
} |
263 |
|
|
264 |
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
279 |
|
Real determinant() const { |
280 |
|
Real x,y,z; |
281 |
|
|
282 |
< |
x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]); |
283 |
< |
y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]); |
284 |
< |
z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]); |
282 |
> |
x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
283 |
> |
y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
284 |
> |
z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
285 |
|
|
286 |
|
return(x + y + z); |
287 |
|
} |
288 |
+ |
|
289 |
+ |
/** Returns the trace of this matrix. */ |
290 |
+ |
Real trace() const { |
291 |
+ |
return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
292 |
+ |
} |
293 |
|
|
294 |
|
/** |
295 |
|
* Sets the value of this matrix to the inversion of itself. |
296 |
|
* @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
297 |
|
* implementation of inverse in SquareMatrix class |
298 |
|
*/ |
299 |
< |
SquareMatrix3<Real> inverse() { |
299 |
> |
SquareMatrix3<Real> inverse() const { |
300 |
|
SquareMatrix3<Real> m; |
301 |
|
double det = determinant(); |
302 |
|
if (fabs(det) <= oopse::epsilon) { |
304 |
|
//"This is a runtime or a programming error in your application."); |
305 |
|
} |
306 |
|
|
307 |
< |
m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1]; |
308 |
< |
m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2]; |
309 |
< |
m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0]; |
310 |
< |
m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1]; |
311 |
< |
m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2]; |
312 |
< |
m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0]; |
313 |
< |
m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1]; |
314 |
< |
m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2]; |
315 |
< |
m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0]; |
307 |
> |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
308 |
> |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
309 |
> |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
310 |
> |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
311 |
> |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
312 |
> |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
313 |
> |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
314 |
> |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
315 |
> |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
316 |
|
|
317 |
|
m /= det; |
318 |
|
return m; |
466 |
|
v = v.transpose(); |
467 |
|
return ; |
468 |
|
} |
469 |
+ |
|
470 |
+ |
/** |
471 |
+ |
* Return the multiplication of two matrixes (m1 * m2). |
472 |
+ |
* @return the multiplication of two matrixes |
473 |
+ |
* @param m1 the first matrix |
474 |
+ |
* @param m2 the second matrix |
475 |
+ |
*/ |
476 |
+ |
template<typename Real> |
477 |
+ |
inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
478 |
+ |
SquareMatrix3<Real> result; |
479 |
+ |
|
480 |
+ |
for (unsigned int i = 0; i < 3; i++) |
481 |
+ |
for (unsigned int j = 0; j < 3; j++) |
482 |
+ |
for (unsigned int k = 0; k < 3; k++) |
483 |
+ |
result(i, j) += m1(i, k) * m2(k, j); |
484 |
+ |
|
485 |
+ |
return result; |
486 |
+ |
} |
487 |
+ |
|
488 |
+ |
template<typename Real> |
489 |
+ |
inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
490 |
+ |
SquareMatrix3<Real> result; |
491 |
+ |
|
492 |
+ |
for (unsigned int i = 0; i < 3; i++) { |
493 |
+ |
for (unsigned int j = 0; j < 3; j++) { |
494 |
+ |
result(i, j) = v1[i] * v2[j]; |
495 |
+ |
} |
496 |
+ |
} |
497 |
+ |
|
498 |
+ |
return result; |
499 |
+ |
} |
500 |
+ |
|
501 |
+ |
|
502 |
|
typedef SquareMatrix3<double> Mat3x3d; |
503 |
|
typedef SquareMatrix3<double> RotMat3x3d; |
504 |
|
|