1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
tim |
70 |
* |
4 |
gezelter |
246 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
tim |
70 |
*/ |
41 |
gezelter |
246 |
|
42 |
tim |
70 |
/** |
43 |
|
|
* @file SquareMatrix3.hpp |
44 |
|
|
* @author Teng Lin |
45 |
|
|
* @date 10/11/2004 |
46 |
|
|
* @version 1.0 |
47 |
|
|
*/ |
48 |
gezelter |
507 |
#ifndef MATH_SQUAREMATRIX3_HPP |
49 |
tim |
99 |
#define MATH_SQUAREMATRIX3_HPP |
50 |
tim |
895 |
#include <vector> |
51 |
tim |
93 |
#include "Quaternion.hpp" |
52 |
tim |
70 |
#include "SquareMatrix.hpp" |
53 |
tim |
93 |
#include "Vector3.hpp" |
54 |
tim |
451 |
#include "utils/NumericConstant.hpp" |
55 |
tim |
70 |
namespace oopse { |
56 |
|
|
|
57 |
gezelter |
507 |
template<typename Real> |
58 |
|
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
59 |
|
|
public: |
60 |
tim |
137 |
|
61 |
gezelter |
507 |
typedef Real ElemType; |
62 |
|
|
typedef Real* ElemPoinerType; |
63 |
tim |
70 |
|
64 |
gezelter |
507 |
/** default constructor */ |
65 |
|
|
SquareMatrix3() : SquareMatrix<Real, 3>() { |
66 |
|
|
} |
67 |
tim |
70 |
|
68 |
gezelter |
507 |
/** Constructs and initializes every element of this matrix to a scalar */ |
69 |
|
|
SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 |
|
|
} |
71 |
tim |
151 |
|
72 |
gezelter |
507 |
/** Constructs and initializes from an array */ |
73 |
|
|
SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 |
|
|
} |
75 |
tim |
151 |
|
76 |
|
|
|
77 |
gezelter |
507 |
/** copy constructor */ |
78 |
|
|
SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
79 |
|
|
} |
80 |
gezelter |
246 |
|
81 |
gezelter |
507 |
SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 |
|
|
setupRotMat(eulerAngles); |
83 |
|
|
} |
84 |
tim |
93 |
|
85 |
gezelter |
507 |
SquareMatrix3(Real phi, Real theta, Real psi) { |
86 |
|
|
setupRotMat(phi, theta, psi); |
87 |
|
|
} |
88 |
tim |
93 |
|
89 |
gezelter |
507 |
SquareMatrix3(const Quaternion<Real>& q) { |
90 |
|
|
setupRotMat(q); |
91 |
tim |
113 |
|
92 |
gezelter |
507 |
} |
93 |
tim |
93 |
|
94 |
gezelter |
507 |
SquareMatrix3(Real w, Real x, Real y, Real z) { |
95 |
|
|
setupRotMat(w, x, y, z); |
96 |
|
|
} |
97 |
tim |
93 |
|
98 |
gezelter |
507 |
/** copy assignment operator */ |
99 |
|
|
SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
100 |
|
|
if (this == &m) |
101 |
|
|
return *this; |
102 |
|
|
SquareMatrix<Real, 3>::operator=(m); |
103 |
|
|
return *this; |
104 |
|
|
} |
105 |
tim |
76 |
|
106 |
gezelter |
246 |
|
107 |
gezelter |
507 |
SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 |
|
|
this->setupRotMat(q); |
109 |
|
|
return *this; |
110 |
|
|
} |
111 |
gezelter |
246 |
|
112 |
gezelter |
507 |
/** |
113 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
114 |
|
|
* @ param euler |
115 |
|
|
*/ |
116 |
|
|
void setupRotMat(const Vector3<Real>& eulerAngles) { |
117 |
|
|
setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
118 |
|
|
} |
119 |
tim |
76 |
|
120 |
gezelter |
507 |
/** |
121 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
122 |
|
|
* @param phi |
123 |
|
|
* @param theta |
124 |
|
|
* @psi theta |
125 |
|
|
*/ |
126 |
|
|
void setupRotMat(Real phi, Real theta, Real psi) { |
127 |
|
|
Real sphi, stheta, spsi; |
128 |
|
|
Real cphi, ctheta, cpsi; |
129 |
tim |
76 |
|
130 |
gezelter |
507 |
sphi = sin(phi); |
131 |
|
|
stheta = sin(theta); |
132 |
|
|
spsi = sin(psi); |
133 |
|
|
cphi = cos(phi); |
134 |
|
|
ctheta = cos(theta); |
135 |
|
|
cpsi = cos(psi); |
136 |
tim |
76 |
|
137 |
gezelter |
507 |
this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 |
|
|
this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 |
|
|
this->data_[0][2] = spsi * stheta; |
140 |
tim |
93 |
|
141 |
gezelter |
507 |
this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 |
|
|
this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 |
|
|
this->data_[1][2] = cpsi * stheta; |
144 |
tim |
93 |
|
145 |
gezelter |
507 |
this->data_[2][0] = stheta * sphi; |
146 |
|
|
this->data_[2][1] = -stheta * cphi; |
147 |
|
|
this->data_[2][2] = ctheta; |
148 |
|
|
} |
149 |
tim |
93 |
|
150 |
|
|
|
151 |
gezelter |
507 |
/** |
152 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
153 |
|
|
* @param quat |
154 |
|
|
*/ |
155 |
|
|
void setupRotMat(const Quaternion<Real>& quat) { |
156 |
|
|
setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
157 |
|
|
} |
158 |
tim |
76 |
|
159 |
gezelter |
507 |
/** |
160 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
161 |
|
|
* @param w the first element |
162 |
|
|
* @param x the second element |
163 |
|
|
* @param y the third element |
164 |
|
|
* @param z the fourth element |
165 |
|
|
*/ |
166 |
|
|
void setupRotMat(Real w, Real x, Real y, Real z) { |
167 |
|
|
Quaternion<Real> q(w, x, y, z); |
168 |
|
|
*this = q.toRotationMatrix3(); |
169 |
|
|
} |
170 |
tim |
76 |
|
171 |
tim |
891 |
void setupSkewMat(Vector3<Real> v) { |
172 |
|
|
setupSkewMat(v[0], v[1], v[2]); |
173 |
|
|
} |
174 |
|
|
|
175 |
|
|
void setupSkewMat(Real v1, Real v2, Real v3) { |
176 |
|
|
this->data_[0][0] = 0; |
177 |
|
|
this->data_[0][1] = -v3; |
178 |
|
|
this->data_[0][2] = v2; |
179 |
|
|
this->data_[1][0] = v3; |
180 |
|
|
this->data_[1][1] = 0; |
181 |
|
|
this->data_[1][2] = -v1; |
182 |
|
|
this->data_[2][0] = -v2; |
183 |
|
|
this->data_[2][1] = v1; |
184 |
|
|
this->data_[2][2] = 0; |
185 |
|
|
|
186 |
|
|
|
187 |
|
|
} |
188 |
|
|
|
189 |
|
|
|
190 |
|
|
|
191 |
gezelter |
507 |
/** |
192 |
|
|
* Returns the quaternion from this rotation matrix |
193 |
|
|
* @return the quaternion from this rotation matrix |
194 |
|
|
* @exception invalid rotation matrix |
195 |
|
|
*/ |
196 |
|
|
Quaternion<Real> toQuaternion() { |
197 |
|
|
Quaternion<Real> q; |
198 |
|
|
Real t, s; |
199 |
|
|
Real ad1, ad2, ad3; |
200 |
|
|
t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
201 |
tim |
76 |
|
202 |
tim |
637 |
if( t > NumericConstant::epsilon ){ |
203 |
tim |
93 |
|
204 |
gezelter |
507 |
s = 0.5 / sqrt( t ); |
205 |
|
|
q[0] = 0.25 / s; |
206 |
|
|
q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
207 |
|
|
q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
208 |
|
|
q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
209 |
|
|
} else { |
210 |
tim |
93 |
|
211 |
tim |
633 |
ad1 = this->data_[0][0]; |
212 |
|
|
ad2 = this->data_[1][1]; |
213 |
|
|
ad3 = this->data_[2][2]; |
214 |
tim |
93 |
|
215 |
gezelter |
507 |
if( ad1 >= ad2 && ad1 >= ad3 ){ |
216 |
tim |
93 |
|
217 |
gezelter |
507 |
s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
218 |
|
|
q[0] = (this->data_[1][2] - this->data_[2][1]) * s; |
219 |
|
|
q[1] = 0.25 / s; |
220 |
|
|
q[2] = (this->data_[0][1] + this->data_[1][0]) * s; |
221 |
|
|
q[3] = (this->data_[0][2] + this->data_[2][0]) * s; |
222 |
|
|
} else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
223 |
|
|
s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); |
224 |
|
|
q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; |
225 |
|
|
q[1] = (this->data_[0][1] + this->data_[1][0]) * s; |
226 |
|
|
q[2] = 0.25 / s; |
227 |
|
|
q[3] = (this->data_[1][2] + this->data_[2][1]) * s; |
228 |
|
|
} else { |
229 |
tim |
93 |
|
230 |
gezelter |
507 |
s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); |
231 |
|
|
q[0] = (this->data_[0][1] - this->data_[1][0]) * s; |
232 |
|
|
q[1] = (this->data_[0][2] + this->data_[2][0]) * s; |
233 |
|
|
q[2] = (this->data_[1][2] + this->data_[2][1]) * s; |
234 |
|
|
q[3] = 0.25 / s; |
235 |
|
|
} |
236 |
|
|
} |
237 |
tim |
93 |
|
238 |
gezelter |
507 |
return q; |
239 |
tim |
93 |
|
240 |
gezelter |
507 |
} |
241 |
tim |
93 |
|
242 |
gezelter |
507 |
/** |
243 |
|
|
* Returns the euler angles from this rotation matrix |
244 |
|
|
* @return the euler angles in a vector |
245 |
|
|
* @exception invalid rotation matrix |
246 |
|
|
* We use so-called "x-convention", which is the most common definition. |
247 |
|
|
* In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
248 |
|
|
* rotation is by an angle phi about the z-axis, the second is by an angle |
249 |
|
|
* theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
250 |
|
|
* z-axis (again). |
251 |
|
|
*/ |
252 |
|
|
Vector3<Real> toEulerAngles() { |
253 |
|
|
Vector3<Real> myEuler; |
254 |
|
|
Real phi; |
255 |
|
|
Real theta; |
256 |
|
|
Real psi; |
257 |
|
|
Real ctheta; |
258 |
|
|
Real stheta; |
259 |
tim |
93 |
|
260 |
gezelter |
507 |
// set the tolerance for Euler angles and rotation elements |
261 |
tim |
93 |
|
262 |
tim |
963 |
theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
263 |
gezelter |
507 |
ctheta = this->data_[2][2]; |
264 |
|
|
stheta = sqrt(1.0 - ctheta * ctheta); |
265 |
tim |
93 |
|
266 |
gezelter |
507 |
// when sin(theta) is close to 0, we need to consider singularity |
267 |
|
|
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
268 |
|
|
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
269 |
|
|
// in cases of singularity. |
270 |
|
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
271 |
|
|
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
272 |
|
|
// change the sign of both of the parameters passed to atan2. |
273 |
tim |
93 |
|
274 |
gezelter |
507 |
if (fabs(stheta) <= oopse::epsilon){ |
275 |
|
|
psi = 0.0; |
276 |
|
|
phi = atan2(-this->data_[1][0], this->data_[0][0]); |
277 |
|
|
} |
278 |
|
|
// we only have one unique solution |
279 |
|
|
else{ |
280 |
|
|
phi = atan2(this->data_[2][0], -this->data_[2][1]); |
281 |
|
|
psi = atan2(this->data_[0][2], this->data_[1][2]); |
282 |
|
|
} |
283 |
tim |
93 |
|
284 |
gezelter |
507 |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
285 |
|
|
if (phi < 0) |
286 |
|
|
phi += M_PI; |
287 |
tim |
93 |
|
288 |
gezelter |
507 |
if (psi < 0) |
289 |
|
|
psi += M_PI; |
290 |
tim |
93 |
|
291 |
gezelter |
507 |
myEuler[0] = phi; |
292 |
|
|
myEuler[1] = theta; |
293 |
|
|
myEuler[2] = psi; |
294 |
tim |
93 |
|
295 |
gezelter |
507 |
return myEuler; |
296 |
|
|
} |
297 |
tim |
70 |
|
298 |
gezelter |
507 |
/** Returns the determinant of this matrix. */ |
299 |
|
|
Real determinant() const { |
300 |
|
|
Real x,y,z; |
301 |
tim |
101 |
|
302 |
gezelter |
507 |
x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
303 |
|
|
y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
304 |
|
|
z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
305 |
tim |
101 |
|
306 |
gezelter |
507 |
return(x + y + z); |
307 |
|
|
} |
308 |
gezelter |
246 |
|
309 |
gezelter |
507 |
/** Returns the trace of this matrix. */ |
310 |
|
|
Real trace() const { |
311 |
|
|
return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
312 |
|
|
} |
313 |
tim |
101 |
|
314 |
gezelter |
507 |
/** |
315 |
|
|
* Sets the value of this matrix to the inversion of itself. |
316 |
|
|
* @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
317 |
|
|
* implementation of inverse in SquareMatrix class |
318 |
|
|
*/ |
319 |
|
|
SquareMatrix3<Real> inverse() const { |
320 |
|
|
SquareMatrix3<Real> m; |
321 |
tim |
963 |
RealType det = determinant(); |
322 |
gezelter |
507 |
if (fabs(det) <= oopse::epsilon) { |
323 |
|
|
//"The method was called on a matrix with |determinant| <= 1e-6.", |
324 |
|
|
//"This is a runtime or a programming error in your application."); |
325 |
tim |
895 |
std::vector<int> zeroDiagElementIndex; |
326 |
|
|
for (int i =0; i < 3; ++i) { |
327 |
|
|
if (fabs(this->data_[i][i]) <= oopse::epsilon) { |
328 |
|
|
zeroDiagElementIndex.push_back(i); |
329 |
|
|
} |
330 |
|
|
} |
331 |
tim |
70 |
|
332 |
tim |
895 |
if (zeroDiagElementIndex.size() == 2) { |
333 |
|
|
int index = zeroDiagElementIndex[0]; |
334 |
|
|
m(index, index) = 1.0 / this->data_[index][index]; |
335 |
|
|
}else if (zeroDiagElementIndex.size() == 1) { |
336 |
tim |
101 |
|
337 |
tim |
895 |
int a = (zeroDiagElementIndex[0] + 1) % 3; |
338 |
|
|
int b = (zeroDiagElementIndex[0] + 2) %3; |
339 |
tim |
963 |
RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
340 |
tim |
895 |
m(a, a) = this->data_[b][b] /denom; |
341 |
|
|
m(b, a) = -this->data_[b][a]/denom; |
342 |
|
|
|
343 |
|
|
m(a,b) = -this->data_[a][b]/denom; |
344 |
|
|
m(b, b) = this->data_[a][a]/denom; |
345 |
|
|
|
346 |
|
|
} |
347 |
|
|
|
348 |
|
|
/* |
349 |
|
|
for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
350 |
|
|
if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
351 |
|
|
this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
352 |
|
|
std::cout << "can not inverse matrix" << std::endl; |
353 |
|
|
} |
354 |
|
|
} |
355 |
|
|
*/ |
356 |
|
|
} else { |
357 |
|
|
|
358 |
|
|
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
359 |
|
|
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
360 |
|
|
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
361 |
|
|
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
362 |
|
|
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
363 |
|
|
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
364 |
|
|
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
365 |
|
|
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
366 |
|
|
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
367 |
|
|
|
368 |
|
|
m /= det; |
369 |
|
|
} |
370 |
gezelter |
507 |
return m; |
371 |
|
|
} |
372 |
tim |
883 |
|
373 |
|
|
SquareMatrix3<Real> transpose() const{ |
374 |
|
|
SquareMatrix3<Real> result; |
375 |
|
|
|
376 |
|
|
for (unsigned int i = 0; i < 3; i++) |
377 |
|
|
for (unsigned int j = 0; j < 3; j++) |
378 |
|
|
result(j, i) = this->data_[i][j]; |
379 |
|
|
|
380 |
|
|
return result; |
381 |
|
|
} |
382 |
gezelter |
507 |
/** |
383 |
|
|
* Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
384 |
|
|
* The eigenvectors (the columns of V) will be normalized. |
385 |
|
|
* The eigenvectors are aligned optimally with the x, y, and z |
386 |
|
|
* axes respectively. |
387 |
|
|
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
388 |
|
|
* overwritten |
389 |
|
|
* @param w will contain the eigenvalues of the matrix On return of this function |
390 |
|
|
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
391 |
|
|
* normalized and mutually orthogonal. |
392 |
|
|
* @warning a will be overwritten |
393 |
|
|
*/ |
394 |
|
|
static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
395 |
|
|
}; |
396 |
|
|
/*========================================================================= |
397 |
tim |
76 |
|
398 |
tim |
123 |
Program: Visualization Toolkit |
399 |
|
|
Module: $RCSfile: SquareMatrix3.hpp,v $ |
400 |
tim |
99 |
|
401 |
tim |
123 |
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
402 |
|
|
All rights reserved. |
403 |
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
404 |
tim |
101 |
|
405 |
gezelter |
507 |
This software is distributed WITHOUT ANY WARRANTY; without even |
406 |
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
407 |
|
|
PURPOSE. See the above copyright notice for more information. |
408 |
tim |
101 |
|
409 |
gezelter |
507 |
=========================================================================*/ |
410 |
|
|
template<typename Real> |
411 |
|
|
void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
412 |
|
|
SquareMatrix3<Real>& v) { |
413 |
|
|
int i,j,k,maxI; |
414 |
|
|
Real tmp, maxVal; |
415 |
|
|
Vector3<Real> v_maxI, v_k, v_j; |
416 |
tim |
101 |
|
417 |
gezelter |
507 |
// diagonalize using Jacobi |
418 |
|
|
jacobi(a, w, v); |
419 |
|
|
// if all the eigenvalues are the same, return identity matrix |
420 |
|
|
if (w[0] == w[1] && w[0] == w[2] ) { |
421 |
|
|
v = SquareMatrix3<Real>::identity(); |
422 |
|
|
return; |
423 |
|
|
} |
424 |
tim |
101 |
|
425 |
gezelter |
507 |
// transpose temporarily, it makes it easier to sort the eigenvectors |
426 |
|
|
v = v.transpose(); |
427 |
tim |
123 |
|
428 |
gezelter |
507 |
// if two eigenvalues are the same, re-orthogonalize to optimally line |
429 |
|
|
// up the eigenvectors with the x, y, and z axes |
430 |
|
|
for (i = 0; i < 3; i++) { |
431 |
|
|
if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
432 |
|
|
// find maximum element of the independant eigenvector |
433 |
|
|
maxVal = fabs(v(i, 0)); |
434 |
|
|
maxI = 0; |
435 |
|
|
for (j = 1; j < 3; j++) { |
436 |
|
|
if (maxVal < (tmp = fabs(v(i, j)))){ |
437 |
|
|
maxVal = tmp; |
438 |
|
|
maxI = j; |
439 |
|
|
} |
440 |
|
|
} |
441 |
tim |
123 |
|
442 |
gezelter |
507 |
// swap the eigenvector into its proper position |
443 |
|
|
if (maxI != i) { |
444 |
|
|
tmp = w(maxI); |
445 |
|
|
w(maxI) = w(i); |
446 |
|
|
w(i) = tmp; |
447 |
tim |
101 |
|
448 |
gezelter |
507 |
v.swapRow(i, maxI); |
449 |
|
|
} |
450 |
|
|
// maximum element of eigenvector should be positive |
451 |
|
|
if (v(maxI, maxI) < 0) { |
452 |
|
|
v(maxI, 0) = -v(maxI, 0); |
453 |
|
|
v(maxI, 1) = -v(maxI, 1); |
454 |
|
|
v(maxI, 2) = -v(maxI, 2); |
455 |
|
|
} |
456 |
tim |
101 |
|
457 |
gezelter |
507 |
// re-orthogonalize the other two eigenvectors |
458 |
|
|
j = (maxI+1)%3; |
459 |
|
|
k = (maxI+2)%3; |
460 |
tim |
101 |
|
461 |
gezelter |
507 |
v(j, 0) = 0.0; |
462 |
|
|
v(j, 1) = 0.0; |
463 |
|
|
v(j, 2) = 0.0; |
464 |
|
|
v(j, j) = 1.0; |
465 |
tim |
101 |
|
466 |
gezelter |
507 |
/** @todo */ |
467 |
|
|
v_maxI = v.getRow(maxI); |
468 |
|
|
v_j = v.getRow(j); |
469 |
|
|
v_k = cross(v_maxI, v_j); |
470 |
|
|
v_k.normalize(); |
471 |
|
|
v_j = cross(v_k, v_maxI); |
472 |
|
|
v.setRow(j, v_j); |
473 |
|
|
v.setRow(k, v_k); |
474 |
tim |
101 |
|
475 |
|
|
|
476 |
gezelter |
507 |
// transpose vectors back to columns |
477 |
|
|
v = v.transpose(); |
478 |
|
|
return; |
479 |
|
|
} |
480 |
|
|
} |
481 |
tim |
101 |
|
482 |
gezelter |
507 |
// the three eigenvalues are different, just sort the eigenvectors |
483 |
|
|
// to align them with the x, y, and z axes |
484 |
tim |
101 |
|
485 |
gezelter |
507 |
// find the vector with the largest x element, make that vector |
486 |
|
|
// the first vector |
487 |
|
|
maxVal = fabs(v(0, 0)); |
488 |
|
|
maxI = 0; |
489 |
|
|
for (i = 1; i < 3; i++) { |
490 |
|
|
if (maxVal < (tmp = fabs(v(i, 0)))) { |
491 |
|
|
maxVal = tmp; |
492 |
|
|
maxI = i; |
493 |
|
|
} |
494 |
|
|
} |
495 |
tim |
101 |
|
496 |
gezelter |
507 |
// swap eigenvalue and eigenvector |
497 |
|
|
if (maxI != 0) { |
498 |
|
|
tmp = w(maxI); |
499 |
|
|
w(maxI) = w(0); |
500 |
|
|
w(0) = tmp; |
501 |
|
|
v.swapRow(maxI, 0); |
502 |
|
|
} |
503 |
|
|
// do the same for the y element |
504 |
|
|
if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
505 |
|
|
tmp = w(2); |
506 |
|
|
w(2) = w(1); |
507 |
|
|
w(1) = tmp; |
508 |
|
|
v.swapRow(2, 1); |
509 |
|
|
} |
510 |
tim |
101 |
|
511 |
gezelter |
507 |
// ensure that the sign of the eigenvectors is correct |
512 |
|
|
for (i = 0; i < 2; i++) { |
513 |
|
|
if (v(i, i) < 0) { |
514 |
|
|
v(i, 0) = -v(i, 0); |
515 |
|
|
v(i, 1) = -v(i, 1); |
516 |
|
|
v(i, 2) = -v(i, 2); |
517 |
|
|
} |
518 |
|
|
} |
519 |
tim |
70 |
|
520 |
gezelter |
507 |
// set sign of final eigenvector to ensure that determinant is positive |
521 |
|
|
if (v.determinant() < 0) { |
522 |
|
|
v(2, 0) = -v(2, 0); |
523 |
|
|
v(2, 1) = -v(2, 1); |
524 |
|
|
v(2, 2) = -v(2, 2); |
525 |
tim |
123 |
} |
526 |
gezelter |
246 |
|
527 |
gezelter |
507 |
// transpose the eigenvectors back again |
528 |
|
|
v = v.transpose(); |
529 |
|
|
return ; |
530 |
|
|
} |
531 |
gezelter |
246 |
|
532 |
gezelter |
507 |
/** |
533 |
|
|
* Return the multiplication of two matrixes (m1 * m2). |
534 |
|
|
* @return the multiplication of two matrixes |
535 |
|
|
* @param m1 the first matrix |
536 |
|
|
* @param m2 the second matrix |
537 |
|
|
*/ |
538 |
|
|
template<typename Real> |
539 |
|
|
inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
540 |
|
|
SquareMatrix3<Real> result; |
541 |
gezelter |
246 |
|
542 |
gezelter |
507 |
for (unsigned int i = 0; i < 3; i++) |
543 |
|
|
for (unsigned int j = 0; j < 3; j++) |
544 |
|
|
for (unsigned int k = 0; k < 3; k++) |
545 |
|
|
result(i, j) += m1(i, k) * m2(k, j); |
546 |
gezelter |
246 |
|
547 |
gezelter |
507 |
return result; |
548 |
|
|
} |
549 |
gezelter |
246 |
|
550 |
gezelter |
507 |
template<typename Real> |
551 |
|
|
inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
552 |
|
|
SquareMatrix3<Real> result; |
553 |
|
|
|
554 |
|
|
for (unsigned int i = 0; i < 3; i++) { |
555 |
|
|
for (unsigned int j = 0; j < 3; j++) { |
556 |
|
|
result(i, j) = v1[i] * v2[j]; |
557 |
|
|
} |
558 |
|
|
} |
559 |
gezelter |
246 |
|
560 |
gezelter |
507 |
return result; |
561 |
|
|
} |
562 |
gezelter |
246 |
|
563 |
|
|
|
564 |
tim |
963 |
typedef SquareMatrix3<RealType> Mat3x3d; |
565 |
|
|
typedef SquareMatrix3<RealType> RotMat3x3d; |
566 |
tim |
93 |
|
567 |
|
|
} //namespace oopse |
568 |
|
|
#endif // MATH_SQUAREMATRIX_HPP |
569 |
tim |
123 |
|