1 |
tim |
70 |
/* |
2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
|
|
* |
4 |
|
|
* Contact: oopse@oopse.org |
5 |
|
|
* |
6 |
|
|
* This program is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
9 |
|
|
* of the License, or (at your option) any later version. |
10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
13 |
|
|
* with programs based on this work. |
14 |
|
|
* |
15 |
|
|
* This program is distributed in the hope that it will be useful, |
16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
|
|
* GNU Lesser General Public License for more details. |
19 |
|
|
* |
20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
21 |
|
|
* along with this program; if not, write to the Free Software |
22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
23 |
|
|
* |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
/** |
27 |
|
|
* @file SquareMatrix3.hpp |
28 |
|
|
* @author Teng Lin |
29 |
|
|
* @date 10/11/2004 |
30 |
|
|
* @version 1.0 |
31 |
|
|
*/ |
32 |
tim |
123 |
#ifndef MATH_SQUAREMATRIX3_HPP |
33 |
tim |
99 |
#define MATH_SQUAREMATRIX3_HPP |
34 |
tim |
70 |
|
35 |
tim |
93 |
#include "Quaternion.hpp" |
36 |
tim |
70 |
#include "SquareMatrix.hpp" |
37 |
tim |
93 |
#include "Vector3.hpp" |
38 |
|
|
|
39 |
tim |
70 |
namespace oopse { |
40 |
|
|
|
41 |
|
|
template<typename Real> |
42 |
|
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
43 |
|
|
public: |
44 |
tim |
137 |
|
45 |
|
|
typedef Real ElemType; |
46 |
|
|
typedef Real* ElemPoinerType; |
47 |
tim |
70 |
|
48 |
|
|
/** default constructor */ |
49 |
|
|
SquareMatrix3() : SquareMatrix<Real, 3>() { |
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
/** copy constructor */ |
53 |
|
|
SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
54 |
|
|
} |
55 |
|
|
|
56 |
tim |
93 |
SquareMatrix3( const Vector3<Real>& eulerAngles) { |
57 |
|
|
setupRotMat(eulerAngles); |
58 |
|
|
} |
59 |
|
|
|
60 |
|
|
SquareMatrix3(Real phi, Real theta, Real psi) { |
61 |
|
|
setupRotMat(phi, theta, psi); |
62 |
|
|
} |
63 |
|
|
|
64 |
|
|
SquareMatrix3(const Quaternion<Real>& q) { |
65 |
tim |
113 |
setupRotMat(q); |
66 |
|
|
|
67 |
tim |
93 |
} |
68 |
|
|
|
69 |
|
|
SquareMatrix3(Real w, Real x, Real y, Real z) { |
70 |
tim |
113 |
setupRotMat(w, x, y, z); |
71 |
tim |
93 |
} |
72 |
|
|
|
73 |
tim |
70 |
/** copy assignment operator */ |
74 |
|
|
SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
75 |
|
|
if (this == &m) |
76 |
|
|
return *this; |
77 |
|
|
SquareMatrix<Real, 3>::operator=(m); |
78 |
tim |
101 |
return *this; |
79 |
tim |
70 |
} |
80 |
tim |
76 |
|
81 |
|
|
/** |
82 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
83 |
|
|
* @ param euler |
84 |
|
|
*/ |
85 |
tim |
93 |
void setupRotMat(const Vector3<Real>& eulerAngles) { |
86 |
|
|
setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
87 |
|
|
} |
88 |
tim |
76 |
|
89 |
|
|
/** |
90 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
91 |
|
|
* @param phi |
92 |
|
|
* @param theta |
93 |
|
|
* @psi theta |
94 |
|
|
*/ |
95 |
tim |
93 |
void setupRotMat(Real phi, Real theta, Real psi) { |
96 |
|
|
Real sphi, stheta, spsi; |
97 |
|
|
Real cphi, ctheta, cpsi; |
98 |
tim |
76 |
|
99 |
tim |
93 |
sphi = sin(phi); |
100 |
|
|
stheta = sin(theta); |
101 |
|
|
spsi = sin(psi); |
102 |
|
|
cphi = cos(phi); |
103 |
|
|
ctheta = cos(theta); |
104 |
|
|
cpsi = cos(psi); |
105 |
tim |
76 |
|
106 |
tim |
93 |
data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
107 |
|
|
data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
108 |
|
|
data_[0][2] = spsi * stheta; |
109 |
|
|
|
110 |
|
|
data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
111 |
|
|
data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
112 |
|
|
data_[1][2] = cpsi * stheta; |
113 |
|
|
|
114 |
|
|
data_[2][0] = stheta * sphi; |
115 |
|
|
data_[2][1] = -stheta * cphi; |
116 |
|
|
data_[2][2] = ctheta; |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
|
120 |
tim |
76 |
/** |
121 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
122 |
|
|
* @param quat |
123 |
|
|
*/ |
124 |
tim |
93 |
void setupRotMat(const Quaternion<Real>& quat) { |
125 |
tim |
113 |
setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
126 |
tim |
93 |
} |
127 |
tim |
76 |
|
128 |
|
|
/** |
129 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
130 |
tim |
93 |
* @param w the first element |
131 |
|
|
* @param x the second element |
132 |
|
|
* @param y the third element |
133 |
tim |
101 |
* @param z the fourth element |
134 |
tim |
76 |
*/ |
135 |
tim |
93 |
void setupRotMat(Real w, Real x, Real y, Real z) { |
136 |
|
|
Quaternion<Real> q(w, x, y, z); |
137 |
|
|
*this = q.toRotationMatrix3(); |
138 |
|
|
} |
139 |
tim |
76 |
|
140 |
|
|
/** |
141 |
|
|
* Returns the quaternion from this rotation matrix |
142 |
|
|
* @return the quaternion from this rotation matrix |
143 |
|
|
* @exception invalid rotation matrix |
144 |
|
|
*/ |
145 |
tim |
93 |
Quaternion<Real> toQuaternion() { |
146 |
|
|
Quaternion<Real> q; |
147 |
|
|
Real t, s; |
148 |
|
|
Real ad1, ad2, ad3; |
149 |
|
|
t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; |
150 |
tim |
76 |
|
151 |
tim |
93 |
if( t > 0.0 ){ |
152 |
|
|
|
153 |
|
|
s = 0.5 / sqrt( t ); |
154 |
|
|
q[0] = 0.25 / s; |
155 |
|
|
q[1] = (data_[1][2] - data_[2][1]) * s; |
156 |
|
|
q[2] = (data_[2][0] - data_[0][2]) * s; |
157 |
|
|
q[3] = (data_[0][1] - data_[1][0]) * s; |
158 |
|
|
} else { |
159 |
|
|
|
160 |
|
|
ad1 = fabs( data_[0][0] ); |
161 |
|
|
ad2 = fabs( data_[1][1] ); |
162 |
|
|
ad3 = fabs( data_[2][2] ); |
163 |
|
|
|
164 |
|
|
if( ad1 >= ad2 && ad1 >= ad3 ){ |
165 |
|
|
|
166 |
|
|
s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); |
167 |
|
|
q[0] = (data_[1][2] + data_[2][1]) / s; |
168 |
|
|
q[1] = 0.5 / s; |
169 |
|
|
q[2] = (data_[0][1] + data_[1][0]) / s; |
170 |
|
|
q[3] = (data_[0][2] + data_[2][0]) / s; |
171 |
|
|
} else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
172 |
|
|
s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; |
173 |
|
|
q[0] = (data_[0][2] + data_[2][0]) / s; |
174 |
|
|
q[1] = (data_[0][1] + data_[1][0]) / s; |
175 |
|
|
q[2] = 0.5 / s; |
176 |
|
|
q[3] = (data_[1][2] + data_[2][1]) / s; |
177 |
|
|
} else { |
178 |
|
|
|
179 |
|
|
s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; |
180 |
|
|
q[0] = (data_[0][1] + data_[1][0]) / s; |
181 |
|
|
q[1] = (data_[0][2] + data_[2][0]) / s; |
182 |
|
|
q[2] = (data_[1][2] + data_[2][1]) / s; |
183 |
|
|
q[3] = 0.5 / s; |
184 |
|
|
} |
185 |
|
|
} |
186 |
|
|
|
187 |
|
|
return q; |
188 |
|
|
|
189 |
|
|
} |
190 |
|
|
|
191 |
tim |
76 |
/** |
192 |
|
|
* Returns the euler angles from this rotation matrix |
193 |
tim |
93 |
* @return the euler angles in a vector |
194 |
tim |
76 |
* @exception invalid rotation matrix |
195 |
tim |
93 |
* We use so-called "x-convention", which is the most common definition. |
196 |
|
|
* In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
197 |
|
|
* rotation is by an angle phi about the z-axis, the second is by an angle |
198 |
|
|
* theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
199 |
|
|
* z-axis (again). |
200 |
tim |
76 |
*/ |
201 |
tim |
93 |
Vector3<Real> toEulerAngles() { |
202 |
tim |
113 |
Vector3<Real> myEuler; |
203 |
tim |
93 |
Real phi,theta,psi,eps; |
204 |
|
|
Real ctheta,stheta; |
205 |
|
|
|
206 |
|
|
// set the tolerance for Euler angles and rotation elements |
207 |
|
|
|
208 |
tim |
113 |
theta = acos(std::min(1.0, std::max(-1.0,data_[2][2]))); |
209 |
tim |
93 |
ctheta = data_[2][2]; |
210 |
|
|
stheta = sqrt(1.0 - ctheta * ctheta); |
211 |
|
|
|
212 |
|
|
// when sin(theta) is close to 0, we need to consider singularity |
213 |
|
|
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
214 |
|
|
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
215 |
|
|
// in cases of singularity. |
216 |
|
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
217 |
|
|
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
218 |
|
|
// change the sign of both of the parameters passed to atan2. |
219 |
|
|
|
220 |
|
|
if (fabs(stheta) <= oopse::epsilon){ |
221 |
|
|
psi = 0.0; |
222 |
|
|
phi = atan2(-data_[1][0], data_[0][0]); |
223 |
|
|
} |
224 |
|
|
// we only have one unique solution |
225 |
|
|
else{ |
226 |
|
|
phi = atan2(data_[2][0], -data_[2][1]); |
227 |
|
|
psi = atan2(data_[0][2], data_[1][2]); |
228 |
|
|
} |
229 |
|
|
|
230 |
|
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
231 |
|
|
if (phi < 0) |
232 |
|
|
phi += M_PI; |
233 |
|
|
|
234 |
|
|
if (psi < 0) |
235 |
|
|
psi += M_PI; |
236 |
|
|
|
237 |
|
|
myEuler[0] = phi; |
238 |
|
|
myEuler[1] = theta; |
239 |
|
|
myEuler[2] = psi; |
240 |
|
|
|
241 |
|
|
return myEuler; |
242 |
|
|
} |
243 |
tim |
70 |
|
244 |
tim |
101 |
/** Returns the determinant of this matrix. */ |
245 |
|
|
Real determinant() const { |
246 |
|
|
Real x,y,z; |
247 |
|
|
|
248 |
|
|
x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]); |
249 |
|
|
y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]); |
250 |
|
|
z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]); |
251 |
|
|
|
252 |
|
|
return(x + y + z); |
253 |
|
|
} |
254 |
|
|
|
255 |
tim |
70 |
/** |
256 |
|
|
* Sets the value of this matrix to the inversion of itself. |
257 |
|
|
* @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
258 |
|
|
* implementation of inverse in SquareMatrix class |
259 |
|
|
*/ |
260 |
tim |
101 |
SquareMatrix3<Real> inverse() { |
261 |
|
|
SquareMatrix3<Real> m; |
262 |
|
|
double det = determinant(); |
263 |
|
|
if (fabs(det) <= oopse::epsilon) { |
264 |
|
|
//"The method was called on a matrix with |determinant| <= 1e-6.", |
265 |
|
|
//"This is a runtime or a programming error in your application."); |
266 |
|
|
} |
267 |
tim |
70 |
|
268 |
tim |
101 |
m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1]; |
269 |
|
|
m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2]; |
270 |
|
|
m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0]; |
271 |
|
|
m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1]; |
272 |
|
|
m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2]; |
273 |
|
|
m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0]; |
274 |
|
|
m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1]; |
275 |
|
|
m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2]; |
276 |
|
|
m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0]; |
277 |
|
|
|
278 |
|
|
m /= det; |
279 |
|
|
return m; |
280 |
tim |
99 |
} |
281 |
tim |
123 |
/** |
282 |
|
|
* Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
283 |
|
|
* The eigenvectors (the columns of V) will be normalized. |
284 |
|
|
* The eigenvectors are aligned optimally with the x, y, and z |
285 |
|
|
* axes respectively. |
286 |
|
|
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
287 |
|
|
* overwritten |
288 |
|
|
* @param w will contain the eigenvalues of the matrix On return of this function |
289 |
|
|
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
290 |
|
|
* normalized and mutually orthogonal. |
291 |
|
|
* @warning a will be overwritten |
292 |
|
|
*/ |
293 |
|
|
static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
294 |
|
|
}; |
295 |
|
|
/*========================================================================= |
296 |
tim |
76 |
|
297 |
tim |
123 |
Program: Visualization Toolkit |
298 |
|
|
Module: $RCSfile: SquareMatrix3.hpp,v $ |
299 |
tim |
99 |
|
300 |
tim |
123 |
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
301 |
|
|
All rights reserved. |
302 |
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
303 |
tim |
101 |
|
304 |
tim |
123 |
This software is distributed WITHOUT ANY WARRANTY; without even |
305 |
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
306 |
|
|
PURPOSE. See the above copyright notice for more information. |
307 |
tim |
101 |
|
308 |
tim |
123 |
=========================================================================*/ |
309 |
|
|
template<typename Real> |
310 |
|
|
void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
311 |
|
|
SquareMatrix3<Real>& v) { |
312 |
|
|
int i,j,k,maxI; |
313 |
|
|
Real tmp, maxVal; |
314 |
|
|
Vector3<Real> v_maxI, v_k, v_j; |
315 |
tim |
101 |
|
316 |
tim |
123 |
// diagonalize using Jacobi |
317 |
|
|
jacobi(a, w, v); |
318 |
|
|
// if all the eigenvalues are the same, return identity matrix |
319 |
|
|
if (w[0] == w[1] && w[0] == w[2] ) { |
320 |
|
|
v = SquareMatrix3<Real>::identity(); |
321 |
|
|
return; |
322 |
|
|
} |
323 |
tim |
101 |
|
324 |
tim |
123 |
// transpose temporarily, it makes it easier to sort the eigenvectors |
325 |
|
|
v = v.transpose(); |
326 |
|
|
|
327 |
|
|
// if two eigenvalues are the same, re-orthogonalize to optimally line |
328 |
|
|
// up the eigenvectors with the x, y, and z axes |
329 |
|
|
for (i = 0; i < 3; i++) { |
330 |
|
|
if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
331 |
|
|
// find maximum element of the independant eigenvector |
332 |
|
|
maxVal = fabs(v(i, 0)); |
333 |
|
|
maxI = 0; |
334 |
|
|
for (j = 1; j < 3; j++) { |
335 |
|
|
if (maxVal < (tmp = fabs(v(i, j)))){ |
336 |
|
|
maxVal = tmp; |
337 |
|
|
maxI = j; |
338 |
|
|
} |
339 |
|
|
} |
340 |
|
|
|
341 |
|
|
// swap the eigenvector into its proper position |
342 |
|
|
if (maxI != i) { |
343 |
|
|
tmp = w(maxI); |
344 |
|
|
w(maxI) = w(i); |
345 |
|
|
w(i) = tmp; |
346 |
tim |
101 |
|
347 |
tim |
123 |
v.swapRow(i, maxI); |
348 |
|
|
} |
349 |
|
|
// maximum element of eigenvector should be positive |
350 |
|
|
if (v(maxI, maxI) < 0) { |
351 |
|
|
v(maxI, 0) = -v(maxI, 0); |
352 |
|
|
v(maxI, 1) = -v(maxI, 1); |
353 |
|
|
v(maxI, 2) = -v(maxI, 2); |
354 |
|
|
} |
355 |
tim |
101 |
|
356 |
tim |
123 |
// re-orthogonalize the other two eigenvectors |
357 |
|
|
j = (maxI+1)%3; |
358 |
|
|
k = (maxI+2)%3; |
359 |
tim |
101 |
|
360 |
tim |
123 |
v(j, 0) = 0.0; |
361 |
|
|
v(j, 1) = 0.0; |
362 |
|
|
v(j, 2) = 0.0; |
363 |
|
|
v(j, j) = 1.0; |
364 |
tim |
101 |
|
365 |
tim |
123 |
/** @todo */ |
366 |
|
|
v_maxI = v.getRow(maxI); |
367 |
|
|
v_j = v.getRow(j); |
368 |
|
|
v_k = cross(v_maxI, v_j); |
369 |
|
|
v_k.normalize(); |
370 |
|
|
v_j = cross(v_k, v_maxI); |
371 |
|
|
v.setRow(j, v_j); |
372 |
|
|
v.setRow(k, v_k); |
373 |
tim |
101 |
|
374 |
|
|
|
375 |
tim |
123 |
// transpose vectors back to columns |
376 |
|
|
v = v.transpose(); |
377 |
|
|
return; |
378 |
|
|
} |
379 |
|
|
} |
380 |
tim |
101 |
|
381 |
tim |
123 |
// the three eigenvalues are different, just sort the eigenvectors |
382 |
|
|
// to align them with the x, y, and z axes |
383 |
tim |
101 |
|
384 |
tim |
123 |
// find the vector with the largest x element, make that vector |
385 |
|
|
// the first vector |
386 |
|
|
maxVal = fabs(v(0, 0)); |
387 |
|
|
maxI = 0; |
388 |
|
|
for (i = 1; i < 3; i++) { |
389 |
|
|
if (maxVal < (tmp = fabs(v(i, 0)))) { |
390 |
|
|
maxVal = tmp; |
391 |
|
|
maxI = i; |
392 |
|
|
} |
393 |
|
|
} |
394 |
tim |
101 |
|
395 |
tim |
123 |
// swap eigenvalue and eigenvector |
396 |
|
|
if (maxI != 0) { |
397 |
|
|
tmp = w(maxI); |
398 |
|
|
w(maxI) = w(0); |
399 |
|
|
w(0) = tmp; |
400 |
|
|
v.swapRow(maxI, 0); |
401 |
|
|
} |
402 |
|
|
// do the same for the y element |
403 |
|
|
if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
404 |
|
|
tmp = w(2); |
405 |
|
|
w(2) = w(1); |
406 |
|
|
w(1) = tmp; |
407 |
|
|
v.swapRow(2, 1); |
408 |
|
|
} |
409 |
tim |
101 |
|
410 |
tim |
123 |
// ensure that the sign of the eigenvectors is correct |
411 |
|
|
for (i = 0; i < 2; i++) { |
412 |
|
|
if (v(i, i) < 0) { |
413 |
|
|
v(i, 0) = -v(i, 0); |
414 |
|
|
v(i, 1) = -v(i, 1); |
415 |
|
|
v(i, 2) = -v(i, 2); |
416 |
tim |
99 |
} |
417 |
tim |
123 |
} |
418 |
tim |
70 |
|
419 |
tim |
123 |
// set sign of final eigenvector to ensure that determinant is positive |
420 |
|
|
if (v.determinant() < 0) { |
421 |
|
|
v(2, 0) = -v(2, 0); |
422 |
|
|
v(2, 1) = -v(2, 1); |
423 |
|
|
v(2, 2) = -v(2, 2); |
424 |
|
|
} |
425 |
|
|
|
426 |
|
|
// transpose the eigenvectors back again |
427 |
|
|
v = v.transpose(); |
428 |
|
|
return ; |
429 |
|
|
} |
430 |
tim |
99 |
typedef SquareMatrix3<double> Mat3x3d; |
431 |
|
|
typedef SquareMatrix3<double> RotMat3x3d; |
432 |
tim |
93 |
|
433 |
|
|
} //namespace oopse |
434 |
|
|
#endif // MATH_SQUAREMATRIX_HPP |
435 |
tim |
123 |
|