ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 70 by tim, Wed Oct 13 06:51:09 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1794 by gezelter, Thu Sep 6 19:44:06 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 32 | Line 49
49   #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52 < #include "Vector3d.hpp"
52 > #include "math/RectMatrix.hpp"
53 > #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix{
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** Constructs and initializes every element of this matrix to a scalar */
77 <        SquareMatrix(double s) {
78 <            for (unsigned int i = 0; i < Dim; i++)
59 <                for (unsigned int j = 0; j < Dim; j++)
60 <                    data_[i][j] = s;
61 <        }
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <        /** copy constructor */
81 <        SquareMatrix(const SquareMatrix<Real, Dim>& m) {
82 <            *this = m;
66 <        }
67 <        
68 <        /** destructor*/
69 <        ~SquareMatrix() {}
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83  
71        /** copy assignment operator */
72        SquareMatrix<Real, Dim>& operator =(const SquareMatrix<Real, Dim>& m) {
73            for (unsigned int i = 0; i < Dim; i++)
74                for (unsigned int j = 0; j < Dim; j++)
75                    data_[i][j] = m.data_[i][j];
76        }
77        
78        /**
79         * Return the reference of a single element of this matrix.
80         * @return the reference of a single element of this matrix
81         * @param i row index
82         * @param j colum index
83         */
84        double& operator()(unsigned int i, unsigned int j) {
85            return data_[i][j];
86        }
84  
85 <        /**
86 <         * Return the value of a single element of this matrix.
87 <         * @return the value of a single element of this matrix
88 <         * @param i row index
89 <         * @param j colum index
90 <         */        
91 <        double operator()(unsigned int i, unsigned int j) const  {
92 <            return data_[i][j];  
93 <        }
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88 >            
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <        /**
98 <         * Returns a row of  this matrix as a vector.
99 <         * @return a row of  this matrix as a vector
100 <         * @param row the row index
101 <         */                
102 <        Vector<Real, Dim> getRow(unsigned int row) {
103 <            Vector<Real, Dim> v;
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <            for (unsigned int i = 0; i < Dim; i++)
108 <                v[i] = data_[row][i];
107 >      return m;
108 >    }
109  
110 <            return v;
111 <        }
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /**
118 <         * Sets a row of  this matrix
114 <         * @param row the row index
115 <         * @param v the vector to be set
116 <         */                
117 <         void setRow(unsigned int row, const Vector<Real, Dim>& v) {
118 <            Vector<Real, Dim> v;
117 >      return result;
118 >    }        
119  
120 <            for (unsigned int i = 0; i < Dim; i++)
121 <                data_[row][i] = v[i];
122 <         }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <        /**
130 <         * Returns a column of  this matrix as a vector.
131 <         * @return a column of  this matrix as a vector
132 <         * @param col the column index
133 <         */                
134 <        Vector<Real, Dim> getColum(unsigned int col) {
130 <            Vector<Real, Dim> v;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <            for (unsigned int i = 0; i < Dim; i++)
137 <                v[i] = data_[i][col];
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
135            return v;
136        }
157  
158 <        /**
159 <         * Sets a column of  this matrix
160 <         * @param col the column index
161 <         * @param v the vector to be set
162 <         */                
163 <         void setColum(unsigned int col, const Vector<Real, Dim>& v){
164 <            Vector<Real, Dim> v;
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167  
168 <            for (unsigned int i = 0; i < Dim; i++)
169 <                data_[i][col] = v[i];
170 <         }        
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <        /** Negates the value of this matrix in place. */          
151 <        inline void negate() {
152 <            for (unsigned int i = 0; i < Dim; i++)
153 <                for (unsigned int j = 0; j < Dim; j++)
154 <                    data_[i][j] = -data_[i][j];
155 <        }
156 <        
157 <        /**
158 <        * Sets the value of this matrix to the negation of matrix m.
159 <        * @param m the source matrix
160 <        */
161 <        inline void negate(const SquareMatrix<Real, Dim>& m) {
162 <            for (unsigned int i = 0; i < Dim; i++)
163 <                for (unsigned int j = 0; j < Dim; j++)
164 <                    data_[i][j] = -m.data_[i][j];        
165 <        }
166 <        
167 <        /**
168 <        * Sets the value of this matrix to the sum of itself and m (*this += m).
169 <        * @param m the other matrix
170 <        */
171 <        inline void add( const SquareMatrix<Real, Dim>& m ) {
172 <            for (unsigned int i = 0; i < Dim; i++)
173 <                for (unsigned int j = 0; j < Dim; j++)        
174 <                data_[i][j] += m.data_[i][j];
175 <            }
176 <        
177 <        /**
178 <        * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2).
179 <        * @param m1 the first matrix
180 <        * @param m2 the second matrix
181 <        */
182 <        inline void add( const SquareMatrix<Real, Dim>& m1, const SquareMatrix<Real, Dim>& m2 ) {
183 <            for (unsigned int i = 0; i < Dim; i++)
184 <                for (unsigned int j = 0; j < Dim; j++)        
185 <                data_[i][j] = m1.data_[i][j] + m2.data_[i][j];
186 <        }
187 <        
188 <        /**
189 <        * Sets the value of this matrix to the difference  of itself and m (*this -= m).
190 <        * @param m the other matrix
191 <        */
192 <        inline void sub( const SquareMatrix<Real, Dim>& m ) {
193 <            for (unsigned int i = 0; i < Dim; i++)
194 <                for (unsigned int j = 0; j < Dim; j++)        
195 <                data_[i][j] -= m.data_[i][j];
196 <        }
197 <        
198 <        /**
199 <        * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2).
200 <        * @param m1 the first matrix
201 <        * @param m2 the second matrix
202 <        */
203 <        inline void sub( const SquareMatrix<Real, Dim>& m1, const Vector  &m2){
204 <            for (unsigned int i = 0; i < Dim; i++)
205 <                for (unsigned int j = 0; j < Dim; j++)        
206 <                data_[i][j] = m1.data_[i][j] - m2.data_[i][j];
207 <        }
208 <        
209 <        /**
210 <        * Sets the value of this matrix to the scalar multiplication of itself (*this *= s).
211 <        * @param s the scalar value
212 <        */
213 <        inline void mul( double s ) {
214 <            for (unsigned int i = 0; i < Dim; i++)
215 <                for (unsigned int j = 0; j < Dim; j++)  
216 <                    data_[i][j] *= s;
217 <        }
172 >      tmp = *this * transpose();
173  
174 <        /**
175 <        * Sets the value of this matrix to the scalar multiplication of matrix m  (*this = s * m).
221 <        * @param s the scalar value
222 <        * @param m the matrix
223 <        */
224 <        inline void mul( double s, const SquareMatrix<Real, Dim>& m ) {
225 <            for (unsigned int i = 0; i < Dim; i++)
226 <                for (unsigned int j = 0; j < Dim; j++)  
227 <                    data_[i][j] = s * m.data_[i][j];
228 <        }
174 >      return tmp.isDiagonal();
175 >    }
176  
177 <        /**
178 <        * Sets the value of this matrix to the  multiplication of this matrix and matrix m
179 <        * (*this = *this * m).
180 <        * @param m the matrix
181 <        */
182 <        inline void mul(const SquareMatrix<Real, Dim>& m ) {
183 <            SquareMatrix<Real, Dim> tmp(*this);
184 <            
185 <            for (unsigned int i = 0; i < Dim; i++)
239 <                for (unsigned int j = 0; j < Dim; j++) {  
240 <                    
241 <                    data_[i][j] = 0.0;
242 <                    for (unsigned int k = 0; k < Dim; k++)
243 <                        data_[i][j]  = tmp.data_[i][k] * m.data_[k][j]
244 <                }
245 <        }
246 <        
247 <        /**
248 <        * Sets the value of this matrix to the  left multiplication of matrix m into itself
249 <        * (*this = m *  *this).
250 <        * @param m the matrix
251 <        */
252 <        inline void leftmul(const SquareMatrix<Real, Dim>& m ) {
253 <            SquareMatrix<Real, Dim> tmp(*this);
254 <            
255 <            for (unsigned int i = 0; i < Dim; i++)
256 <                for (unsigned int j = 0; j < Dim; j++) {  
257 <                    
258 <                    data_[i][j] = 0.0;
259 <                    for (unsigned int k = 0; k < Dim; k++)
260 <                        data_[i][j]  = m.data_[i][k] * tmp.data_[k][j]
261 <                }
262 <        }
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183 >                        
184 >      return true;
185 >    }
186  
187 <        /**
188 <        * Sets the value of this matrix to the  multiplication of matrix m1 and matrix m2
189 <        * (*this = m1 * m2).
190 <        * @param m1 the first  matrix
191 <        * @param m2 the second matrix
192 <        */
193 <        inline void mul(const SquareMatrix<Real, Dim>& m1,
194 <                                  const SquareMatrix<Real, Dim>& m2 ) {
195 <            for (unsigned int i = 0; i < Dim; i++)
196 <                for (unsigned int j = 0; j < Dim; j++) {  
187 >    /**
188 >     * Returns a column vector that contains the elements from the
189 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
190 >     * on.
191 >     */
192 >    Vector<Real, Dim> diagonals() const {
193 >      Vector<Real, Dim> result;
194 >      for (unsigned int i = 0; i < Dim; i++) {
195 >        result(i) = this->data_[i][i];
196 >      }
197 >      return result;
198 >    }
199 >
200 >    /** Tests if this matrix is the unit matrix. */
201 >    bool isUnitMatrix() const {
202 >      if (!isDiagonal())
203 >        return false;
204 >                
205 >      for (unsigned int i = 0; i < Dim ; i++)
206 >        if (fabs(this->data_[i][i] - 1) > epsilon)
207 >          return false;
208                      
209 <                    data_[i][j] = 0.0;
210 <                    for (unsigned int k = 0; k < Dim; k++)
277 <                        data_[i][j]  = m1.data_[i][k] * m2.data_[k][j]
278 <                }
209 >      return true;
210 >    }        
211  
212 <        }
213 <        
214 <        /**
215 <        * Sets the value of this matrix to the scalar division of itself  (*this /= s ).
216 <        * @param s the scalar value
217 <        */            
218 <        inline void div( double s) {
219 <            for (unsigned int i = 0; i < Dim; i++)
220 <                for (unsigned int j = 0; j < Dim; j++)  
221 <                    data_[i][j] /= s;
290 <        }
291 <        
292 <        inline SquareMatrix<Real, Dim>& operator=(const SquareMatrix<Real, Dim>& v) {
293 <            if (this == &v)
294 <                return *this;
295 <            
296 <            for (unsigned int i = 0; i < Dim; i++)            
297 <                data_[i] = v[i];
212 >    /** Return the transpose of this matrix */
213 >    SquareMatrix<Real,  Dim> transpose() const{
214 >      SquareMatrix<Real,  Dim> result;
215 >                
216 >      for (unsigned int i = 0; i < Dim; i++)
217 >        for (unsigned int j = 0; j < Dim; j++)              
218 >          result(j, i) = this->data_[i][j];
219 >
220 >      return result;
221 >    }
222              
223 <            return *this;
224 <        }
225 <        
226 <        /**
303 <        * Sets the value of this matrix to the scalar division of matrix v1  (*this = v1 / s ).
304 <        * @paran v1 the source matrix
305 <        * @param s the scalar value
306 <        */                        
307 <        inline void div( const SquareMatrix<Real, Dim>& v1, double s ) {
308 <            for (unsigned int i = 0; i < Dim; i++)
309 <                data_[i] = v1.data_[i] / s;
310 <        }
223 >    /** @todo need implementation */
224 >    void diagonalize() {
225 >      //jacobi(m, eigenValues, ortMat);
226 >    }
227  
228 <        /**
229 <         *  Multiples a scalar into every element of this matrix.
230 <         * @param s the scalar value
231 <         */
232 <        SquareMatrix<Real, Dim>& operator *=(const double s) {
233 <            this->mul(s);
234 <            return *this;
235 <        }
228 >    /**
229 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230 >     * real symmetric matrix
231 >     *
232 >     * @return true if success, otherwise return false
233 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234 >     *     overwritten
235 >     * @param w will contain the eigenvalues of the matrix On return of this function
236 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237 >     *    normalized and mutually orthogonal.
238 >     */
239 >          
240 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241 >                      SquareMatrix<Real, Dim>& v);
242 >  };//end SquareMatrix
243  
321        /**
322         *  Divides every element of this matrix by a scalar.
323         * @param s the scalar value
324         */
325        SquareMatrix<Real, Dim>& operator /=(const double s) {
326            this->div(s);
327            return *this;
328        }
244  
245 <        /**
331 <         * Sets the value of this matrix to the sum of the other matrix and itself (*this += m).
332 <         * @param m the other matrix
333 <         */
334 <        SquareMatrix<Real, Dim>& operator += (const SquareMatrix<Real, Dim>& m) {
335 <            add(m);
336 <            return *this;
337 <         }
245 >  /*=========================================================================
246  
247 <        /**
248 <         * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m)
341 <         * @param m the other matrix
342 <         */
343 <        SquareMatrix<Real, Dim>& operator -= (const SquareMatrix<Real, Dim>& m){
344 <            sub(m);
345 <            return *this;
346 <        }
247 >  Program:   Visualization Toolkit
248 >  Module:    $RCSfile: SquareMatrix.hpp,v $
249  
250 <        /** set this matrix to an identity matrix*/
250 >  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
251 >  All rights reserved.
252 >  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
253  
254 <       void identity() {
255 <            for (unsigned int i = 0; i < Dim; i++)
256 <                for (unsigned int i = 0; i < Dim; i++)
353 <                    if (i == j)
354 <                        data_[i][j] = 1.0;
355 <                    else
356 <                        data_[i][j] = 0.0;
357 <        }
254 >  This software is distributed WITHOUT ANY WARRANTY; without even
255 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256 >  PURPOSE.  See the above copyright notice for more information.
257  
258 <        /** Sets the value of this matrix to  the inversion of itself. */
360 <        void  inverse() {
361 <            inverse(*this);
362 <        }
258 >  =========================================================================*/
259  
260 <        /**
261 <         * Sets the value of this matrix to  the inversion of other matrix.
366 <         * @ param m the source matrix
367 <         */        
368 <        void inverse(const SquareMatrix<Real, Dim>& m);
369 <        
370 <        /** Sets the value of this matrix to  the transpose of itself. */
371 <        void transpose() {
372 <            for (unsigned int i = 0; i < Dim - 1; i++)
373 <                for (unsigned int j = i; j < Dim; j++)
374 <                    std::swap(data_[i][j], data_[j][i]);
375 <        }
260 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
261 >    a(k, l)=h+s*(g-h*tau)
262  
263 <        /**
378 <         * Sets the value of this matrix to  the transpose of other matrix.
379 <         * @ param m the source matrix
380 <         */        
381 <        void transpose(const SquareMatrix<Real, Dim>& m) {
382 <            
383 <            if (this == &m) {
384 <                transpose();
385 <            } else {
386 <                for (unsigned int i = 0; i < Dim; i++)
387 <                    for (unsigned int j =0; j < Dim; j++)
388 <                        data_[i][j] = m.data_[i][j];
389 <            }
390 <        }
263 > #define VTK_MAX_ROTATIONS 20
264  
265 <        /** Returns the determinant of this matrix. */
266 <        double determinant() const {
265 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
268 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269 >  // normalized.
270 >  template<typename Real, int Dim>
271 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272 >                                      SquareMatrix<Real, Dim>& v) {
273 >    const int n = Dim;  
274 >    int i, j, k, iq, ip, numPos;
275 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276 >    Real bspace[4], zspace[4];
277 >    Real *b = bspace;
278 >    Real *z = zspace;
279  
280 <        }
280 >    // only allocate memory if the matrix is large
281 >    if (n > 4) {
282 >      b = new Real[n];
283 >      z = new Real[n];
284 >    }
285  
286 <        /** Returns the trace of this matrix. */
287 <        double trace() const {
288 <           double tmp = 0;
289 <          
290 <            for (unsigned int i = 0; i < Dim ; i++)
291 <                tmp += data_[i][i];
286 >    // initialize
287 >    for (ip=0; ip<n; ip++) {
288 >      for (iq=0; iq<n; iq++) {
289 >        v(ip, iq) = 0.0;
290 >      }
291 >      v(ip, ip) = 1.0;
292 >    }
293 >    for (ip=0; ip<n; ip++) {
294 >      b[ip] = w[ip] = a(ip, ip);
295 >      z[ip] = 0.0;
296 >    }
297  
298 <            return tmp;
299 <        }
298 >    // begin rotation sequence
299 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
300 >      sm = 0.0;
301 >      for (ip=0; ip<n-1; ip++) {
302 >        for (iq=ip+1; iq<n; iq++) {
303 >          sm += fabs(a(ip, iq));
304 >        }
305 >      }
306 >      if (sm == 0.0) {
307 >        break;
308 >      }
309  
310 <        /** Tests if this matrix is symmetrix. */            
311 <        bool isSymmetric() const {
312 <            for (unsigned int i = 0; i < Dim - 1; i++)
313 <                for (unsigned int j = i; j < Dim; j++)
314 <                    if (fabs(data_[i][j] - data_[j][i]) > epsilon)
412 <                        return false;
413 <                    
414 <            return true;
415 <        }
310 >      if (i < 3) {                                // first 3 sweeps
311 >        tresh = 0.2*sm/(n*n);
312 >      } else {
313 >        tresh = 0.0;
314 >      }
315  
316 <        /** Tests if this matrix is orthogona. */            
317 <        bool isOrthogonal() const {
318 <            SquareMatrix<Real, Dim> t(*this);
316 >      for (ip=0; ip<n-1; ip++) {
317 >        for (iq=ip+1; iq<n; iq++) {
318 >          g = 100.0*fabs(a(ip, iq));
319  
320 <            t.transpose();
320 >          // after 4 sweeps
321 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
323 >            a(ip, iq) = 0.0;
324 >          } else if (fabs(a(ip, iq)) > tresh) {
325 >            h = w[iq] - w[ip];
326 >            if ( (fabs(h)+g) == fabs(h)) {
327 >              t = (a(ip, iq)) / h;
328 >            } else {
329 >              theta = 0.5*h / (a(ip, iq));
330 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
331 >              if (theta < 0.0) {
332 >                t = -t;
333 >              }
334 >            }
335 >            c = 1.0 / sqrt(1+t*t);
336 >            s = t*c;
337 >            tau = s/(1.0+c);
338 >            h = t*a(ip, iq);
339 >            z[ip] -= h;
340 >            z[iq] += h;
341 >            w[ip] -= h;
342 >            w[iq] += h;
343 >            a(ip, iq)=0.0;
344  
345 <            return isUnitMatrix(*this * t);
346 <        }
345 >            // ip already shifted left by 1 unit
346 >            for (j = 0;j <= ip-1;j++) {
347 >              VTK_ROTATE(a,j,ip,j,iq);
348 >            }
349 >            // ip and iq already shifted left by 1 unit
350 >            for (j = ip+1;j <= iq-1;j++) {
351 >              VTK_ROTATE(a,ip,j,j,iq);
352 >            }
353 >            // iq already shifted left by 1 unit
354 >            for (j=iq+1; j<n; j++) {
355 >              VTK_ROTATE(a,ip,j,iq,j);
356 >            }
357 >            for (j=0; j<n; j++) {
358 >              VTK_ROTATE(v,j,ip,j,iq);
359 >            }
360 >          }
361 >        }
362 >      }
363  
364 <        /** Tests if this matrix is diagonal. */
365 <        bool isDiagonal() const {
366 <            for (unsigned int i = 0; i < Dim ; i++)
367 <                for (unsigned int j = 0; j < Dim; j++)
368 <                    if (i !=j && fabs(data_[i][j]) > epsilon)
431 <                        return false;
432 <                    
433 <            return true;
434 <        }
435 <
436 <        /** Tests if this matrix is the unit matrix. */
437 <        bool isUnitMatrix() const {
438 <            if (!isDiagonal())
439 <                return false;
440 <            
441 <            for (unsigned int i = 0; i < Dim ; i++)
442 <                if (fabs(data_[i][i] - 1) > epsilon)
443 <                    return false;
444 <                
445 <            return true;
446 <        }
447 <        
448 <        protected:
449 <            double data_[Dim][Dim]; /**< matrix element */            
450 <
451 <    };//end SquareMatrix
452 <
453 <    
454 <    /** Negate the value of every element of this matrix. */
455 <    template<typename Real, int Dim>
456 <    inline SquareMatrix<Real, Dim> operator -(const SquareMatrix& m) {
457 <        SquareMatrix<Real, Dim> result(m);
458 <
459 <        result.negate();
460 <
461 <        return result;
364 >      for (ip=0; ip<n; ip++) {
365 >        b[ip] += z[ip];
366 >        w[ip] = b[ip];
367 >        z[ip] = 0.0;
368 >      }
369      }
463    
464    /**
465    * Return the sum of two matrixes  (m1 + m2).
466    * @return the sum of two matrixes
467    * @param m1 the first matrix
468    * @param m2 the second matrix
469    */
470    template<typename Real, int Dim>
471    inline SquareMatrix<Real, Dim> operator + (const SquareMatrix<Real, Dim>& m1,
472                                                                                         const SquareMatrix<Real, Dim>& m2) {
473        SquareMatrix<Real, Dim>result;
370  
371 <        result.add(m1, m2);
372 <
373 <        return result;
371 >    //// this is NEVER called
372 >    if ( i >= VTK_MAX_ROTATIONS ) {
373 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
374 >      return 0;
375      }
479    
480    /**
481    * Return the difference of two matrixes  (m1 - m2).
482    * @return the sum of two matrixes
483    * @param m1 the first matrix
484    * @param m2 the second matrix
485    */
486    template<typename Real, int Dim>
487    inline SquareMatrix<Real, Dim> operator - (const SquareMatrix<Real, Dim>& m1,
488                                                                                        const SquareMatrix<Real, Dim>& m2) {
489        SquareMatrix<Real, Dim>result;
376  
377 <        result.sub(m1, m2);
378 <
379 <        return result;
377 >    // sort eigenfunctions                 these changes do not affect accuracy
378 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
379 >      k = j;
380 >      tmp = w[k];
381 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
382 >        if (w[i] >= tmp) {                   // why exchage if same?
383 >          k = i;
384 >          tmp = w[k];
385 >        }
386 >      }
387 >      if (k != j) {
388 >        w[k] = w[j];
389 >        w[j] = tmp;
390 >        for (i=0; i<n; i++) {
391 >          tmp = v(i, j);
392 >          v(i, j) = v(i, k);
393 >          v(i, k) = tmp;
394 >        }
395 >      }
396      }
397 <    
398 <    /**
399 <    * Return the multiplication of two matrixes  (m1 * m2).
400 <    * @return the multiplication of two matrixes
401 <    * @param m1 the first matrix
402 <    * @param m2 the second matrix
403 <    */
404 <    template<typename Real, int Dim>
405 <    inline SquareMatrix<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m1,
406 <                                                                                       const SquareMatrix<Real, Dim>& m2) {
407 <        SquareMatrix<Real, Dim> result;
408 <
409 <        result.mul(m1, m2);
410 <
411 <        return result;
397 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
398 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
399 >    // reek havoc in hyperstreamline/other stuff. We will select the most
400 >    // positive eigenvector.
401 >    int ceil_half_n = (n >> 1) + (n & 1);
402 >    for (j=0; j<n; j++) {
403 >      for (numPos=0, i=0; i<n; i++) {
404 >        if ( v(i, j) >= 0.0 ) {
405 >          numPos++;
406 >        }
407 >      }
408 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
409 >      if ( numPos < ceil_half_n) {
410 >        for (i=0; i<n; i++) {
411 >          v(i, j) *= -1.0;
412 >        }
413 >      }
414      }
511    
512    /**
513    * Return the multiplication of  matrixes m  and vector v (m * v).
514    * @return the multiplication of matrixes and vector
515    * @param m the matrix
516    * @param v the vector
517    */
518    template<typename Real, int Dim>
519    inline Vector<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m,
520                                                                 const SquareMatrix<Real, Dim>& v) {
521        Vector<Real, Dim> result;
415  
416 <        for (unsigned int i = 0; i < Dim ; i++)
417 <            for (unsigned int j = 0; j < Dim ; j++)            
418 <                result[i] += m(i, j) * v[j];
526 <            
527 <        return result;                                                                
416 >    if (n > 4) {
417 >      delete [] b;
418 >      delete [] z;
419      }
420 +    return 1;
421 +  }
422 +
423 +
424 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
425   }
426   #endif //MATH_SQUAREMATRIX_HPP
427 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 70 by tim, Wed Oct 13 06:51:09 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1794 by gezelter, Thu Sep 6 19:44:06 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines