135 |
|
|
136 |
|
return tmp; |
137 |
|
} |
138 |
+ |
|
139 |
+ |
/** |
140 |
+ |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
+ |
* tensors (or Matrices) |
142 |
+ |
* @param t1 first tensor |
143 |
+ |
* @param t2 second tensor |
144 |
+ |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
+ |
*/ |
146 |
+ |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
+ |
Real tmp; |
148 |
+ |
tmp = 0; |
149 |
+ |
|
150 |
+ |
for (unsigned int i = 0; i < Dim; i++) |
151 |
+ |
for (unsigned int j =0; j < Dim; j++) |
152 |
+ |
tmp += t1[i][j] * t2[i][j]; |
153 |
+ |
|
154 |
+ |
return tmp; |
155 |
+ |
} |
156 |
|
|
157 |
|
/** Tests if this matrix is symmetrix. */ |
158 |
|
bool isSymmetric() const { |
183 |
|
return true; |
184 |
|
} |
185 |
|
|
186 |
+ |
/** |
187 |
+ |
* Returns a column vector that contains the elements from the |
188 |
+ |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
189 |
+ |
* on. |
190 |
+ |
*/ |
191 |
+ |
Vector<Real, Dim> diagonals() const { |
192 |
+ |
Vector<Real, Dim> result; |
193 |
+ |
for (unsigned int i = 0; i < Dim; i++) { |
194 |
+ |
result(i) = this->data_[i][i]; |
195 |
+ |
} |
196 |
+ |
return result; |
197 |
+ |
} |
198 |
+ |
|
199 |
|
/** Tests if this matrix is the unit matrix. */ |
200 |
|
bool isUnitMatrix() const { |
201 |
|
if (!isDiagonal()) |