1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SquareMatrix.hpp |
45 |
* @author Teng Lin |
46 |
* @date 10/11/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
#ifndef MATH_SQUAREMATRIX_HPP |
50 |
#define MATH_SQUAREMATRIX_HPP |
51 |
|
52 |
#include "math/RectMatrix.hpp" |
53 |
#include "utils/NumericConstant.hpp" |
54 |
|
55 |
namespace OpenMD { |
56 |
|
57 |
/** |
58 |
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
* @brief A square matrix class |
60 |
* \tparam Real the element type |
61 |
* \tparam Dim the dimension of the square matrix |
62 |
*/ |
63 |
template<typename Real, int Dim> |
64 |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
65 |
public: |
66 |
typedef Real ElemType; |
67 |
typedef Real* ElemPoinerType; |
68 |
|
69 |
/** default constructor */ |
70 |
SquareMatrix() { |
71 |
for (unsigned int i = 0; i < Dim; i++) |
72 |
for (unsigned int j = 0; j < Dim; j++) |
73 |
this->data_[i][j] = 0.0; |
74 |
} |
75 |
|
76 |
/** Constructs and initializes every element of this matrix to a scalar */ |
77 |
SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ |
78 |
} |
79 |
|
80 |
/** Constructs and initializes from an array */ |
81 |
SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ |
82 |
} |
83 |
|
84 |
|
85 |
/** copy constructor */ |
86 |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
87 |
} |
88 |
|
89 |
/** copy assignment operator */ |
90 |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
91 |
RectMatrix<Real, Dim, Dim>::operator=(m); |
92 |
return *this; |
93 |
} |
94 |
|
95 |
/** Retunrs an identity matrix*/ |
96 |
|
97 |
static SquareMatrix<Real, Dim> identity() { |
98 |
SquareMatrix<Real, Dim> m; |
99 |
|
100 |
for (unsigned int i = 0; i < Dim; i++) |
101 |
for (unsigned int j = 0; j < Dim; j++) |
102 |
if (i == j) |
103 |
m(i, j) = 1.0; |
104 |
else |
105 |
m(i, j) = 0.0; |
106 |
|
107 |
return m; |
108 |
} |
109 |
|
110 |
/** |
111 |
* Retunrs the inversion of this matrix. |
112 |
* @todo need implementation |
113 |
*/ |
114 |
SquareMatrix<Real, Dim> inverse() { |
115 |
SquareMatrix<Real, Dim> result; |
116 |
|
117 |
return result; |
118 |
} |
119 |
|
120 |
/** |
121 |
* Returns the determinant of this matrix. |
122 |
* @todo need implementation |
123 |
*/ |
124 |
Real determinant() const { |
125 |
Real det; |
126 |
return det; |
127 |
} |
128 |
|
129 |
/** Returns the trace of this matrix. */ |
130 |
Real trace() const { |
131 |
Real tmp = 0; |
132 |
|
133 |
for (unsigned int i = 0; i < Dim ; i++) |
134 |
tmp += this->data_[i][i]; |
135 |
|
136 |
return tmp; |
137 |
} |
138 |
|
139 |
/** |
140 |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
* tensors (or Matrices) |
142 |
* @param t1 first tensor |
143 |
* @param t2 second tensor |
144 |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
*/ |
146 |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
Real tmp; |
148 |
tmp = 0; |
149 |
|
150 |
for (unsigned int i = 0; i < Dim; i++) |
151 |
for (unsigned int j =0; j < Dim; j++) |
152 |
tmp += t1[i][j] * t2[i][j]; |
153 |
|
154 |
return tmp; |
155 |
} |
156 |
|
157 |
|
158 |
/** Tests if this matrix is symmetrix. */ |
159 |
bool isSymmetric() const { |
160 |
for (unsigned int i = 0; i < Dim - 1; i++) |
161 |
for (unsigned int j = i; j < Dim; j++) |
162 |
if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon) |
163 |
return false; |
164 |
|
165 |
return true; |
166 |
} |
167 |
|
168 |
/** Tests if this matrix is orthogonal. */ |
169 |
bool isOrthogonal() { |
170 |
SquareMatrix<Real, Dim> tmp; |
171 |
|
172 |
tmp = *this * transpose(); |
173 |
|
174 |
return tmp.isDiagonal(); |
175 |
} |
176 |
|
177 |
/** Tests if this matrix is diagonal. */ |
178 |
bool isDiagonal() const { |
179 |
for (unsigned int i = 0; i < Dim ; i++) |
180 |
for (unsigned int j = 0; j < Dim; j++) |
181 |
if (i !=j && fabs(this->data_[i][j]) > epsilon) |
182 |
return false; |
183 |
|
184 |
return true; |
185 |
} |
186 |
|
187 |
/** |
188 |
* Returns a column vector that contains the elements from the |
189 |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
190 |
* on. |
191 |
*/ |
192 |
Vector<Real, Dim> diagonals() const { |
193 |
Vector<Real, Dim> result; |
194 |
for (unsigned int i = 0; i < Dim; i++) { |
195 |
result(i) = this->data_[i][i]; |
196 |
} |
197 |
return result; |
198 |
} |
199 |
|
200 |
/** Tests if this matrix is the unit matrix. */ |
201 |
bool isUnitMatrix() const { |
202 |
if (!isDiagonal()) |
203 |
return false; |
204 |
|
205 |
for (unsigned int i = 0; i < Dim ; i++) |
206 |
if (fabs(this->data_[i][i] - 1) > epsilon) |
207 |
return false; |
208 |
|
209 |
return true; |
210 |
} |
211 |
|
212 |
/** Return the transpose of this matrix */ |
213 |
SquareMatrix<Real, Dim> transpose() const{ |
214 |
SquareMatrix<Real, Dim> result; |
215 |
|
216 |
for (unsigned int i = 0; i < Dim; i++) |
217 |
for (unsigned int j = 0; j < Dim; j++) |
218 |
result(j, i) = this->data_[i][j]; |
219 |
|
220 |
return result; |
221 |
} |
222 |
|
223 |
/** @todo need implementation */ |
224 |
void diagonalize() { |
225 |
//jacobi(m, eigenValues, ortMat); |
226 |
} |
227 |
|
228 |
/** |
229 |
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
230 |
* real symmetric matrix |
231 |
* |
232 |
* @return true if success, otherwise return false |
233 |
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
234 |
* overwritten |
235 |
* @param d will contain the eigenvalues of the matrix On return of this function |
236 |
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
237 |
* normalized and mutually orthogonal. |
238 |
*/ |
239 |
|
240 |
static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
241 |
SquareMatrix<Real, Dim>& v); |
242 |
};//end SquareMatrix |
243 |
|
244 |
|
245 |
/*========================================================================= |
246 |
|
247 |
Program: Visualization Toolkit |
248 |
Module: $RCSfile: SquareMatrix.hpp,v $ |
249 |
|
250 |
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
251 |
All rights reserved. |
252 |
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
253 |
|
254 |
This software is distributed WITHOUT ANY WARRANTY; without even |
255 |
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
256 |
PURPOSE. See the above copyright notice for more information. |
257 |
|
258 |
=========================================================================*/ |
259 |
|
260 |
#define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \ |
261 |
a(k, l)=h+s*(g-h*tau) |
262 |
|
263 |
#define VTK_MAX_ROTATIONS 20 |
264 |
|
265 |
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
266 |
// real symmetric matrix. Square nxn matrix a; size of matrix in n; |
267 |
// output eigenvalues in w; and output eigenvectors in v. Resulting |
268 |
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
269 |
// normalized. |
270 |
template<typename Real, int Dim> |
271 |
int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
272 |
SquareMatrix<Real, Dim>& v) { |
273 |
const int n = Dim; |
274 |
int i, j, k, iq, ip, numPos; |
275 |
Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
276 |
Real bspace[4], zspace[4]; |
277 |
Real *b = bspace; |
278 |
Real *z = zspace; |
279 |
|
280 |
// only allocate memory if the matrix is large |
281 |
if (n > 4) { |
282 |
b = new Real[n]; |
283 |
z = new Real[n]; |
284 |
} |
285 |
|
286 |
// initialize |
287 |
for (ip=0; ip<n; ip++) { |
288 |
for (iq=0; iq<n; iq++) { |
289 |
v(ip, iq) = 0.0; |
290 |
} |
291 |
v(ip, ip) = 1.0; |
292 |
} |
293 |
for (ip=0; ip<n; ip++) { |
294 |
b[ip] = w[ip] = a(ip, ip); |
295 |
z[ip] = 0.0; |
296 |
} |
297 |
|
298 |
// begin rotation sequence |
299 |
for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
300 |
sm = 0.0; |
301 |
for (ip=0; ip<n-1; ip++) { |
302 |
for (iq=ip+1; iq<n; iq++) { |
303 |
sm += fabs(a(ip, iq)); |
304 |
} |
305 |
} |
306 |
if (sm == 0.0) { |
307 |
break; |
308 |
} |
309 |
|
310 |
if (i < 3) { // first 3 sweeps |
311 |
tresh = 0.2*sm/(n*n); |
312 |
} else { |
313 |
tresh = 0.0; |
314 |
} |
315 |
|
316 |
for (ip=0; ip<n-1; ip++) { |
317 |
for (iq=ip+1; iq<n; iq++) { |
318 |
g = 100.0*fabs(a(ip, iq)); |
319 |
|
320 |
// after 4 sweeps |
321 |
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
322 |
&& (fabs(w[iq])+g) == fabs(w[iq])) { |
323 |
a(ip, iq) = 0.0; |
324 |
} else if (fabs(a(ip, iq)) > tresh) { |
325 |
h = w[iq] - w[ip]; |
326 |
if ( (fabs(h)+g) == fabs(h)) { |
327 |
t = (a(ip, iq)) / h; |
328 |
} else { |
329 |
theta = 0.5*h / (a(ip, iq)); |
330 |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
331 |
if (theta < 0.0) { |
332 |
t = -t; |
333 |
} |
334 |
} |
335 |
c = 1.0 / sqrt(1+t*t); |
336 |
s = t*c; |
337 |
tau = s/(1.0+c); |
338 |
h = t*a(ip, iq); |
339 |
z[ip] -= h; |
340 |
z[iq] += h; |
341 |
w[ip] -= h; |
342 |
w[iq] += h; |
343 |
a(ip, iq)=0.0; |
344 |
|
345 |
// ip already shifted left by 1 unit |
346 |
for (j = 0;j <= ip-1;j++) { |
347 |
VTK_ROTATE(a,j,ip,j,iq); |
348 |
} |
349 |
// ip and iq already shifted left by 1 unit |
350 |
for (j = ip+1;j <= iq-1;j++) { |
351 |
VTK_ROTATE(a,ip,j,j,iq); |
352 |
} |
353 |
// iq already shifted left by 1 unit |
354 |
for (j=iq+1; j<n; j++) { |
355 |
VTK_ROTATE(a,ip,j,iq,j); |
356 |
} |
357 |
for (j=0; j<n; j++) { |
358 |
VTK_ROTATE(v,j,ip,j,iq); |
359 |
} |
360 |
} |
361 |
} |
362 |
} |
363 |
|
364 |
for (ip=0; ip<n; ip++) { |
365 |
b[ip] += z[ip]; |
366 |
w[ip] = b[ip]; |
367 |
z[ip] = 0.0; |
368 |
} |
369 |
} |
370 |
|
371 |
//// this is NEVER called |
372 |
if ( i >= VTK_MAX_ROTATIONS ) { |
373 |
std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
374 |
if (n > 4) { |
375 |
delete[] b; |
376 |
delete[] z; |
377 |
} |
378 |
return 0; |
379 |
} |
380 |
|
381 |
// sort eigenfunctions these changes do not affect accuracy |
382 |
for (j=0; j<n-1; j++) { // boundary incorrect |
383 |
k = j; |
384 |
tmp = w[k]; |
385 |
for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
386 |
if (w[i] >= tmp) { // why exchage if same? |
387 |
k = i; |
388 |
tmp = w[k]; |
389 |
} |
390 |
} |
391 |
if (k != j) { |
392 |
w[k] = w[j]; |
393 |
w[j] = tmp; |
394 |
for (i=0; i<n; i++) { |
395 |
tmp = v(i, j); |
396 |
v(i, j) = v(i, k); |
397 |
v(i, k) = tmp; |
398 |
} |
399 |
} |
400 |
} |
401 |
// insure eigenvector consistency (i.e., Jacobi can compute vectors that |
402 |
// are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
403 |
// reek havoc in hyperstreamline/other stuff. We will select the most |
404 |
// positive eigenvector. |
405 |
int ceil_half_n = (n >> 1) + (n & 1); |
406 |
for (j=0; j<n; j++) { |
407 |
for (numPos=0, i=0; i<n; i++) { |
408 |
if ( v(i, j) >= 0.0 ) { |
409 |
numPos++; |
410 |
} |
411 |
} |
412 |
// if ( numPos < ceil(RealType(n)/RealType(2.0)) ) |
413 |
if ( numPos < ceil_half_n) { |
414 |
for (i=0; i<n; i++) { |
415 |
v(i, j) *= -1.0; |
416 |
} |
417 |
} |
418 |
} |
419 |
|
420 |
if (n > 4) { |
421 |
delete [] b; |
422 |
delete [] z; |
423 |
} |
424 |
return 1; |
425 |
} |
426 |
|
427 |
|
428 |
typedef SquareMatrix<RealType, 6> Mat6x6d; |
429 |
} |
430 |
#endif //MATH_SQUAREMATRIX_HPP |
431 |
|