6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
52 |
|
#include "math/RectMatrix.hpp" |
53 |
|
#include "utils/NumericConstant.hpp" |
54 |
|
|
55 |
< |
namespace oopse { |
55 |
> |
namespace OpenMD { |
56 |
|
|
57 |
|
/** |
58 |
|
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
|
* @brief A square matrix class |
60 |
< |
* @template Real the element type |
61 |
< |
* @template Dim the dimension of the square matrix |
60 |
> |
* \tparam Real the element type |
61 |
> |
* \tparam Dim the dimension of the square matrix |
62 |
|
*/ |
63 |
|
template<typename Real, int Dim> |
64 |
|
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
125 |
|
Real det; |
126 |
|
return det; |
127 |
|
} |
128 |
< |
|
128 |
> |
|
129 |
|
/** Returns the trace of this matrix. */ |
130 |
|
Real trace() const { |
131 |
|
Real tmp = 0; |
135 |
|
|
136 |
|
return tmp; |
137 |
|
} |
138 |
+ |
|
139 |
+ |
/** |
140 |
+ |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
+ |
* tensors (or Matrices) |
142 |
+ |
* @param t1 first tensor |
143 |
+ |
* @param t2 second tensor |
144 |
+ |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
+ |
*/ |
146 |
+ |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
+ |
Real tmp; |
148 |
+ |
tmp = 0; |
149 |
+ |
|
150 |
+ |
for (unsigned int i = 0; i < Dim; i++) |
151 |
+ |
for (unsigned int j =0; j < Dim; j++) |
152 |
+ |
tmp += t1[i][j] * t2[i][j]; |
153 |
+ |
|
154 |
+ |
return tmp; |
155 |
+ |
} |
156 |
+ |
|
157 |
|
|
158 |
|
/** Tests if this matrix is symmetrix. */ |
159 |
|
bool isSymmetric() const { |
184 |
|
return true; |
185 |
|
} |
186 |
|
|
187 |
+ |
/** |
188 |
+ |
* Returns a column vector that contains the elements from the |
189 |
+ |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
190 |
+ |
* on. |
191 |
+ |
*/ |
192 |
+ |
Vector<Real, Dim> diagonals() const { |
193 |
+ |
Vector<Real, Dim> result; |
194 |
+ |
for (unsigned int i = 0; i < Dim; i++) { |
195 |
+ |
result(i) = this->data_[i][i]; |
196 |
+ |
} |
197 |
+ |
return result; |
198 |
+ |
} |
199 |
+ |
|
200 |
|
/** Tests if this matrix is the unit matrix. */ |
201 |
|
bool isUnitMatrix() const { |
202 |
|
if (!isDiagonal()) |
232 |
|
* @return true if success, otherwise return false |
233 |
|
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
234 |
|
* overwritten |
235 |
< |
* @param w will contain the eigenvalues of the matrix On return of this function |
235 |
> |
* @param d will contain the eigenvalues of the matrix On return of this function |
236 |
|
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
237 |
|
* normalized and mutually orthogonal. |
238 |
|
*/ |