ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 83 by tim, Fri Oct 15 18:18:12 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 33 | Line 50
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * \tparam Real the element type
61 >   * \tparam Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
82 <            
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    if (i == j)
74 <                        m(i, j) = 1.0;
75 <                    else
76 <                        m(i, j) = 0.0;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83  
78            return m;
79        }
84  
85 <        /** Retunrs  the inversion of this matrix. */
86 <         SquareMatrix<Real, Dim>  inverse() {
87 <             SquareMatrix<Real, Dim> result;
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88 >            
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <             return result;
98 <        }        
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /** Returns the determinant of this matrix. */
108 <        double determinant() const {
90 <            double det;
91 <            return det;
92 <        }
107 >      return m;
108 >    }
109  
110 <        /** Returns the trace of this matrix. */
111 <        double trace() const {
112 <           double tmp = 0;
113 <          
114 <            for (unsigned int i = 0; i < Dim ; i++)
115 <                tmp += data_[i][i];
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <            return tmp;
118 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Tests if this matrix is symmetrix. */            
121 <        bool isSymmetric() const {
122 <            for (unsigned int i = 0; i < Dim - 1; i++)
123 <                for (unsigned int j = i; j < Dim; j++)
124 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
125 <                        return false;
126 <                    
127 <            return true;
128 <        }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128 >    
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <        /** Tests if this matrix is orthogonal. */            
137 <        bool isOrthogonal() {
138 <            SquareMatrix<Real, Dim> tmp;
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
118            tmp = *this * transpose();
157  
158 <            return tmp.isDiagonal();
159 <        }
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167  
168 <        /** Tests if this matrix is diagonal. */
169 <        bool isDiagonal() const {
170 <            for (unsigned int i = 0; i < Dim ; i++)
126 <                for (unsigned int j = 0; j < Dim; j++)
127 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
128 <                        return false;
129 <                    
130 <            return true;
131 <        }
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <        /** Tests if this matrix is the unit matrix. */
134 <        bool isUnitMatrix() const {
135 <            if (!isDiagonal())
136 <                return false;
137 <            
138 <            for (unsigned int i = 0; i < Dim ; i++)
139 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
140 <                    return false;
141 <                
142 <            return true;
143 <        }        
172 >      tmp = *this * transpose();
173  
174 <        void diagonalize() {
175 <            jacobi(m, eigenValues, ortMat);
147 <        }
174 >      return tmp.isDiagonal();
175 >    }
176  
177 <        /**
178 <         * Finds the eigenvalues and eigenvectors of a symmetric matrix
179 <         * @param eigenvals a reference to a vector3 where the
180 <         * eigenvalues will be stored. The eigenvalues are ordered so
181 <         * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
182 <         * @return an orthogonal matrix whose ith column is an
183 <         * eigenvector for the eigenvalue eigenvals[i]
184 <         */
185 <        SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) {
158 <            SquareMatrix<Real, Dim> ortMat;
159 <            
160 <            if ( !isSymmetric()){
161 <                throw();
162 <            }
163 <            
164 <            SquareMatrix<Real, Dim> m(*this);
165 <            jacobi(m, eigenValues, ortMat);
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183 >                        
184 >      return true;
185 >    }
186  
187 <            return ortMat;
188 <        }
189 <        /**
190 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
191 <         * real symmetric matrix
192 <         *
193 <         * @return true if success, otherwise return false
194 <         * @param a source matrix
195 <         * @param w output eigenvalues
196 <         * @param v output eigenvectors
197 <         */
198 <        bool jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
179 <                              SquareMatrix<Real, Dim>& v);
180 <    };//end SquareMatrix
187 >    /**
188 >     * Returns a column vector that contains the elements from the
189 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
190 >     * on.
191 >     */
192 >    Vector<Real, Dim> diagonals() const {
193 >      Vector<Real, Dim> result;
194 >      for (unsigned int i = 0; i < Dim; i++) {
195 >        result(i) = this->data_[i][i];
196 >      }
197 >      return result;
198 >    }
199  
200 +    /** Tests if this matrix is the unit matrix. */
201 +    bool isUnitMatrix() const {
202 +      if (!isDiagonal())
203 +        return false;
204 +                
205 +      for (unsigned int i = 0; i < Dim ; i++)
206 +        if (fabs(this->data_[i][i] - 1) > epsilon)
207 +          return false;
208 +                    
209 +      return true;
210 +    }        
211  
212 < #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
213 < #define MAX_ROTATIONS 60
212 >    /** Return the transpose of this matrix */
213 >    SquareMatrix<Real,  Dim> transpose() const{
214 >      SquareMatrix<Real,  Dim> result;
215 >                
216 >      for (unsigned int i = 0; i < Dim; i++)
217 >        for (unsigned int j = 0; j < Dim; j++)              
218 >          result(j, i) = this->data_[i][j];
219  
220 < template<typename Real, int Dim>
221 < bool SquareMatrix<Real, Dim>::jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
222 <                              SquareMatrix<Real, Dim>& v) {
223 <    const int N = Dim;                                                                      
224 <    int i, j, k, iq, ip;
225 <    double tresh, theta, tau, t, sm, s, h, g, c;
226 <    double tmp;
193 <    Vector<Real, Dim> b, z;
220 >      return result;
221 >    }
222 >            
223 >    /** @todo need implementation */
224 >    void diagonalize() {
225 >      //jacobi(m, eigenValues, ortMat);
226 >    }
227  
228 +    /**
229 +     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230 +     * real symmetric matrix
231 +     *
232 +     * @return true if success, otherwise return false
233 +     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234 +     *     overwritten
235 +     * @param d will contain the eigenvalues of the matrix On return of this function
236 +     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237 +     *    normalized and mutually orthogonal.
238 +     */
239 +          
240 +    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241 +                      SquareMatrix<Real, Dim>& v);
242 +  };//end SquareMatrix
243 +
244 +
245 +  /*=========================================================================
246 +
247 +  Program:   Visualization Toolkit
248 +  Module:    $RCSfile: SquareMatrix.hpp,v $
249 +
250 +  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
251 +  All rights reserved.
252 +  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
253 +
254 +  This software is distributed WITHOUT ANY WARRANTY; without even
255 +  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256 +  PURPOSE.  See the above copyright notice for more information.
257 +
258 +  =========================================================================*/
259 +
260 + #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
261 +    a(k, l)=h+s*(g-h*tau)
262 +
263 + #define VTK_MAX_ROTATIONS 20
264 +
265 +  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266 +  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267 +  // output eigenvalues in w; and output eigenvectors in v. Resulting
268 +  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269 +  // normalized.
270 +  template<typename Real, int Dim>
271 +  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272 +                                      SquareMatrix<Real, Dim>& v) {
273 +    const int n = Dim;  
274 +    int i, j, k, iq, ip, numPos;
275 +    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276 +    Real bspace[4], zspace[4];
277 +    Real *b = bspace;
278 +    Real *z = zspace;
279 +
280 +    // only allocate memory if the matrix is large
281 +    if (n > 4) {
282 +      b = new Real[n];
283 +      z = new Real[n];
284 +    }
285 +
286      // initialize
287 <    for (ip=0; ip<N; ip++)
288 <    {
289 <        for (iq=0; iq<N; iq++) v(ip, iq) = 0.0;
290 <        v(ip, ip) = 1.0;
287 >    for (ip=0; ip<n; ip++) {
288 >      for (iq=0; iq<n; iq++) {
289 >        v(ip, iq) = 0.0;
290 >      }
291 >      v(ip, ip) = 1.0;
292      }
293 <    for (ip=0; ip<N; ip++)
294 <    {
295 <        b(ip) = w(ip) = a(ip, ip);
204 <        z(ip) = 0.0;
293 >    for (ip=0; ip<n; ip++) {
294 >      b[ip] = w[ip] = a(ip, ip);
295 >      z[ip] = 0.0;
296      }
297  
298      // begin rotation sequence
299 <    for (i=0; i<MAX_ROTATIONS; i++)
300 <    {
301 <        sm = 0.0;
302 <        for (ip=0; ip<2; ip++)
303 <        {
213 <            for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq));
299 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
300 >      sm = 0.0;
301 >      for (ip=0; ip<n-1; ip++) {
302 >        for (iq=ip+1; iq<n; iq++) {
303 >          sm += fabs(a(ip, iq));
304          }
305 <        if (sm == 0.0) break;
305 >      }
306 >      if (sm == 0.0) {
307 >        break;
308 >      }
309  
310 <        if (i < 4) tresh = 0.2*sm/(9);
311 <        else tresh = 0.0;
310 >      if (i < 3) {                                // first 3 sweeps
311 >        tresh = 0.2*sm/(n*n);
312 >      } else {
313 >        tresh = 0.0;
314 >      }
315  
316 <        for (ip=0; ip<2; ip++)
317 <        {
318 <            for (iq=ip+1; iq<N; iq++)
319 <            {
320 <                g = 100.0*fabs(a(ip, iq));
321 <                if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
322 <                    && (fabs(w(iq))+g) == fabs(w(iq)))
323 <                {
324 <                    a(ip, iq) = 0.0;
325 <                }
326 <                else if (fabs(a(ip, iq)) > tresh)
327 <                {
328 <                    h = w(iq) - w(ip);
329 <                    if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h;
330 <                    else
331 <                    {
332 <                        theta = 0.5*h / (a(ip, iq));
333 <                        t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
238 <                        if (theta < 0.0) t = -t;
239 <                    }
240 <                    c = 1.0 / sqrt(1+t*t);
241 <                    s = t*c;
242 <                    tau = s/(1.0+c);
243 <                    h = t*a(ip, iq);
244 <                    z(ip) -= h;
245 <                    z(iq) += h;
246 <                    w(ip) -= h;
247 <                    w(iq) += h;
248 <                    a(ip, iq)=0.0;
249 <                    for (j=0;j<ip-1;j++)
250 <                    {
251 <                        ROT(a,j,ip,j,iq);
252 <                    }
253 <                    for (j=ip+1;j<iq-1;j++)
254 <                    {
255 <                        ROT(a,ip,j,j,iq);
256 <                    }
257 <                    for (j=iq+1; j<N; j++)
258 <                    {
259 <                        ROT(a,ip,j,iq,j);
260 <                    }
261 <                    for (j=0; j<N; j++)
262 <                    {
263 <                        ROT(v,j,ip,j,iq);
264 <                    }
265 <                }
316 >      for (ip=0; ip<n-1; ip++) {
317 >        for (iq=ip+1; iq<n; iq++) {
318 >          g = 100.0*fabs(a(ip, iq));
319 >
320 >          // after 4 sweeps
321 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
323 >            a(ip, iq) = 0.0;
324 >          } else if (fabs(a(ip, iq)) > tresh) {
325 >            h = w[iq] - w[ip];
326 >            if ( (fabs(h)+g) == fabs(h)) {
327 >              t = (a(ip, iq)) / h;
328 >            } else {
329 >              theta = 0.5*h / (a(ip, iq));
330 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
331 >              if (theta < 0.0) {
332 >                t = -t;
333 >              }
334              }
335 <        }
335 >            c = 1.0 / sqrt(1+t*t);
336 >            s = t*c;
337 >            tau = s/(1.0+c);
338 >            h = t*a(ip, iq);
339 >            z[ip] -= h;
340 >            z[iq] += h;
341 >            w[ip] -= h;
342 >            w[iq] += h;
343 >            a(ip, iq)=0.0;
344  
345 <        for (ip=0; ip<N; ip++)
346 <        {
347 <            b(ip) += z(ip);
348 <            w(ip) = b(ip);
349 <            z(ip) = 0.0;
345 >            // ip already shifted left by 1 unit
346 >            for (j = 0;j <= ip-1;j++) {
347 >              VTK_ROTATE(a,j,ip,j,iq);
348 >            }
349 >            // ip and iq already shifted left by 1 unit
350 >            for (j = ip+1;j <= iq-1;j++) {
351 >              VTK_ROTATE(a,ip,j,j,iq);
352 >            }
353 >            // iq already shifted left by 1 unit
354 >            for (j=iq+1; j<n; j++) {
355 >              VTK_ROTATE(a,ip,j,iq,j);
356 >            }
357 >            for (j=0; j<n; j++) {
358 >              VTK_ROTATE(v,j,ip,j,iq);
359 >            }
360 >          }
361          }
362 +      }
363 +
364 +      for (ip=0; ip<n; ip++) {
365 +        b[ip] += z[ip];
366 +        w[ip] = b[ip];
367 +        z[ip] = 0.0;
368 +      }
369      }
370  
371 <    if ( i >= MAX_ROTATIONS )
372 <        return false;
371 >    //// this is NEVER called
372 >    if ( i >= VTK_MAX_ROTATIONS ) {
373 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
374 >      return 0;
375 >    }
376  
377 <    // sort eigenfunctions
378 <    for (j=0; j<N; j++)
379 <    {
380 <        k = j;
381 <        tmp = w(k);
382 <        for (i=j; i<N; i++)
383 <        {
384 <            if (w(i) >= tmp)
288 <            {
289 <                k = i;
290 <                tmp = w(k);
291 <            }
377 >    // sort eigenfunctions                 these changes do not affect accuracy
378 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
379 >      k = j;
380 >      tmp = w[k];
381 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
382 >        if (w[i] >= tmp) {                   // why exchage if same?
383 >          k = i;
384 >          tmp = w[k];
385          }
386 <        if (k != j)
387 <        {
388 <            w(k) = w(j);
389 <            w(j) = tmp;
390 <            for (i=0; i<N; i++)
391 <            {
392 <                tmp = v(i, j);
393 <                v(i, j) = v(i, k);
301 <                v(i, k) = tmp;
302 <            }
386 >      }
387 >      if (k != j) {
388 >        w[k] = w[j];
389 >        w[j] = tmp;
390 >        for (i=0; i<n; i++) {
391 >          tmp = v(i, j);
392 >          v(i, j) = v(i, k);
393 >          v(i, k) = tmp;
394          }
395 +      }
396      }
397 +    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
398 +    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
399 +    // reek havoc in hyperstreamline/other stuff. We will select the most
400 +    // positive eigenvector.
401 +    int ceil_half_n = (n >> 1) + (n & 1);
402 +    for (j=0; j<n; j++) {
403 +      for (numPos=0, i=0; i<n; i++) {
404 +        if ( v(i, j) >= 0.0 ) {
405 +          numPos++;
406 +        }
407 +      }
408 +      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
409 +      if ( numPos < ceil_half_n) {
410 +        for (i=0; i<n; i++) {
411 +          v(i, j) *= -1.0;
412 +        }
413 +      }
414 +    }
415  
416 <    //    insure eigenvector consistency (i.e., Jacobi can compute
417 <    //    vectors that are negative of one another (.707,.707,0) and
418 <    //    (-.707,-.707,0). This can reek havoc in
309 <    //    hyperstreamline/other stuff. We will select the most
310 <    //    positive eigenvector.
311 <    int numPos;
312 <    for (j=0; j<N; j++)
313 <    {
314 <        for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
315 <        if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
416 >    if (n > 4) {
417 >      delete [] b;
418 >      delete [] z;
419      }
420 +    return 1;
421 +  }
422  
318    return true;
319 }
423  
424 < #undef ROT
322 < #undef MAX_ROTATIONS
323 <
424 >  typedef SquareMatrix<RealType, 6> Mat6x6d;
425   }
325
426   #endif //MATH_SQUAREMATRIX_HPP
427 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 83 by tim, Fri Oct 15 18:18:12 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines