ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 76 by tim, Thu Oct 14 23:28:09 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 33 | Line 50
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            for (unsigned int i = 0; i < Dim; i++)
90 <                for (unsigned int j = 0; j < Dim; j++)
91 <                    if (i == j)
92 <                        m(i, j) = 1.0;
93 <                    else
94 <                        m(i, j) = 0.0;
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <            return m;
98 <        }
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /** Retunrs  the inversion of this matrix. */
108 <         SquareMatrix<Real, Dim>  inverse() {
83 <             SquareMatrix<Real, Dim> result;
107 >      return m;
108 >    }
109  
110 <             return result;
111 <        }        
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /** Returns the determinant of this matrix. */
118 <        double determinant() const {
90 <            double det;
91 <            return det;
92 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Returns the trace of this matrix. */
121 <        double trace() const {
122 <           double tmp = 0;
123 <          
124 <            for (unsigned int i = 0; i < Dim ; i++)
125 <                tmp += data_[i][i];
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            return tmp;
130 <        }
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <        /** Tests if this matrix is symmetrix. */            
137 <        bool isSymmetric() const {
138 <            for (unsigned int i = 0; i < Dim - 1; i++)
139 <                for (unsigned int j = i; j < Dim; j++)
140 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
141 <                        return false;
142 <                    
143 <            return true;
144 <        }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
114        /** Tests if this matrix is orthogonal. */            
115        bool isOrthogonal() {
116            SquareMatrix<Real, Dim> tmp;
157  
158 <            tmp = *this * transpose();
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167  
168 <            return tmp.isDiagonal();
169 <        }
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <        /** Tests if this matrix is diagonal. */
173 <        bool isDiagonal() const {
174 <            for (unsigned int i = 0; i < Dim ; i++)
175 <                for (unsigned int j = 0; j < Dim; j++)
176 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
177 <                        return false;
172 >      tmp = *this * transpose();
173 >
174 >      return tmp.isDiagonal();
175 >    }
176 >
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183 >                        
184 >      return true;
185 >    }
186 >
187 >    /** Tests if this matrix is the unit matrix. */
188 >    bool isUnitMatrix() const {
189 >      if (!isDiagonal())
190 >        return false;
191 >                
192 >      for (unsigned int i = 0; i < Dim ; i++)
193 >        if (fabs(this->data_[i][i] - 1) > epsilon)
194 >          return false;
195                      
196 <            return true;
197 <        }
196 >      return true;
197 >    }        
198  
199 <        /** Tests if this matrix is the unit matrix. */
200 <        bool isUnitMatrix() const {
201 <            if (!isDiagonal())
136 <                return false;
137 <            
138 <            for (unsigned int i = 0; i < Dim ; i++)
139 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
140 <                    return false;
199 >    /** Return the transpose of this matrix */
200 >    SquareMatrix<Real,  Dim> transpose() const{
201 >      SquareMatrix<Real,  Dim> result;
202                  
203 <            return true;
204 <        }        
203 >      for (unsigned int i = 0; i < Dim; i++)
204 >        for (unsigned int j = 0; j < Dim; j++)              
205 >          result(j, i) = this->data_[i][j];
206  
207 <        void diagonalize() {
208 <            jacobi(m, eigenValues, ortMat);
147 <        }
148 <
149 <        /**
150 <         * Finds the eigenvalues and eigenvectors of a symmetric matrix
151 <         * @param eigenvals a reference to a vector3 where the
152 <         * eigenvalues will be stored. The eigenvalues are ordered so
153 <         * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
154 <         * @return an orthogonal matrix whose ith column is an
155 <         * eigenvector for the eigenvalue eigenvals[i]
156 <         */
157 <        SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) {
158 <            SquareMatrix<Real, Dim> ortMat;
207 >      return result;
208 >    }
209              
210 <            if ( !isSymmetric()){
211 <                throw();
212 <            }
213 <            
164 <            SquareMatrix<Real, Dim> m(*this);
165 <            jacobi(m, eigenValues, ortMat);
166 <
167 <            return ortMat;
168 <        }
169 <        /**
170 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
171 <         * real symmetric matrix
172 <         *
173 <         * @return true if success, otherwise return false
174 <         * @param a source matrix
175 <         * @param w output eigenvalues
176 <         * @param v output eigenvectors
177 <         */
178 <        void jacobi(const SquareMatrix<Real, Dim>& a,
179 <                              Vector<Real, Dim>& w,
180 <                              SquareMatrix<Real, Dim>& v);
181 <    };//end SquareMatrix
210 >    /** @todo need implementation */
211 >    void diagonalize() {
212 >      //jacobi(m, eigenValues, ortMat);
213 >    }
214  
215 +    /**
216 +     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
217 +     * real symmetric matrix
218 +     *
219 +     * @return true if success, otherwise return false
220 +     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
221 +     *     overwritten
222 +     * @param w will contain the eigenvalues of the matrix On return of this function
223 +     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
224 +     *    normalized and mutually orthogonal.
225 +     */
226 +          
227 +    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 +                      SquareMatrix<Real, Dim>& v);
229 +  };//end SquareMatrix
230  
184 #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
185 #define MAX_ROTATIONS 60
231  
232 < template<Real, int Dim>
188 < void SquareMatrix<Real, int Dim>::jacobi(SquareMatrix<Real, Dim>& a,
189 <                                                                       Vector<Real, Dim>& w,
190 <                                                                       SquareMatrix<Real, Dim>& v) {
191 <    const int N = Dim;                                                                      
192 <    int i, j, k, iq, ip;
193 <    double tresh, theta, tau, t, sm, s, h, g, c;
194 <    double tmp;
195 <    Vector<Real, Dim> b, z;
232 >  /*=========================================================================
233  
234 +  Program:   Visualization Toolkit
235 +  Module:    $RCSfile: SquareMatrix.hpp,v $
236 +
237 +  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
238 +  All rights reserved.
239 +  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
240 +
241 +  This software is distributed WITHOUT ANY WARRANTY; without even
242 +  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 +  PURPOSE.  See the above copyright notice for more information.
244 +
245 +  =========================================================================*/
246 +
247 + #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
248 +    a(k, l)=h+s*(g-h*tau)
249 +
250 + #define VTK_MAX_ROTATIONS 20
251 +
252 +  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 +  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 +  // output eigenvalues in w; and output eigenvectors in v. Resulting
255 +  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 +  // normalized.
257 +  template<typename Real, int Dim>
258 +  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 +                                      SquareMatrix<Real, Dim>& v) {
260 +    const int n = Dim;  
261 +    int i, j, k, iq, ip, numPos;
262 +    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 +    Real bspace[4], zspace[4];
264 +    Real *b = bspace;
265 +    Real *z = zspace;
266 +
267 +    // only allocate memory if the matrix is large
268 +    if (n > 4) {
269 +      b = new Real[n];
270 +      z = new Real[n];
271 +    }
272 +
273      // initialize
274 <    for (ip=0; ip<N; ip++)
275 <    {
276 <        for (iq=0; iq<N; iq++) v(ip, iq) = 0.0;
277 <        v(ip, ip) = 1.0;
274 >    for (ip=0; ip<n; ip++) {
275 >      for (iq=0; iq<n; iq++) {
276 >        v(ip, iq) = 0.0;
277 >      }
278 >      v(ip, ip) = 1.0;
279      }
280 <    for (ip=0; ip<N; ip++)
281 <    {
282 <        b(ip) = w(ip) = a(ip, ip);
206 <        z(ip) = 0.0;
280 >    for (ip=0; ip<n; ip++) {
281 >      b[ip] = w[ip] = a(ip, ip);
282 >      z[ip] = 0.0;
283      }
284  
285      // begin rotation sequence
286 <    for (i=0; i<MAX_ROTATIONS; i++)
287 <    {
288 <        sm = 0.0;
289 <        for (ip=0; ip<2; ip++)
290 <        {
215 <            for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq));
286 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
287 >      sm = 0.0;
288 >      for (ip=0; ip<n-1; ip++) {
289 >        for (iq=ip+1; iq<n; iq++) {
290 >          sm += fabs(a(ip, iq));
291          }
292 <        if (sm == 0.0) break;
292 >      }
293 >      if (sm == 0.0) {
294 >        break;
295 >      }
296  
297 <        if (i < 4) tresh = 0.2*sm/(9);
298 <        else tresh = 0.0;
297 >      if (i < 3) {                                // first 3 sweeps
298 >        tresh = 0.2*sm/(n*n);
299 >      } else {
300 >        tresh = 0.0;
301 >      }
302  
303 <        for (ip=0; ip<2; ip++)
304 <        {
305 <            for (iq=ip+1; iq<N; iq++)
306 <            {
307 <                g = 100.0*fabs(a(ip, iq));
308 <                if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
309 <                    && (fabs(w(iq))+g) == fabs(w(iq)))
310 <                {
311 <                    a(ip, iq) = 0.0;
312 <                }
313 <                else if (fabs(a(ip, iq)) > tresh)
314 <                {
315 <                    h = w(iq) - w(ip);
316 <                    if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h;
317 <                    else
318 <                    {
319 <                        theta = 0.5*h / (a(ip, iq));
320 <                        t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
240 <                        if (theta < 0.0) t = -t;
241 <                    }
242 <                    c = 1.0 / sqrt(1+t*t);
243 <                    s = t*c;
244 <                    tau = s/(1.0+c);
245 <                    h = t*a(ip, iq);
246 <                    z(ip) -= h;
247 <                    z(iq) += h;
248 <                    w(ip) -= h;
249 <                    w(iq) += h;
250 <                    a(ip, iq)=0.0;
251 <                    for (j=0;j<ip-1;j++)
252 <                    {
253 <                        ROT(a,j,ip,j,iq);
254 <                    }
255 <                    for (j=ip+1;j<iq-1;j++)
256 <                    {
257 <                        ROT(a,ip,j,j,iq);
258 <                    }
259 <                    for (j=iq+1; j<N; j++)
260 <                    {
261 <                        ROT(a,ip,j,iq,j);
262 <                    }
263 <                    for (j=0; j<N; j++)
264 <                    {
265 <                        ROT(v,j,ip,j,iq);
266 <                    }
267 <                }
303 >      for (ip=0; ip<n-1; ip++) {
304 >        for (iq=ip+1; iq<n; iq++) {
305 >          g = 100.0*fabs(a(ip, iq));
306 >
307 >          // after 4 sweeps
308 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
310 >            a(ip, iq) = 0.0;
311 >          } else if (fabs(a(ip, iq)) > tresh) {
312 >            h = w[iq] - w[ip];
313 >            if ( (fabs(h)+g) == fabs(h)) {
314 >              t = (a(ip, iq)) / h;
315 >            } else {
316 >              theta = 0.5*h / (a(ip, iq));
317 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 >              if (theta < 0.0) {
319 >                t = -t;
320 >              }
321              }
322 <        }
322 >            c = 1.0 / sqrt(1+t*t);
323 >            s = t*c;
324 >            tau = s/(1.0+c);
325 >            h = t*a(ip, iq);
326 >            z[ip] -= h;
327 >            z[iq] += h;
328 >            w[ip] -= h;
329 >            w[iq] += h;
330 >            a(ip, iq)=0.0;
331  
332 <        for (ip=0; ip<N; ip++)
333 <        {
334 <            b(ip) += z(ip);
335 <            w(ip) = b(ip);
336 <            z(ip) = 0.0;
332 >            // ip already shifted left by 1 unit
333 >            for (j = 0;j <= ip-1;j++) {
334 >              VTK_ROTATE(a,j,ip,j,iq);
335 >            }
336 >            // ip and iq already shifted left by 1 unit
337 >            for (j = ip+1;j <= iq-1;j++) {
338 >              VTK_ROTATE(a,ip,j,j,iq);
339 >            }
340 >            // iq already shifted left by 1 unit
341 >            for (j=iq+1; j<n; j++) {
342 >              VTK_ROTATE(a,ip,j,iq,j);
343 >            }
344 >            for (j=0; j<n; j++) {
345 >              VTK_ROTATE(v,j,ip,j,iq);
346 >            }
347 >          }
348          }
349 +      }
350 +
351 +      for (ip=0; ip<n; ip++) {
352 +        b[ip] += z[ip];
353 +        w[ip] = b[ip];
354 +        z[ip] = 0.0;
355 +      }
356      }
357  
358 <    if ( i >= MAX_ROTATIONS )
359 <        return false;
358 >    //// this is NEVER called
359 >    if ( i >= VTK_MAX_ROTATIONS ) {
360 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
361 >      return 0;
362 >    }
363  
364 <    // sort eigenfunctions
365 <    for (j=0; j<N; j++)
366 <    {
367 <        k = j;
368 <        tmp = w(k);
369 <        for (i=j; i<N; i++)
370 <        {
371 <            if (w(i) >= tmp)
290 <            {
291 <                k = i;
292 <                tmp = w(k);
293 <            }
364 >    // sort eigenfunctions                 these changes do not affect accuracy
365 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
366 >      k = j;
367 >      tmp = w[k];
368 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
369 >        if (w[i] >= tmp) {                   // why exchage if same?
370 >          k = i;
371 >          tmp = w[k];
372          }
373 <        if (k != j)
374 <        {
375 <            w(k) = w(j);
376 <            w(j) = tmp;
377 <            for (i=0; i<N; i++)
378 <            {
379 <                tmp = v(i, j);
380 <                v(i, j) = v(i, k);
303 <                v(i, k) = tmp;
304 <            }
373 >      }
374 >      if (k != j) {
375 >        w[k] = w[j];
376 >        w[j] = tmp;
377 >        for (i=0; i<n; i++) {
378 >          tmp = v(i, j);
379 >          v(i, j) = v(i, k);
380 >          v(i, k) = tmp;
381          }
382 +      }
383      }
384 +    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
385 +    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
386 +    // reek havoc in hyperstreamline/other stuff. We will select the most
387 +    // positive eigenvector.
388 +    int ceil_half_n = (n >> 1) + (n & 1);
389 +    for (j=0; j<n; j++) {
390 +      for (numPos=0, i=0; i<n; i++) {
391 +        if ( v(i, j) >= 0.0 ) {
392 +          numPos++;
393 +        }
394 +      }
395 +      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
396 +      if ( numPos < ceil_half_n) {
397 +        for (i=0; i<n; i++) {
398 +          v(i, j) *= -1.0;
399 +        }
400 +      }
401 +    }
402  
403 <    //    insure eigenvector consistency (i.e., Jacobi can compute
404 <    //    vectors that are negative of one another (.707,.707,0) and
405 <    //    (-.707,-.707,0). This can reek havoc in
311 <    //    hyperstreamline/other stuff. We will select the most
312 <    //    positive eigenvector.
313 <    int numPos;
314 <    for (j=0; j<N; j++)
315 <    {
316 <        for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
317 <        if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
403 >    if (n > 4) {
404 >      delete [] b;
405 >      delete [] z;
406      }
407 +    return 1;
408 +  }
409  
320    return true;
321 }
410  
411 < #undef ROT
324 < #undef MAX_ROTATIONS
325 <
411 >  typedef SquareMatrix<RealType, 6> Mat6x6d;
412   }
327
328
329 }
413   #endif //MATH_SQUAREMATRIX_HPP
414 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 76 by tim, Thu Oct 14 23:28:09 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines