ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 74 by tim, Wed Oct 13 23:53:40 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 33 | Line 50
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * \tparam Real the element type
61 >   * \tparam Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
82 <            
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    if (i == j)
74 <                        m(i, j) = 1.0;
75 <                    else
76 <                        m(i, j) = 0.0;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83  
78            return m;
79        }
84  
85 <        /** Retunrs  the inversion of this matrix. */
86 <         SquareMatrix<Real, Dim>  inverse() {
87 <             SquareMatrix<Real, Dim> result;
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88 >            
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <             return result;
98 <        }
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        
107 >      return m;
108 >    }
109  
110 <        /** Returns the determinant of this matrix. */
111 <        double determinant() const {
112 <            double det;
113 <            return det;
114 <        }
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /** Returns the trace of this matrix. */
118 <        double trace() const {
98 <           double tmp = 0;
99 <          
100 <            for (unsigned int i = 0; i < Dim ; i++)
101 <                tmp += data_[i][i];
117 >      return result;
118 >    }        
119  
120 <            return tmp;
121 <        }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128 >    
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <        /** Tests if this matrix is symmetrix. */            
137 <        bool isSymmetric() const {
138 <            for (unsigned int i = 0; i < Dim - 1; i++)
139 <                for (unsigned int j = i; j < Dim; j++)
140 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
141 <                        return false;
142 <                    
143 <            return true;
144 <        }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
116        /** Tests if this matrix is orthogona. */            
117        bool isOrthogonal() {
118            SquareMatrix<Real, Dim> tmp;
157  
158 <            tmp = *this * transpose();
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167  
168 <            return tmp.isUnitMatrix();
169 <        }
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <        /** Tests if this matrix is diagonal. */
126 <        bool isDiagonal() const {
127 <            for (unsigned int i = 0; i < Dim ; i++)
128 <                for (unsigned int j = 0; j < Dim; j++)
129 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
130 <                        return false;
131 <                    
132 <            return true;
133 <        }
134 <
135 <        /** Tests if this matrix is the unit matrix. */
136 <        bool isUnitMatrix() const {
137 <            if (!isDiagonal())
138 <                return false;
139 <            
140 <            for (unsigned int i = 0; i < Dim ; i++)
141 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
142 <                    return false;
143 <                
144 <            return true;
145 <        }        
146 <
147 <    };//end SquareMatrix
172 >      tmp = *this * transpose();
173  
174 +      return tmp.isDiagonal();
175 +    }
176 +
177 +    /** Tests if this matrix is diagonal. */
178 +    bool isDiagonal() const {
179 +      for (unsigned int i = 0; i < Dim ; i++)
180 +        for (unsigned int j = 0; j < Dim; j++)
181 +          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 +            return false;
183 +                        
184 +      return true;
185 +    }
186 +
187 +    /**
188 +     * Returns a column vector that contains the elements from the
189 +     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
190 +     * on.
191 +     */
192 +    Vector<Real, Dim> diagonals() const {
193 +      Vector<Real, Dim> result;
194 +      for (unsigned int i = 0; i < Dim; i++) {
195 +        result(i) = this->data_[i][i];
196 +      }
197 +      return result;
198 +    }
199 +
200 +    /** Tests if this matrix is the unit matrix. */
201 +    bool isUnitMatrix() const {
202 +      if (!isDiagonal())
203 +        return false;
204 +                
205 +      for (unsigned int i = 0; i < Dim ; i++)
206 +        if (fabs(this->data_[i][i] - 1) > epsilon)
207 +          return false;
208 +                    
209 +      return true;
210 +    }        
211 +
212 +    /** Return the transpose of this matrix */
213 +    SquareMatrix<Real,  Dim> transpose() const{
214 +      SquareMatrix<Real,  Dim> result;
215 +                
216 +      for (unsigned int i = 0; i < Dim; i++)
217 +        for (unsigned int j = 0; j < Dim; j++)              
218 +          result(j, i) = this->data_[i][j];
219 +
220 +      return result;
221 +    }
222 +            
223 +    /** @todo need implementation */
224 +    void diagonalize() {
225 +      //jacobi(m, eigenValues, ortMat);
226 +    }
227 +
228 +    /**
229 +     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230 +     * real symmetric matrix
231 +     *
232 +     * @return true if success, otherwise return false
233 +     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234 +     *     overwritten
235 +     * @param d will contain the eigenvalues of the matrix On return of this function
236 +     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237 +     *    normalized and mutually orthogonal.
238 +     */
239 +          
240 +    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241 +                      SquareMatrix<Real, Dim>& v);
242 +  };//end SquareMatrix
243 +
244 +
245 +  /*=========================================================================
246 +
247 +  Program:   Visualization Toolkit
248 +  Module:    $RCSfile: SquareMatrix.hpp,v $
249 +
250 +  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
251 +  All rights reserved.
252 +  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
253 +
254 +  This software is distributed WITHOUT ANY WARRANTY; without even
255 +  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256 +  PURPOSE.  See the above copyright notice for more information.
257 +
258 +  =========================================================================*/
259 +
260 + #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
261 +    a(k, l)=h+s*(g-h*tau)
262 +
263 + #define VTK_MAX_ROTATIONS 20
264 +
265 +  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266 +  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267 +  // output eigenvalues in w; and output eigenvectors in v. Resulting
268 +  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269 +  // normalized.
270 +  template<typename Real, int Dim>
271 +  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272 +                                      SquareMatrix<Real, Dim>& v) {
273 +    const int n = Dim;  
274 +    int i, j, k, iq, ip, numPos;
275 +    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276 +    Real bspace[4], zspace[4];
277 +    Real *b = bspace;
278 +    Real *z = zspace;
279 +
280 +    // only allocate memory if the matrix is large
281 +    if (n > 4) {
282 +      b = new Real[n];
283 +      z = new Real[n];
284 +    }
285 +
286 +    // initialize
287 +    for (ip=0; ip<n; ip++) {
288 +      for (iq=0; iq<n; iq++) {
289 +        v(ip, iq) = 0.0;
290 +      }
291 +      v(ip, ip) = 1.0;
292 +    }
293 +    for (ip=0; ip<n; ip++) {
294 +      b[ip] = w[ip] = a(ip, ip);
295 +      z[ip] = 0.0;
296 +    }
297 +
298 +    // begin rotation sequence
299 +    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
300 +      sm = 0.0;
301 +      for (ip=0; ip<n-1; ip++) {
302 +        for (iq=ip+1; iq<n; iq++) {
303 +          sm += fabs(a(ip, iq));
304 +        }
305 +      }
306 +      if (sm == 0.0) {
307 +        break;
308 +      }
309 +
310 +      if (i < 3) {                                // first 3 sweeps
311 +        tresh = 0.2*sm/(n*n);
312 +      } else {
313 +        tresh = 0.0;
314 +      }
315 +
316 +      for (ip=0; ip<n-1; ip++) {
317 +        for (iq=ip+1; iq<n; iq++) {
318 +          g = 100.0*fabs(a(ip, iq));
319 +
320 +          // after 4 sweeps
321 +          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322 +              && (fabs(w[iq])+g) == fabs(w[iq])) {
323 +            a(ip, iq) = 0.0;
324 +          } else if (fabs(a(ip, iq)) > tresh) {
325 +            h = w[iq] - w[ip];
326 +            if ( (fabs(h)+g) == fabs(h)) {
327 +              t = (a(ip, iq)) / h;
328 +            } else {
329 +              theta = 0.5*h / (a(ip, iq));
330 +              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
331 +              if (theta < 0.0) {
332 +                t = -t;
333 +              }
334 +            }
335 +            c = 1.0 / sqrt(1+t*t);
336 +            s = t*c;
337 +            tau = s/(1.0+c);
338 +            h = t*a(ip, iq);
339 +            z[ip] -= h;
340 +            z[iq] += h;
341 +            w[ip] -= h;
342 +            w[iq] += h;
343 +            a(ip, iq)=0.0;
344 +
345 +            // ip already shifted left by 1 unit
346 +            for (j = 0;j <= ip-1;j++) {
347 +              VTK_ROTATE(a,j,ip,j,iq);
348 +            }
349 +            // ip and iq already shifted left by 1 unit
350 +            for (j = ip+1;j <= iq-1;j++) {
351 +              VTK_ROTATE(a,ip,j,j,iq);
352 +            }
353 +            // iq already shifted left by 1 unit
354 +            for (j=iq+1; j<n; j++) {
355 +              VTK_ROTATE(a,ip,j,iq,j);
356 +            }
357 +            for (j=0; j<n; j++) {
358 +              VTK_ROTATE(v,j,ip,j,iq);
359 +            }
360 +          }
361 +        }
362 +      }
363 +
364 +      for (ip=0; ip<n; ip++) {
365 +        b[ip] += z[ip];
366 +        w[ip] = b[ip];
367 +        z[ip] = 0.0;
368 +      }
369 +    }
370 +
371 +    //// this is NEVER called
372 +    if ( i >= VTK_MAX_ROTATIONS ) {
373 +      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
374 +      if (n > 4) {
375 +        delete[] b;
376 +        delete[] z;
377 +      }      
378 +      return 0;
379 +    }
380 +
381 +    // sort eigenfunctions                 these changes do not affect accuracy
382 +    for (j=0; j<n-1; j++) {                  // boundary incorrect
383 +      k = j;
384 +      tmp = w[k];
385 +      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
386 +        if (w[i] >= tmp) {                   // why exchage if same?
387 +          k = i;
388 +          tmp = w[k];
389 +        }
390 +      }
391 +      if (k != j) {
392 +        w[k] = w[j];
393 +        w[j] = tmp;
394 +        for (i=0; i<n; i++) {
395 +          tmp = v(i, j);
396 +          v(i, j) = v(i, k);
397 +          v(i, k) = tmp;
398 +        }
399 +      }
400 +    }
401 +    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
402 +    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
403 +    // reek havoc in hyperstreamline/other stuff. We will select the most
404 +    // positive eigenvector.
405 +    int ceil_half_n = (n >> 1) + (n & 1);
406 +    for (j=0; j<n; j++) {
407 +      for (numPos=0, i=0; i<n; i++) {
408 +        if ( v(i, j) >= 0.0 ) {
409 +          numPos++;
410 +        }
411 +      }
412 +      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
413 +      if ( numPos < ceil_half_n) {
414 +        for (i=0; i<n; i++) {
415 +          v(i, j) *= -1.0;
416 +        }
417 +      }
418 +    }
419 +
420 +    if (n > 4) {
421 +      delete [] b;
422 +      delete [] z;
423 +    }
424 +    return 1;
425 +  }
426 +
427 +
428 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
429   }
430   #endif //MATH_SQUAREMATRIX_HPP
431 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 74 by tim, Wed Oct 13 23:53:40 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines