1 |
|
/* |
2 |
< |
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
< |
* |
4 |
< |
* Contact: oopse@oopse.org |
5 |
< |
* |
6 |
< |
* This program is free software; you can redistribute it and/or |
7 |
< |
* modify it under the terms of the GNU Lesser General Public License |
8 |
< |
* as published by the Free Software Foundation; either version 2.1 |
9 |
< |
* of the License, or (at your option) any later version. |
10 |
< |
* All we ask is that proper credit is given for our work, which includes |
11 |
< |
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
< |
* of your source code files, and to any copyright notice that you may distribute |
13 |
< |
* with programs based on this work. |
14 |
< |
* |
15 |
< |
* This program is distributed in the hope that it will be useful, |
16 |
< |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
< |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
< |
* GNU Lesser General Public License for more details. |
19 |
< |
* |
20 |
< |
* You should have received a copy of the GNU Lesser General Public License |
21 |
< |
* along with this program; if not, write to the Free Software |
22 |
< |
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
< |
|
42 |
> |
|
43 |
|
/** |
44 |
|
* @file SquareMatrix.hpp |
45 |
|
* @author Teng Lin |
46 |
|
* @date 10/11/2004 |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
< |
#ifndef MATH_SQUAREMATRIX_HPP |
49 |
> |
#ifndef MATH_SQUAREMATRIX_HPP |
50 |
|
#define MATH_SQUAREMATRIX_HPP |
51 |
|
|
52 |
|
#include "math/RectMatrix.hpp" |
53 |
+ |
#include "utils/NumericConstant.hpp" |
54 |
|
|
55 |
< |
namespace oopse { |
55 |
> |
namespace OpenMD { |
56 |
|
|
57 |
< |
/** |
58 |
< |
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
< |
* @brief A square matrix class |
60 |
< |
* @template Real the element type |
61 |
< |
* @template Dim the dimension of the square matrix |
62 |
< |
*/ |
63 |
< |
template<typename Real, int Dim> |
64 |
< |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
65 |
< |
public: |
66 |
< |
typedef Real ElemType; |
67 |
< |
typedef Real* ElemPoinerType; |
57 |
> |
/** |
58 |
> |
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
> |
* @brief A square matrix class |
60 |
> |
* \tparam Real the element type |
61 |
> |
* \tparam Dim the dimension of the square matrix |
62 |
> |
*/ |
63 |
> |
template<typename Real, int Dim> |
64 |
> |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
65 |
> |
public: |
66 |
> |
typedef Real ElemType; |
67 |
> |
typedef Real* ElemPoinerType; |
68 |
|
|
69 |
< |
/** default constructor */ |
70 |
< |
SquareMatrix() { |
71 |
< |
for (unsigned int i = 0; i < Dim; i++) |
72 |
< |
for (unsigned int j = 0; j < Dim; j++) |
73 |
< |
data_[i][j] = 0.0; |
74 |
< |
} |
69 |
> |
/** default constructor */ |
70 |
> |
SquareMatrix() { |
71 |
> |
for (unsigned int i = 0; i < Dim; i++) |
72 |
> |
for (unsigned int j = 0; j < Dim; j++) |
73 |
> |
this->data_[i][j] = 0.0; |
74 |
> |
} |
75 |
|
|
76 |
< |
/** copy constructor */ |
77 |
< |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
78 |
< |
} |
76 |
> |
/** Constructs and initializes every element of this matrix to a scalar */ |
77 |
> |
SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ |
78 |
> |
} |
79 |
> |
|
80 |
> |
/** Constructs and initializes from an array */ |
81 |
> |
SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ |
82 |
> |
} |
83 |
> |
|
84 |
> |
|
85 |
> |
/** copy constructor */ |
86 |
> |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
87 |
> |
} |
88 |
|
|
89 |
< |
/** copy assignment operator */ |
90 |
< |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
91 |
< |
RectMatrix<Real, Dim, Dim>::operator=(m); |
92 |
< |
return *this; |
93 |
< |
} |
89 |
> |
/** copy assignment operator */ |
90 |
> |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
91 |
> |
RectMatrix<Real, Dim, Dim>::operator=(m); |
92 |
> |
return *this; |
93 |
> |
} |
94 |
|
|
95 |
< |
/** Retunrs an identity matrix*/ |
95 |
> |
/** Retunrs an identity matrix*/ |
96 |
|
|
97 |
< |
static SquareMatrix<Real, Dim> identity() { |
98 |
< |
SquareMatrix<Real, Dim> m; |
97 |
> |
static SquareMatrix<Real, Dim> identity() { |
98 |
> |
SquareMatrix<Real, Dim> m; |
99 |
|
|
100 |
< |
for (unsigned int i = 0; i < Dim; i++) |
101 |
< |
for (unsigned int j = 0; j < Dim; j++) |
102 |
< |
if (i == j) |
103 |
< |
m(i, j) = 1.0; |
104 |
< |
else |
105 |
< |
m(i, j) = 0.0; |
100 |
> |
for (unsigned int i = 0; i < Dim; i++) |
101 |
> |
for (unsigned int j = 0; j < Dim; j++) |
102 |
> |
if (i == j) |
103 |
> |
m(i, j) = 1.0; |
104 |
> |
else |
105 |
> |
m(i, j) = 0.0; |
106 |
|
|
107 |
< |
return m; |
108 |
< |
} |
107 |
> |
return m; |
108 |
> |
} |
109 |
|
|
110 |
< |
/** |
111 |
< |
* Retunrs the inversion of this matrix. |
112 |
< |
* @todo need implementation |
113 |
< |
*/ |
114 |
< |
SquareMatrix<Real, Dim> inverse() { |
115 |
< |
SquareMatrix<Real, Dim> result; |
110 |
> |
/** |
111 |
> |
* Retunrs the inversion of this matrix. |
112 |
> |
* @todo need implementation |
113 |
> |
*/ |
114 |
> |
SquareMatrix<Real, Dim> inverse() { |
115 |
> |
SquareMatrix<Real, Dim> result; |
116 |
|
|
117 |
< |
return result; |
118 |
< |
} |
117 |
> |
return result; |
118 |
> |
} |
119 |
|
|
120 |
< |
/** |
121 |
< |
* Returns the determinant of this matrix. |
122 |
< |
* @todo need implementation |
123 |
< |
*/ |
124 |
< |
Real determinant() const { |
125 |
< |
Real det; |
126 |
< |
return det; |
127 |
< |
} |
128 |
< |
|
129 |
< |
/** Returns the trace of this matrix. */ |
130 |
< |
Real trace() const { |
131 |
< |
Real tmp = 0; |
120 |
> |
/** |
121 |
> |
* Returns the determinant of this matrix. |
122 |
> |
* @todo need implementation |
123 |
> |
*/ |
124 |
> |
Real determinant() const { |
125 |
> |
Real det; |
126 |
> |
return det; |
127 |
> |
} |
128 |
> |
|
129 |
> |
/** Returns the trace of this matrix. */ |
130 |
> |
Real trace() const { |
131 |
> |
Real tmp = 0; |
132 |
|
|
133 |
< |
for (unsigned int i = 0; i < Dim ; i++) |
134 |
< |
tmp += data_[i][i]; |
133 |
> |
for (unsigned int i = 0; i < Dim ; i++) |
134 |
> |
tmp += this->data_[i][i]; |
135 |
|
|
136 |
< |
return tmp; |
137 |
< |
} |
136 |
> |
return tmp; |
137 |
> |
} |
138 |
> |
|
139 |
> |
/** |
140 |
> |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
> |
* tensors (or Matrices) |
142 |
> |
* @param t1 first tensor |
143 |
> |
* @param t2 second tensor |
144 |
> |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
> |
*/ |
146 |
> |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
> |
Real tmp; |
148 |
> |
tmp = 0; |
149 |
> |
|
150 |
> |
for (unsigned int i = 0; i < Dim; i++) |
151 |
> |
for (unsigned int j =0; j < Dim; j++) |
152 |
> |
tmp += t1[i][j] * t2[i][j]; |
153 |
> |
|
154 |
> |
return tmp; |
155 |
> |
} |
156 |
|
|
157 |
< |
/** Tests if this matrix is symmetrix. */ |
158 |
< |
bool isSymmetric() const { |
159 |
< |
for (unsigned int i = 0; i < Dim - 1; i++) |
160 |
< |
for (unsigned int j = i; j < Dim; j++) |
161 |
< |
if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) |
162 |
< |
return false; |
157 |
> |
|
158 |
> |
/** Tests if this matrix is symmetrix. */ |
159 |
> |
bool isSymmetric() const { |
160 |
> |
for (unsigned int i = 0; i < Dim - 1; i++) |
161 |
> |
for (unsigned int j = i; j < Dim; j++) |
162 |
> |
if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon) |
163 |
> |
return false; |
164 |
|
|
165 |
< |
return true; |
166 |
< |
} |
165 |
> |
return true; |
166 |
> |
} |
167 |
|
|
168 |
< |
/** Tests if this matrix is orthogonal. */ |
169 |
< |
bool isOrthogonal() { |
170 |
< |
SquareMatrix<Real, Dim> tmp; |
168 |
> |
/** Tests if this matrix is orthogonal. */ |
169 |
> |
bool isOrthogonal() { |
170 |
> |
SquareMatrix<Real, Dim> tmp; |
171 |
|
|
172 |
< |
tmp = *this * transpose(); |
172 |
> |
tmp = *this * transpose(); |
173 |
|
|
174 |
< |
return tmp.isDiagonal(); |
175 |
< |
} |
174 |
> |
return tmp.isDiagonal(); |
175 |
> |
} |
176 |
|
|
177 |
< |
/** Tests if this matrix is diagonal. */ |
178 |
< |
bool isDiagonal() const { |
179 |
< |
for (unsigned int i = 0; i < Dim ; i++) |
180 |
< |
for (unsigned int j = 0; j < Dim; j++) |
181 |
< |
if (i !=j && fabs(data_[i][j]) > oopse::epsilon) |
182 |
< |
return false; |
177 |
> |
/** Tests if this matrix is diagonal. */ |
178 |
> |
bool isDiagonal() const { |
179 |
> |
for (unsigned int i = 0; i < Dim ; i++) |
180 |
> |
for (unsigned int j = 0; j < Dim; j++) |
181 |
> |
if (i !=j && fabs(this->data_[i][j]) > epsilon) |
182 |
> |
return false; |
183 |
|
|
184 |
< |
return true; |
185 |
< |
} |
184 |
> |
return true; |
185 |
> |
} |
186 |
|
|
187 |
< |
/** Tests if this matrix is the unit matrix. */ |
188 |
< |
bool isUnitMatrix() const { |
189 |
< |
if (!isDiagonal()) |
190 |
< |
return false; |
187 |
> |
/** |
188 |
> |
* Returns a column vector that contains the elements from the |
189 |
> |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
190 |
> |
* on. |
191 |
> |
*/ |
192 |
> |
Vector<Real, Dim> diagonals() const { |
193 |
> |
Vector<Real, Dim> result; |
194 |
> |
for (unsigned int i = 0; i < Dim; i++) { |
195 |
> |
result(i) = this->data_[i][i]; |
196 |
> |
} |
197 |
> |
return result; |
198 |
> |
} |
199 |
> |
|
200 |
> |
/** Tests if this matrix is the unit matrix. */ |
201 |
> |
bool isUnitMatrix() const { |
202 |
> |
if (!isDiagonal()) |
203 |
> |
return false; |
204 |
|
|
205 |
< |
for (unsigned int i = 0; i < Dim ; i++) |
206 |
< |
if (fabs(data_[i][i] - 1) > oopse::epsilon) |
207 |
< |
return false; |
205 |
> |
for (unsigned int i = 0; i < Dim ; i++) |
206 |
> |
if (fabs(this->data_[i][i] - 1) > epsilon) |
207 |
> |
return false; |
208 |
|
|
209 |
< |
return true; |
210 |
< |
} |
209 |
> |
return true; |
210 |
> |
} |
211 |
|
|
212 |
< |
/** @todo need implementation */ |
213 |
< |
void diagonalize() { |
214 |
< |
//jacobi(m, eigenValues, ortMat); |
215 |
< |
} |
212 |
> |
/** Return the transpose of this matrix */ |
213 |
> |
SquareMatrix<Real, Dim> transpose() const{ |
214 |
> |
SquareMatrix<Real, Dim> result; |
215 |
> |
|
216 |
> |
for (unsigned int i = 0; i < Dim; i++) |
217 |
> |
for (unsigned int j = 0; j < Dim; j++) |
218 |
> |
result(j, i) = this->data_[i][j]; |
219 |
|
|
220 |
< |
/** |
221 |
< |
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
222 |
< |
* real symmetric matrix |
223 |
< |
* |
224 |
< |
* @return true if success, otherwise return false |
225 |
< |
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
226 |
< |
* overwritten |
227 |
< |
* @param w will contain the eigenvalues of the matrix On return of this function |
228 |
< |
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
229 |
< |
* normalized and mutually orthogonal. |
230 |
< |
*/ |
220 |
> |
return result; |
221 |
> |
} |
222 |
> |
|
223 |
> |
/** @todo need implementation */ |
224 |
> |
void diagonalize() { |
225 |
> |
//jacobi(m, eigenValues, ortMat); |
226 |
> |
} |
227 |
> |
|
228 |
> |
/** |
229 |
> |
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
230 |
> |
* real symmetric matrix |
231 |
> |
* |
232 |
> |
* @return true if success, otherwise return false |
233 |
> |
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
234 |
> |
* overwritten |
235 |
> |
* @param d will contain the eigenvalues of the matrix On return of this function |
236 |
> |
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
237 |
> |
* normalized and mutually orthogonal. |
238 |
> |
*/ |
239 |
|
|
240 |
< |
static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
241 |
< |
SquareMatrix<Real, Dim>& v); |
242 |
< |
};//end SquareMatrix |
240 |
> |
static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
241 |
> |
SquareMatrix<Real, Dim>& v); |
242 |
> |
};//end SquareMatrix |
243 |
|
|
244 |
|
|
245 |
< |
/*========================================================================= |
245 |
> |
/*========================================================================= |
246 |
|
|
247 |
|
Program: Visualization Toolkit |
248 |
|
Module: $RCSfile: SquareMatrix.hpp,v $ |
251 |
|
All rights reserved. |
252 |
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
253 |
|
|
254 |
< |
This software is distributed WITHOUT ANY WARRANTY; without even |
255 |
< |
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
256 |
< |
PURPOSE. See the above copyright notice for more information. |
254 |
> |
This software is distributed WITHOUT ANY WARRANTY; without even |
255 |
> |
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
256 |
> |
PURPOSE. See the above copyright notice for more information. |
257 |
|
|
258 |
< |
=========================================================================*/ |
258 |
> |
=========================================================================*/ |
259 |
|
|
260 |
< |
#define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ |
261 |
< |
a(k, l)=h+s*(g-h*tau) |
260 |
> |
#define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \ |
261 |
> |
a(k, l)=h+s*(g-h*tau) |
262 |
|
|
263 |
|
#define VTK_MAX_ROTATIONS 20 |
264 |
|
|
265 |
< |
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
266 |
< |
// real symmetric matrix. Square nxn matrix a; size of matrix in n; |
267 |
< |
// output eigenvalues in w; and output eigenvectors in v. Resulting |
268 |
< |
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
269 |
< |
// normalized. |
270 |
< |
template<typename Real, int Dim> |
271 |
< |
int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
272 |
< |
SquareMatrix<Real, Dim>& v) { |
273 |
< |
const int n = Dim; |
274 |
< |
int i, j, k, iq, ip, numPos; |
275 |
< |
Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
276 |
< |
Real bspace[4], zspace[4]; |
277 |
< |
Real *b = bspace; |
278 |
< |
Real *z = zspace; |
265 |
> |
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
266 |
> |
// real symmetric matrix. Square nxn matrix a; size of matrix in n; |
267 |
> |
// output eigenvalues in w; and output eigenvectors in v. Resulting |
268 |
> |
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
269 |
> |
// normalized. |
270 |
> |
template<typename Real, int Dim> |
271 |
> |
int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
272 |
> |
SquareMatrix<Real, Dim>& v) { |
273 |
> |
const int n = Dim; |
274 |
> |
int i, j, k, iq, ip, numPos; |
275 |
> |
Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
276 |
> |
Real bspace[4], zspace[4]; |
277 |
> |
Real *b = bspace; |
278 |
> |
Real *z = zspace; |
279 |
|
|
280 |
< |
// only allocate memory if the matrix is large |
281 |
< |
if (n > 4) { |
282 |
< |
b = new Real[n]; |
283 |
< |
z = new Real[n]; |
284 |
< |
} |
280 |
> |
// only allocate memory if the matrix is large |
281 |
> |
if (n > 4) { |
282 |
> |
b = new Real[n]; |
283 |
> |
z = new Real[n]; |
284 |
> |
} |
285 |
|
|
286 |
< |
// initialize |
287 |
< |
for (ip=0; ip<n; ip++) { |
288 |
< |
for (iq=0; iq<n; iq++) { |
289 |
< |
v(ip, iq) = 0.0; |
290 |
< |
} |
291 |
< |
v(ip, ip) = 1.0; |
292 |
< |
} |
293 |
< |
for (ip=0; ip<n; ip++) { |
294 |
< |
b[ip] = w[ip] = a(ip, ip); |
295 |
< |
z[ip] = 0.0; |
296 |
< |
} |
286 |
> |
// initialize |
287 |
> |
for (ip=0; ip<n; ip++) { |
288 |
> |
for (iq=0; iq<n; iq++) { |
289 |
> |
v(ip, iq) = 0.0; |
290 |
> |
} |
291 |
> |
v(ip, ip) = 1.0; |
292 |
> |
} |
293 |
> |
for (ip=0; ip<n; ip++) { |
294 |
> |
b[ip] = w[ip] = a(ip, ip); |
295 |
> |
z[ip] = 0.0; |
296 |
> |
} |
297 |
|
|
298 |
< |
// begin rotation sequence |
299 |
< |
for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
300 |
< |
sm = 0.0; |
301 |
< |
for (ip=0; ip<n-1; ip++) { |
302 |
< |
for (iq=ip+1; iq<n; iq++) { |
303 |
< |
sm += fabs(a(ip, iq)); |
304 |
< |
} |
305 |
< |
} |
306 |
< |
if (sm == 0.0) { |
307 |
< |
break; |
308 |
< |
} |
298 |
> |
// begin rotation sequence |
299 |
> |
for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
300 |
> |
sm = 0.0; |
301 |
> |
for (ip=0; ip<n-1; ip++) { |
302 |
> |
for (iq=ip+1; iq<n; iq++) { |
303 |
> |
sm += fabs(a(ip, iq)); |
304 |
> |
} |
305 |
> |
} |
306 |
> |
if (sm == 0.0) { |
307 |
> |
break; |
308 |
> |
} |
309 |
|
|
310 |
< |
if (i < 3) { // first 3 sweeps |
311 |
< |
tresh = 0.2*sm/(n*n); |
312 |
< |
} else { |
313 |
< |
tresh = 0.0; |
314 |
< |
} |
310 |
> |
if (i < 3) { // first 3 sweeps |
311 |
> |
tresh = 0.2*sm/(n*n); |
312 |
> |
} else { |
313 |
> |
tresh = 0.0; |
314 |
> |
} |
315 |
|
|
316 |
< |
for (ip=0; ip<n-1; ip++) { |
317 |
< |
for (iq=ip+1; iq<n; iq++) { |
318 |
< |
g = 100.0*fabs(a(ip, iq)); |
316 |
> |
for (ip=0; ip<n-1; ip++) { |
317 |
> |
for (iq=ip+1; iq<n; iq++) { |
318 |
> |
g = 100.0*fabs(a(ip, iq)); |
319 |
|
|
320 |
< |
// after 4 sweeps |
321 |
< |
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
322 |
< |
&& (fabs(w[iq])+g) == fabs(w[iq])) { |
323 |
< |
a(ip, iq) = 0.0; |
324 |
< |
} else if (fabs(a(ip, iq)) > tresh) { |
325 |
< |
h = w[iq] - w[ip]; |
326 |
< |
if ( (fabs(h)+g) == fabs(h)) { |
327 |
< |
t = (a(ip, iq)) / h; |
328 |
< |
} else { |
329 |
< |
theta = 0.5*h / (a(ip, iq)); |
330 |
< |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
331 |
< |
if (theta < 0.0) { |
332 |
< |
t = -t; |
333 |
< |
} |
334 |
< |
} |
335 |
< |
c = 1.0 / sqrt(1+t*t); |
336 |
< |
s = t*c; |
337 |
< |
tau = s/(1.0+c); |
338 |
< |
h = t*a(ip, iq); |
339 |
< |
z[ip] -= h; |
340 |
< |
z[iq] += h; |
341 |
< |
w[ip] -= h; |
342 |
< |
w[iq] += h; |
343 |
< |
a(ip, iq)=0.0; |
320 |
> |
// after 4 sweeps |
321 |
> |
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
322 |
> |
&& (fabs(w[iq])+g) == fabs(w[iq])) { |
323 |
> |
a(ip, iq) = 0.0; |
324 |
> |
} else if (fabs(a(ip, iq)) > tresh) { |
325 |
> |
h = w[iq] - w[ip]; |
326 |
> |
if ( (fabs(h)+g) == fabs(h)) { |
327 |
> |
t = (a(ip, iq)) / h; |
328 |
> |
} else { |
329 |
> |
theta = 0.5*h / (a(ip, iq)); |
330 |
> |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
331 |
> |
if (theta < 0.0) { |
332 |
> |
t = -t; |
333 |
> |
} |
334 |
> |
} |
335 |
> |
c = 1.0 / sqrt(1+t*t); |
336 |
> |
s = t*c; |
337 |
> |
tau = s/(1.0+c); |
338 |
> |
h = t*a(ip, iq); |
339 |
> |
z[ip] -= h; |
340 |
> |
z[iq] += h; |
341 |
> |
w[ip] -= h; |
342 |
> |
w[iq] += h; |
343 |
> |
a(ip, iq)=0.0; |
344 |
|
|
345 |
< |
// ip already shifted left by 1 unit |
346 |
< |
for (j = 0;j <= ip-1;j++) { |
347 |
< |
VTK_ROTATE(a,j,ip,j,iq); |
348 |
< |
} |
349 |
< |
// ip and iq already shifted left by 1 unit |
350 |
< |
for (j = ip+1;j <= iq-1;j++) { |
351 |
< |
VTK_ROTATE(a,ip,j,j,iq); |
352 |
< |
} |
353 |
< |
// iq already shifted left by 1 unit |
354 |
< |
for (j=iq+1; j<n; j++) { |
355 |
< |
VTK_ROTATE(a,ip,j,iq,j); |
356 |
< |
} |
357 |
< |
for (j=0; j<n; j++) { |
358 |
< |
VTK_ROTATE(v,j,ip,j,iq); |
359 |
< |
} |
360 |
< |
} |
361 |
< |
} |
362 |
< |
} |
345 |
> |
// ip already shifted left by 1 unit |
346 |
> |
for (j = 0;j <= ip-1;j++) { |
347 |
> |
VTK_ROTATE(a,j,ip,j,iq); |
348 |
> |
} |
349 |
> |
// ip and iq already shifted left by 1 unit |
350 |
> |
for (j = ip+1;j <= iq-1;j++) { |
351 |
> |
VTK_ROTATE(a,ip,j,j,iq); |
352 |
> |
} |
353 |
> |
// iq already shifted left by 1 unit |
354 |
> |
for (j=iq+1; j<n; j++) { |
355 |
> |
VTK_ROTATE(a,ip,j,iq,j); |
356 |
> |
} |
357 |
> |
for (j=0; j<n; j++) { |
358 |
> |
VTK_ROTATE(v,j,ip,j,iq); |
359 |
> |
} |
360 |
> |
} |
361 |
> |
} |
362 |
> |
} |
363 |
|
|
364 |
< |
for (ip=0; ip<n; ip++) { |
365 |
< |
b[ip] += z[ip]; |
366 |
< |
w[ip] = b[ip]; |
367 |
< |
z[ip] = 0.0; |
368 |
< |
} |
369 |
< |
} |
364 |
> |
for (ip=0; ip<n; ip++) { |
365 |
> |
b[ip] += z[ip]; |
366 |
> |
w[ip] = b[ip]; |
367 |
> |
z[ip] = 0.0; |
368 |
> |
} |
369 |
> |
} |
370 |
|
|
371 |
< |
//// this is NEVER called |
372 |
< |
if ( i >= VTK_MAX_ROTATIONS ) { |
373 |
< |
std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
374 |
< |
return 0; |
375 |
< |
} |
371 |
> |
//// this is NEVER called |
372 |
> |
if ( i >= VTK_MAX_ROTATIONS ) { |
373 |
> |
std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
374 |
> |
if (n > 4) { |
375 |
> |
delete[] b; |
376 |
> |
delete[] z; |
377 |
> |
} |
378 |
> |
return 0; |
379 |
> |
} |
380 |
|
|
381 |
< |
// sort eigenfunctions these changes do not affect accuracy |
382 |
< |
for (j=0; j<n-1; j++) { // boundary incorrect |
383 |
< |
k = j; |
384 |
< |
tmp = w[k]; |
385 |
< |
for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
386 |
< |
if (w[i] >= tmp) { // why exchage if same? |
387 |
< |
k = i; |
388 |
< |
tmp = w[k]; |
389 |
< |
} |
390 |
< |
} |
391 |
< |
if (k != j) { |
392 |
< |
w[k] = w[j]; |
393 |
< |
w[j] = tmp; |
394 |
< |
for (i=0; i<n; i++) { |
395 |
< |
tmp = v(i, j); |
396 |
< |
v(i, j) = v(i, k); |
397 |
< |
v(i, k) = tmp; |
398 |
< |
} |
399 |
< |
} |
400 |
< |
} |
401 |
< |
// insure eigenvector consistency (i.e., Jacobi can compute vectors that |
402 |
< |
// are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
403 |
< |
// reek havoc in hyperstreamline/other stuff. We will select the most |
404 |
< |
// positive eigenvector. |
405 |
< |
int ceil_half_n = (n >> 1) + (n & 1); |
406 |
< |
for (j=0; j<n; j++) { |
407 |
< |
for (numPos=0, i=0; i<n; i++) { |
408 |
< |
if ( v(i, j) >= 0.0 ) { |
409 |
< |
numPos++; |
410 |
< |
} |
411 |
< |
} |
412 |
< |
// if ( numPos < ceil(double(n)/double(2.0)) ) |
413 |
< |
if ( numPos < ceil_half_n) { |
414 |
< |
for (i=0; i<n; i++) { |
415 |
< |
v(i, j) *= -1.0; |
416 |
< |
} |
417 |
< |
} |
418 |
< |
} |
381 |
> |
// sort eigenfunctions these changes do not affect accuracy |
382 |
> |
for (j=0; j<n-1; j++) { // boundary incorrect |
383 |
> |
k = j; |
384 |
> |
tmp = w[k]; |
385 |
> |
for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
386 |
> |
if (w[i] >= tmp) { // why exchage if same? |
387 |
> |
k = i; |
388 |
> |
tmp = w[k]; |
389 |
> |
} |
390 |
> |
} |
391 |
> |
if (k != j) { |
392 |
> |
w[k] = w[j]; |
393 |
> |
w[j] = tmp; |
394 |
> |
for (i=0; i<n; i++) { |
395 |
> |
tmp = v(i, j); |
396 |
> |
v(i, j) = v(i, k); |
397 |
> |
v(i, k) = tmp; |
398 |
> |
} |
399 |
> |
} |
400 |
> |
} |
401 |
> |
// insure eigenvector consistency (i.e., Jacobi can compute vectors that |
402 |
> |
// are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
403 |
> |
// reek havoc in hyperstreamline/other stuff. We will select the most |
404 |
> |
// positive eigenvector. |
405 |
> |
int ceil_half_n = (n >> 1) + (n & 1); |
406 |
> |
for (j=0; j<n; j++) { |
407 |
> |
for (numPos=0, i=0; i<n; i++) { |
408 |
> |
if ( v(i, j) >= 0.0 ) { |
409 |
> |
numPos++; |
410 |
> |
} |
411 |
> |
} |
412 |
> |
// if ( numPos < ceil(RealType(n)/RealType(2.0)) ) |
413 |
> |
if ( numPos < ceil_half_n) { |
414 |
> |
for (i=0; i<n; i++) { |
415 |
> |
v(i, j) *= -1.0; |
416 |
> |
} |
417 |
> |
} |
418 |
> |
} |
419 |
|
|
420 |
< |
if (n > 4) { |
421 |
< |
delete [] b; |
422 |
< |
delete [] z; |
349 |
< |
} |
350 |
< |
return 1; |
420 |
> |
if (n > 4) { |
421 |
> |
delete [] b; |
422 |
> |
delete [] z; |
423 |
|
} |
424 |
+ |
return 1; |
425 |
+ |
} |
426 |
|
|
427 |
|
|
428 |
+ |
typedef SquareMatrix<RealType, 6> Mat6x6d; |
429 |
|
} |
430 |
|
#endif //MATH_SQUAREMATRIX_HPP |
431 |
|
|