ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 137 by tim, Thu Oct 21 21:31:39 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
66 <            typedef Real ElemType;
67 <            typedef Real* ElemPoinerType;
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <            /** default constructor */
70 <            SquareMatrix() {
71 <                for (unsigned int i = 0; i < Dim; i++)
72 <                    for (unsigned int j = 0; j < Dim; j++)
73 <                        data_[i][j] = 0.0;
74 <             }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <            /** copy constructor */
77 <            SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
78 <            }
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79 >
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            /** copy assignment operator */
90 <            SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 <                RectMatrix<Real, Dim, Dim>::operator=(m);
92 <                return *this;
93 <            }
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94                                    
95 <            /** Retunrs  an identity matrix*/
95 >    /** Retunrs  an identity matrix*/
96  
97 <           static SquareMatrix<Real, Dim> identity() {
98 <                SquareMatrix<Real, Dim> m;
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99                  
100 <                for (unsigned int i = 0; i < Dim; i++)
101 <                    for (unsigned int j = 0; j < Dim; j++)
102 <                        if (i == j)
103 <                            m(i, j) = 1.0;
104 <                        else
105 <                            m(i, j) = 0.0;
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <                return m;
108 <            }
107 >      return m;
108 >    }
109  
110 <            /**
111 <             * Retunrs  the inversion of this matrix.
112 <             * @todo need implementation
113 <             */
114 <             SquareMatrix<Real, Dim>  inverse() {
115 <                 SquareMatrix<Real, Dim> result;
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <                 return result;
118 <            }        
117 >      return result;
118 >    }        
119  
120 <            /**
121 <             * Returns the determinant of this matrix.
122 <             * @todo need implementation
123 <             */
124 <            Real determinant() const {
125 <                Real det;
126 <                return det;
127 <            }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            /** Returns the trace of this matrix. */
130 <            Real trace() const {
131 <               Real tmp = 0;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132                
133 <                for (unsigned int i = 0; i < Dim ; i++)
134 <                    tmp += data_[i][i];
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <                return tmp;
137 <            }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
157 <            /** Tests if this matrix is symmetrix. */            
158 <            bool isSymmetric() const {
159 <                for (unsigned int i = 0; i < Dim - 1; i++)
160 <                    for (unsigned int j = i; j < Dim; j++)
161 <                        if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
162 <                            return false;
157 >
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164                          
165 <                return true;
166 <            }
165 >      return true;
166 >    }
167  
168 <            /** Tests if this matrix is orthogonal. */            
169 <            bool isOrthogonal() {
170 <                SquareMatrix<Real, Dim> tmp;
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <                tmp = *this * transpose();
172 >      tmp = *this * transpose();
173  
174 <                return tmp.isDiagonal();
175 <            }
174 >      return tmp.isDiagonal();
175 >    }
176  
177 <            /** Tests if this matrix is diagonal. */
178 <            bool isDiagonal() const {
179 <                for (unsigned int i = 0; i < Dim ; i++)
180 <                    for (unsigned int j = 0; j < Dim; j++)
181 <                        if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
182 <                            return false;
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183                          
184 <                return true;
185 <            }
184 >      return true;
185 >    }
186  
187 <            /** Tests if this matrix is the unit matrix. */
188 <            bool isUnitMatrix() const {
189 <                if (!isDiagonal())
190 <                    return false;
187 >    /** Tests if this matrix is the unit matrix. */
188 >    bool isUnitMatrix() const {
189 >      if (!isDiagonal())
190 >        return false;
191                  
192 <                for (unsigned int i = 0; i < Dim ; i++)
193 <                    if (fabs(data_[i][i] - 1) > oopse::epsilon)
194 <                        return false;
192 >      for (unsigned int i = 0; i < Dim ; i++)
193 >        if (fabs(this->data_[i][i] - 1) > epsilon)
194 >          return false;
195                      
196 <                return true;
197 <            }        
196 >      return true;
197 >    }        
198  
199 <            /** @todo need implementation */
200 <            void diagonalize() {
201 <                //jacobi(m, eigenValues, ortMat);
202 <            }
199 >    /** Return the transpose of this matrix */
200 >    SquareMatrix<Real,  Dim> transpose() const{
201 >      SquareMatrix<Real,  Dim> result;
202 >                
203 >      for (unsigned int i = 0; i < Dim; i++)
204 >        for (unsigned int j = 0; j < Dim; j++)              
205 >          result(j, i) = this->data_[i][j];
206  
207 <            /**
208 <             * Jacobi iteration routines for computing eigenvalues/eigenvectors of
209 <             * real symmetric matrix
210 <             *
211 <             * @return true if success, otherwise return false
212 <             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
213 <             *     overwritten
214 <             * @param w will contain the eigenvalues of the matrix On return of this function
215 <             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
216 <             *    normalized and mutually orthogonal.
217 <             */
207 >      return result;
208 >    }
209 >            
210 >    /** @todo need implementation */
211 >    void diagonalize() {
212 >      //jacobi(m, eigenValues, ortMat);
213 >    }
214 >
215 >    /**
216 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
217 >     * real symmetric matrix
218 >     *
219 >     * @return true if success, otherwise return false
220 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
221 >     *     overwritten
222 >     * @param w will contain the eigenvalues of the matrix On return of this function
223 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
224 >     *    normalized and mutually orthogonal.
225 >     */
226            
227 <            static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 <                                  SquareMatrix<Real, Dim>& v);
229 <    };//end SquareMatrix
227 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 >                      SquareMatrix<Real, Dim>& v);
229 >  };//end SquareMatrix
230  
231  
232 < /*=========================================================================
232 >  /*=========================================================================
233  
234    Program:   Visualization Toolkit
235    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 181 | Line 238 | namespace oopse {
238    All rights reserved.
239    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
240  
241 <     This software is distributed WITHOUT ANY WARRANTY; without even
242 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 <     PURPOSE.  See the above copyright notice for more information.
241 >  This software is distributed WITHOUT ANY WARRANTY; without even
242 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 >  PURPOSE.  See the above copyright notice for more information.
244  
245 < =========================================================================*/
245 >  =========================================================================*/
246  
247 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
248 <        a(k, l)=h+s*(g-h*tau)
247 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
248 >    a(k, l)=h+s*(g-h*tau)
249  
250   #define VTK_MAX_ROTATIONS 20
251  
252 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
255 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 <    // normalized.
257 <    template<typename Real, int Dim>
258 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 <                                  SquareMatrix<Real, Dim>& v) {
260 <      const int n = Dim;  
261 <      int i, j, k, iq, ip, numPos;
262 <      Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 <      Real bspace[4], zspace[4];
264 <      Real *b = bspace;
265 <      Real *z = zspace;
252 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
255 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 >  // normalized.
257 >  template<typename Real, int Dim>
258 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 >                                      SquareMatrix<Real, Dim>& v) {
260 >    const int n = Dim;  
261 >    int i, j, k, iq, ip, numPos;
262 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 >    Real bspace[4], zspace[4];
264 >    Real *b = bspace;
265 >    Real *z = zspace;
266  
267 <      // only allocate memory if the matrix is large
268 <      if (n > 4)
269 <        {
270 <        b = new Real[n];
271 <        z = new Real[n];
215 <        }
267 >    // only allocate memory if the matrix is large
268 >    if (n > 4) {
269 >      b = new Real[n];
270 >      z = new Real[n];
271 >    }
272  
273 <      // initialize
274 <      for (ip=0; ip<n; ip++)
275 <        {
276 <        for (iq=0; iq<n; iq++)
277 <          {
278 <          v(ip, iq) = 0.0;
279 <          }
280 <        v(ip, ip) = 1.0;
281 <        }
282 <      for (ip=0; ip<n; ip++)
283 <        {
228 <        b[ip] = w[ip] = a(ip, ip);
229 <        z[ip] = 0.0;
230 <        }
273 >    // initialize
274 >    for (ip=0; ip<n; ip++) {
275 >      for (iq=0; iq<n; iq++) {
276 >        v(ip, iq) = 0.0;
277 >      }
278 >      v(ip, ip) = 1.0;
279 >    }
280 >    for (ip=0; ip<n; ip++) {
281 >      b[ip] = w[ip] = a(ip, ip);
282 >      z[ip] = 0.0;
283 >    }
284  
285 <      // begin rotation sequence
286 <      for (i=0; i<VTK_MAX_ROTATIONS; i++)
287 <        {
288 <        sm = 0.0;
289 <        for (ip=0; ip<n-1; ip++)
290 <          {
291 <          for (iq=ip+1; iq<n; iq++)
292 <            {
293 <            sm += fabs(a(ip, iq));
294 <            }
295 <          }
243 <        if (sm == 0.0)
244 <          {
245 <          break;
246 <          }
285 >    // begin rotation sequence
286 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
287 >      sm = 0.0;
288 >      for (ip=0; ip<n-1; ip++) {
289 >        for (iq=ip+1; iq<n; iq++) {
290 >          sm += fabs(a(ip, iq));
291 >        }
292 >      }
293 >      if (sm == 0.0) {
294 >        break;
295 >      }
296  
297 <        if (i < 3)                                // first 3 sweeps
298 <          {
299 <          tresh = 0.2*sm/(n*n);
300 <          }
301 <        else
253 <          {
254 <          tresh = 0.0;
255 <          }
297 >      if (i < 3) {                                // first 3 sweeps
298 >        tresh = 0.2*sm/(n*n);
299 >      } else {
300 >        tresh = 0.0;
301 >      }
302  
303 <        for (ip=0; ip<n-1; ip++)
304 <          {
305 <          for (iq=ip+1; iq<n; iq++)
260 <            {
261 <            g = 100.0*fabs(a(ip, iq));
303 >      for (ip=0; ip<n-1; ip++) {
304 >        for (iq=ip+1; iq<n; iq++) {
305 >          g = 100.0*fabs(a(ip, iq));
306  
307 <            // after 4 sweeps
308 <            if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 <            && (fabs(w[iq])+g) == fabs(w[iq]))
310 <              {
311 <              a(ip, iq) = 0.0;
312 <              }
313 <            else if (fabs(a(ip, iq)) > tresh)
314 <              {
315 <              h = w[iq] - w[ip];
316 <              if ( (fabs(h)+g) == fabs(h))
317 <                {
318 <                t = (a(ip, iq)) / h;
319 <                }
320 <              else
321 <                {
322 <                theta = 0.5*h / (a(ip, iq));
323 <                t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
324 <                if (theta < 0.0)
325 <                  {
326 <                  t = -t;
327 <                  }
328 <                }
329 <              c = 1.0 / sqrt(1+t*t);
330 <              s = t*c;
287 <              tau = s/(1.0+c);
288 <              h = t*a(ip, iq);
289 <              z[ip] -= h;
290 <              z[iq] += h;
291 <              w[ip] -= h;
292 <              w[iq] += h;
293 <              a(ip, iq)=0.0;
307 >          // after 4 sweeps
308 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
310 >            a(ip, iq) = 0.0;
311 >          } else if (fabs(a(ip, iq)) > tresh) {
312 >            h = w[iq] - w[ip];
313 >            if ( (fabs(h)+g) == fabs(h)) {
314 >              t = (a(ip, iq)) / h;
315 >            } else {
316 >              theta = 0.5*h / (a(ip, iq));
317 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 >              if (theta < 0.0) {
319 >                t = -t;
320 >              }
321 >            }
322 >            c = 1.0 / sqrt(1+t*t);
323 >            s = t*c;
324 >            tau = s/(1.0+c);
325 >            h = t*a(ip, iq);
326 >            z[ip] -= h;
327 >            z[iq] += h;
328 >            w[ip] -= h;
329 >            w[iq] += h;
330 >            a(ip, iq)=0.0;
331  
332 <              // ip already shifted left by 1 unit
333 <              for (j = 0;j <= ip-1;j++)
334 <                {
335 <                VTK_ROTATE(a,j,ip,j,iq);
336 <                }
337 <              // ip and iq already shifted left by 1 unit
338 <              for (j = ip+1;j <= iq-1;j++)
339 <                {
340 <                VTK_ROTATE(a,ip,j,j,iq);
341 <                }
342 <              // iq already shifted left by 1 unit
343 <              for (j=iq+1; j<n; j++)
344 <                {
345 <                VTK_ROTATE(a,ip,j,iq,j);
346 <                }
347 <              for (j=0; j<n; j++)
348 <                {
349 <                VTK_ROTATE(v,j,ip,j,iq);
313 <                }
314 <              }
315 <            }
316 <          }
332 >            // ip already shifted left by 1 unit
333 >            for (j = 0;j <= ip-1;j++) {
334 >              VTK_ROTATE(a,j,ip,j,iq);
335 >            }
336 >            // ip and iq already shifted left by 1 unit
337 >            for (j = ip+1;j <= iq-1;j++) {
338 >              VTK_ROTATE(a,ip,j,j,iq);
339 >            }
340 >            // iq already shifted left by 1 unit
341 >            for (j=iq+1; j<n; j++) {
342 >              VTK_ROTATE(a,ip,j,iq,j);
343 >            }
344 >            for (j=0; j<n; j++) {
345 >              VTK_ROTATE(v,j,ip,j,iq);
346 >            }
347 >          }
348 >        }
349 >      }
350  
351 <        for (ip=0; ip<n; ip++)
352 <          {
353 <          b[ip] += z[ip];
354 <          w[ip] = b[ip];
355 <          z[ip] = 0.0;
356 <          }
324 <        }
351 >      for (ip=0; ip<n; ip++) {
352 >        b[ip] += z[ip];
353 >        w[ip] = b[ip];
354 >        z[ip] = 0.0;
355 >      }
356 >    }
357  
358 <      //// this is NEVER called
359 <      if ( i >= VTK_MAX_ROTATIONS )
360 <        {
361 <           std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
362 <           return 0;
331 <        }
358 >    //// this is NEVER called
359 >    if ( i >= VTK_MAX_ROTATIONS ) {
360 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
361 >      return 0;
362 >    }
363  
364 <      // sort eigenfunctions                 these changes do not affect accuracy
365 <      for (j=0; j<n-1; j++)                  // boundary incorrect
366 <        {
367 <        k = j;
368 <        tmp = w[k];
369 <        for (i=j+1; i<n; i++)                // boundary incorrect, shifted already
370 <          {
371 <          if (w[i] >= tmp)                   // why exchage if same?
372 <            {
373 <            k = i;
374 <            tmp = w[k];
375 <            }
376 <          }
377 <        if (k != j)
378 <          {
379 <          w[k] = w[j];
380 <          w[j] = tmp;
381 <          for (i=0; i<n; i++)
382 <            {
383 <            tmp = v(i, j);
384 <            v(i, j) = v(i, k);
385 <            v(i, k) = tmp;
386 <            }
387 <          }
388 <        }
389 <      // insure eigenvector consistency (i.e., Jacobi can compute vectors that
390 <      // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
391 <      // reek havoc in hyperstreamline/other stuff. We will select the most
392 <      // positive eigenvector.
393 <      int ceil_half_n = (n >> 1) + (n & 1);
394 <      for (j=0; j<n; j++)
395 <        {
396 <        for (numPos=0, i=0; i<n; i++)
397 <          {
398 <          if ( v(i, j) >= 0.0 )
399 <            {
400 <            numPos++;
401 <            }
371 <          }
372 <    //    if ( numPos < ceil(double(n)/double(2.0)) )
373 <        if ( numPos < ceil_half_n)
374 <          {
375 <          for(i=0; i<n; i++)
376 <            {
377 <            v(i, j) *= -1.0;
378 <            }
379 <          }
380 <        }
364 >    // sort eigenfunctions                 these changes do not affect accuracy
365 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
366 >      k = j;
367 >      tmp = w[k];
368 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
369 >        if (w[i] >= tmp) {                   // why exchage if same?
370 >          k = i;
371 >          tmp = w[k];
372 >        }
373 >      }
374 >      if (k != j) {
375 >        w[k] = w[j];
376 >        w[j] = tmp;
377 >        for (i=0; i<n; i++) {
378 >          tmp = v(i, j);
379 >          v(i, j) = v(i, k);
380 >          v(i, k) = tmp;
381 >        }
382 >      }
383 >    }
384 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
385 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
386 >    // reek havoc in hyperstreamline/other stuff. We will select the most
387 >    // positive eigenvector.
388 >    int ceil_half_n = (n >> 1) + (n & 1);
389 >    for (j=0; j<n; j++) {
390 >      for (numPos=0, i=0; i<n; i++) {
391 >        if ( v(i, j) >= 0.0 ) {
392 >          numPos++;
393 >        }
394 >      }
395 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
396 >      if ( numPos < ceil_half_n) {
397 >        for (i=0; i<n; i++) {
398 >          v(i, j) *= -1.0;
399 >        }
400 >      }
401 >    }
402  
403 <      if (n > 4)
404 <        {
405 <        delete [] b;
385 <        delete [] z;
386 <        }
387 <      return 1;
403 >    if (n > 4) {
404 >      delete [] b;
405 >      delete [] z;
406      }
407 +    return 1;
408 +  }
409  
410  
411 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
412   }
413   #endif //MATH_SQUAREMATRIX_HPP
414  

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 137 by tim, Thu Oct 21 21:31:39 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines