36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
57 |
|
/** |
58 |
|
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
|
* @brief A square matrix class |
60 |
< |
* @template Real the element type |
61 |
< |
* @template Dim the dimension of the square matrix |
60 |
> |
* \tparam Real the element type |
61 |
> |
* \tparam Dim the dimension of the square matrix |
62 |
|
*/ |
63 |
|
template<typename Real, int Dim> |
64 |
|
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
125 |
|
Real det; |
126 |
|
return det; |
127 |
|
} |
128 |
< |
|
128 |
> |
|
129 |
|
/** Returns the trace of this matrix. */ |
130 |
|
Real trace() const { |
131 |
|
Real tmp = 0; |
135 |
|
|
136 |
|
return tmp; |
137 |
|
} |
138 |
+ |
|
139 |
+ |
/** |
140 |
+ |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
+ |
* tensors (or Matrices) |
142 |
+ |
* @param t1 first tensor |
143 |
+ |
* @param t2 second tensor |
144 |
+ |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
+ |
*/ |
146 |
+ |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
+ |
Real tmp; |
148 |
+ |
tmp = 0; |
149 |
+ |
|
150 |
+ |
for (unsigned int i = 0; i < Dim; i++) |
151 |
+ |
for (unsigned int j =0; j < Dim; j++) |
152 |
+ |
tmp += t1[i][j] * t2[i][j]; |
153 |
+ |
|
154 |
+ |
return tmp; |
155 |
+ |
} |
156 |
|
|
157 |
+ |
|
158 |
|
/** Tests if this matrix is symmetrix. */ |
159 |
|
bool isSymmetric() const { |
160 |
|
for (unsigned int i = 0; i < Dim - 1; i++) |
184 |
|
return true; |
185 |
|
} |
186 |
|
|
187 |
+ |
/** |
188 |
+ |
* Returns a column vector that contains the elements from the |
189 |
+ |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
190 |
+ |
* on. |
191 |
+ |
*/ |
192 |
+ |
Vector<Real, Dim> diagonals() const { |
193 |
+ |
Vector<Real, Dim> result; |
194 |
+ |
for (unsigned int i = 0; i < Dim; i++) { |
195 |
+ |
result(i) = this->data_[i][i]; |
196 |
+ |
} |
197 |
+ |
return result; |
198 |
+ |
} |
199 |
+ |
|
200 |
|
/** Tests if this matrix is the unit matrix. */ |
201 |
|
bool isUnitMatrix() const { |
202 |
|
if (!isDiagonal()) |
232 |
|
* @return true if success, otherwise return false |
233 |
|
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
234 |
|
* overwritten |
235 |
< |
* @param w will contain the eigenvalues of the matrix On return of this function |
235 |
> |
* @param d will contain the eigenvalues of the matrix On return of this function |
236 |
|
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
237 |
|
* normalized and mutually orthogonal. |
238 |
|
*/ |