ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 146 by tim, Fri Oct 22 23:09:57 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1787 by gezelter, Wed Aug 29 18:13:11 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
66 <            typedef Real ElemType;
67 <            typedef Real* ElemPoinerType;
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <            /** default constructor */
70 <            SquareMatrix() {
71 <                for (unsigned int i = 0; i < Dim; i++)
72 <                    for (unsigned int j = 0; j < Dim; j++)
73 <                        data_[i][j] = 0.0;
74 <             }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <            /** copy constructor */
77 <            SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
78 <            }
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79 >
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            /** copy assignment operator */
90 <            SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 <                RectMatrix<Real, Dim, Dim>::operator=(m);
92 <                return *this;
93 <            }
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94                                    
95 <            /** Retunrs  an identity matrix*/
95 >    /** Retunrs  an identity matrix*/
96  
97 <           static SquareMatrix<Real, Dim> identity() {
98 <                SquareMatrix<Real, Dim> m;
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99                  
100 <                for (unsigned int i = 0; i < Dim; i++)
101 <                    for (unsigned int j = 0; j < Dim; j++)
102 <                        if (i == j)
103 <                            m(i, j) = 1.0;
104 <                        else
105 <                            m(i, j) = 0.0;
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <                return m;
108 <            }
107 >      return m;
108 >    }
109  
110 <            /**
111 <             * Retunrs  the inversion of this matrix.
112 <             * @todo need implementation
113 <             */
114 <             SquareMatrix<Real, Dim>  inverse() {
115 <                 SquareMatrix<Real, Dim> result;
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <                 return result;
118 <            }        
117 >      return result;
118 >    }        
119  
120 <            /**
121 <             * Returns the determinant of this matrix.
122 <             * @todo need implementation
123 <             */
124 <            Real determinant() const {
125 <                Real det;
126 <                return det;
127 <            }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            /** Returns the trace of this matrix. */
130 <            Real trace() const {
131 <               Real tmp = 0;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132                
133 <                for (unsigned int i = 0; i < Dim ; i++)
134 <                    tmp += data_[i][i];
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <                return tmp;
137 <            }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
157 <            /** Tests if this matrix is symmetrix. */            
158 <            bool isSymmetric() const {
159 <                for (unsigned int i = 0; i < Dim - 1; i++)
160 <                    for (unsigned int j = i; j < Dim; j++)
161 <                        if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
162 <                            return false;
157 >    /** Tests if this matrix is symmetrix. */            
158 >    bool isSymmetric() const {
159 >      for (unsigned int i = 0; i < Dim - 1; i++)
160 >        for (unsigned int j = i; j < Dim; j++)
161 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
162 >            return false;
163                          
164 <                return true;
165 <            }
164 >      return true;
165 >    }
166  
167 <            /** Tests if this matrix is orthogonal. */            
168 <            bool isOrthogonal() {
169 <                SquareMatrix<Real, Dim> tmp;
167 >    /** Tests if this matrix is orthogonal. */            
168 >    bool isOrthogonal() {
169 >      SquareMatrix<Real, Dim> tmp;
170  
171 <                tmp = *this * transpose();
171 >      tmp = *this * transpose();
172  
173 <                return tmp.isDiagonal();
174 <            }
173 >      return tmp.isDiagonal();
174 >    }
175  
176 <            /** Tests if this matrix is diagonal. */
177 <            bool isDiagonal() const {
178 <                for (unsigned int i = 0; i < Dim ; i++)
179 <                    for (unsigned int j = 0; j < Dim; j++)
180 <                        if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
181 <                            return false;
176 >    /** Tests if this matrix is diagonal. */
177 >    bool isDiagonal() const {
178 >      for (unsigned int i = 0; i < Dim ; i++)
179 >        for (unsigned int j = 0; j < Dim; j++)
180 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
181 >            return false;
182                          
183 <                return true;
184 <            }
183 >      return true;
184 >    }
185  
186 <            /** Tests if this matrix is the unit matrix. */
187 <            bool isUnitMatrix() const {
188 <                if (!isDiagonal())
189 <                    return false;
186 >    /**
187 >     * Returns a column vector that contains the elements from the
188 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
189 >     * on.
190 >     */
191 >    Vector<Real, Dim> diagonals() const {
192 >      Vector<Real, Dim> result;
193 >      for (unsigned int i = 0; i < Dim; i++) {
194 >        result(i) = this->data_[i][i];
195 >      }
196 >      return result;
197 >    }
198 >
199 >    /** Tests if this matrix is the unit matrix. */
200 >    bool isUnitMatrix() const {
201 >      if (!isDiagonal())
202 >        return false;
203                  
204 <                for (unsigned int i = 0; i < Dim ; i++)
205 <                    if (fabs(data_[i][i] - 1) > oopse::epsilon)
206 <                        return false;
204 >      for (unsigned int i = 0; i < Dim ; i++)
205 >        if (fabs(this->data_[i][i] - 1) > epsilon)
206 >          return false;
207                      
208 <                return true;
209 <            }        
208 >      return true;
209 >    }        
210  
211 <            /** @todo need implementation */
212 <            void diagonalize() {
213 <                //jacobi(m, eigenValues, ortMat);
214 <            }
211 >    /** Return the transpose of this matrix */
212 >    SquareMatrix<Real,  Dim> transpose() const{
213 >      SquareMatrix<Real,  Dim> result;
214 >                
215 >      for (unsigned int i = 0; i < Dim; i++)
216 >        for (unsigned int j = 0; j < Dim; j++)              
217 >          result(j, i) = this->data_[i][j];
218  
219 <            /**
220 <             * Jacobi iteration routines for computing eigenvalues/eigenvectors of
221 <             * real symmetric matrix
222 <             *
223 <             * @return true if success, otherwise return false
224 <             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
225 <             *     overwritten
226 <             * @param w will contain the eigenvalues of the matrix On return of this function
227 <             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
228 <             *    normalized and mutually orthogonal.
229 <             */
219 >      return result;
220 >    }
221 >            
222 >    /** @todo need implementation */
223 >    void diagonalize() {
224 >      //jacobi(m, eigenValues, ortMat);
225 >    }
226 >
227 >    /**
228 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
229 >     * real symmetric matrix
230 >     *
231 >     * @return true if success, otherwise return false
232 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
233 >     *     overwritten
234 >     * @param w will contain the eigenvalues of the matrix On return of this function
235 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
236 >     *    normalized and mutually orthogonal.
237 >     */
238            
239 <            static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
240 <                                  SquareMatrix<Real, Dim>& v);
241 <    };//end SquareMatrix
239 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
240 >                      SquareMatrix<Real, Dim>& v);
241 >  };//end SquareMatrix
242  
243  
244 < /*=========================================================================
244 >  /*=========================================================================
245  
246    Program:   Visualization Toolkit
247    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 181 | Line 250 | namespace oopse {
250    All rights reserved.
251    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
252  
253 <     This software is distributed WITHOUT ANY WARRANTY; without even
254 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
255 <     PURPOSE.  See the above copyright notice for more information.
253 >  This software is distributed WITHOUT ANY WARRANTY; without even
254 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
255 >  PURPOSE.  See the above copyright notice for more information.
256  
257 < =========================================================================*/
257 >  =========================================================================*/
258  
259 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
260 <        a(k, l)=h+s*(g-h*tau)
259 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
260 >    a(k, l)=h+s*(g-h*tau)
261  
262   #define VTK_MAX_ROTATIONS 20
263  
264 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
265 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
266 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
267 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
268 <    // normalized.
269 <    template<typename Real, int Dim>
270 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
271 <                                        SquareMatrix<Real, Dim>& v) {
272 <        const int n = Dim;  
273 <        int i, j, k, iq, ip, numPos;
274 <        Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
275 <        Real bspace[4], zspace[4];
276 <        Real *b = bspace;
277 <        Real *z = zspace;
264 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
265 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
266 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
267 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
268 >  // normalized.
269 >  template<typename Real, int Dim>
270 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
271 >                                      SquareMatrix<Real, Dim>& v) {
272 >    const int n = Dim;  
273 >    int i, j, k, iq, ip, numPos;
274 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
275 >    Real bspace[4], zspace[4];
276 >    Real *b = bspace;
277 >    Real *z = zspace;
278  
279 <        // only allocate memory if the matrix is large
280 <        if (n > 4) {
281 <            b = new Real[n];
282 <            z = new Real[n];
283 <        }
279 >    // only allocate memory if the matrix is large
280 >    if (n > 4) {
281 >      b = new Real[n];
282 >      z = new Real[n];
283 >    }
284  
285 <        // initialize
286 <        for (ip=0; ip<n; ip++) {
287 <            for (iq=0; iq<n; iq++) {
288 <                v(ip, iq) = 0.0;
289 <            }
290 <            v(ip, ip) = 1.0;
291 <        }
292 <        for (ip=0; ip<n; ip++) {
293 <            b[ip] = w[ip] = a(ip, ip);
294 <            z[ip] = 0.0;
295 <        }
285 >    // initialize
286 >    for (ip=0; ip<n; ip++) {
287 >      for (iq=0; iq<n; iq++) {
288 >        v(ip, iq) = 0.0;
289 >      }
290 >      v(ip, ip) = 1.0;
291 >    }
292 >    for (ip=0; ip<n; ip++) {
293 >      b[ip] = w[ip] = a(ip, ip);
294 >      z[ip] = 0.0;
295 >    }
296  
297 <        // begin rotation sequence
298 <        for (i=0; i<VTK_MAX_ROTATIONS; i++) {
299 <            sm = 0.0;
300 <            for (ip=0; ip<n-1; ip++) {
301 <                for (iq=ip+1; iq<n; iq++) {
302 <                    sm += fabs(a(ip, iq));
303 <                }
304 <            }
305 <            if (sm == 0.0) {
306 <                break;
307 <            }
297 >    // begin rotation sequence
298 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
299 >      sm = 0.0;
300 >      for (ip=0; ip<n-1; ip++) {
301 >        for (iq=ip+1; iq<n; iq++) {
302 >          sm += fabs(a(ip, iq));
303 >        }
304 >      }
305 >      if (sm == 0.0) {
306 >        break;
307 >      }
308  
309 <            if (i < 3) {                                // first 3 sweeps
310 <                tresh = 0.2*sm/(n*n);
311 <            } else {
312 <                tresh = 0.0;
313 <            }
309 >      if (i < 3) {                                // first 3 sweeps
310 >        tresh = 0.2*sm/(n*n);
311 >      } else {
312 >        tresh = 0.0;
313 >      }
314  
315 <            for (ip=0; ip<n-1; ip++) {
316 <                for (iq=ip+1; iq<n; iq++) {
317 <                    g = 100.0*fabs(a(ip, iq));
315 >      for (ip=0; ip<n-1; ip++) {
316 >        for (iq=ip+1; iq<n; iq++) {
317 >          g = 100.0*fabs(a(ip, iq));
318  
319 <                    // after 4 sweeps
320 <                    if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
321 <                        && (fabs(w[iq])+g) == fabs(w[iq])) {
322 <                        a(ip, iq) = 0.0;
323 <                    } else if (fabs(a(ip, iq)) > tresh) {
324 <                        h = w[iq] - w[ip];
325 <                        if ( (fabs(h)+g) == fabs(h)) {
326 <                            t = (a(ip, iq)) / h;
327 <                        } else {
328 <                            theta = 0.5*h / (a(ip, iq));
329 <                            t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
330 <                            if (theta < 0.0) {
331 <                                t = -t;
332 <                            }
333 <                        }
334 <                        c = 1.0 / sqrt(1+t*t);
335 <                        s = t*c;
336 <                        tau = s/(1.0+c);
337 <                        h = t*a(ip, iq);
338 <                        z[ip] -= h;
339 <                        z[iq] += h;
340 <                        w[ip] -= h;
341 <                        w[iq] += h;
342 <                        a(ip, iq)=0.0;
319 >          // after 4 sweeps
320 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
321 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
322 >            a(ip, iq) = 0.0;
323 >          } else if (fabs(a(ip, iq)) > tresh) {
324 >            h = w[iq] - w[ip];
325 >            if ( (fabs(h)+g) == fabs(h)) {
326 >              t = (a(ip, iq)) / h;
327 >            } else {
328 >              theta = 0.5*h / (a(ip, iq));
329 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
330 >              if (theta < 0.0) {
331 >                t = -t;
332 >              }
333 >            }
334 >            c = 1.0 / sqrt(1+t*t);
335 >            s = t*c;
336 >            tau = s/(1.0+c);
337 >            h = t*a(ip, iq);
338 >            z[ip] -= h;
339 >            z[iq] += h;
340 >            w[ip] -= h;
341 >            w[iq] += h;
342 >            a(ip, iq)=0.0;
343  
344 <                        // ip already shifted left by 1 unit
345 <                        for (j = 0;j <= ip-1;j++) {
346 <                            VTK_ROTATE(a,j,ip,j,iq);
347 <                        }
348 <                        // ip and iq already shifted left by 1 unit
349 <                        for (j = ip+1;j <= iq-1;j++) {
350 <                            VTK_ROTATE(a,ip,j,j,iq);
351 <                        }
352 <                        // iq already shifted left by 1 unit
353 <                        for (j=iq+1; j<n; j++) {
354 <                            VTK_ROTATE(a,ip,j,iq,j);
355 <                        }
356 <                        for (j=0; j<n; j++) {
357 <                            VTK_ROTATE(v,j,ip,j,iq);
358 <                        }
359 <                    }
360 <                }
361 <            }
344 >            // ip already shifted left by 1 unit
345 >            for (j = 0;j <= ip-1;j++) {
346 >              VTK_ROTATE(a,j,ip,j,iq);
347 >            }
348 >            // ip and iq already shifted left by 1 unit
349 >            for (j = ip+1;j <= iq-1;j++) {
350 >              VTK_ROTATE(a,ip,j,j,iq);
351 >            }
352 >            // iq already shifted left by 1 unit
353 >            for (j=iq+1; j<n; j++) {
354 >              VTK_ROTATE(a,ip,j,iq,j);
355 >            }
356 >            for (j=0; j<n; j++) {
357 >              VTK_ROTATE(v,j,ip,j,iq);
358 >            }
359 >          }
360 >        }
361 >      }
362  
363 <            for (ip=0; ip<n; ip++) {
364 <                b[ip] += z[ip];
365 <                w[ip] = b[ip];
366 <                z[ip] = 0.0;
367 <            }
368 <        }
363 >      for (ip=0; ip<n; ip++) {
364 >        b[ip] += z[ip];
365 >        w[ip] = b[ip];
366 >        z[ip] = 0.0;
367 >      }
368 >    }
369  
370 <        //// this is NEVER called
371 <        if ( i >= VTK_MAX_ROTATIONS ) {
372 <            std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
373 <            return 0;
374 <        }
370 >    //// this is NEVER called
371 >    if ( i >= VTK_MAX_ROTATIONS ) {
372 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
373 >      return 0;
374 >    }
375  
376 <        // sort eigenfunctions                 these changes do not affect accuracy
377 <        for (j=0; j<n-1; j++) {                  // boundary incorrect
378 <            k = j;
379 <            tmp = w[k];
380 <            for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
381 <                if (w[i] >= tmp) {                   // why exchage if same?
382 <                    k = i;
383 <                    tmp = w[k];
384 <                }
385 <            }
386 <            if (k != j) {
387 <                w[k] = w[j];
388 <                w[j] = tmp;
389 <                for (i=0; i<n; i++) {
390 <                    tmp = v(i, j);
391 <                    v(i, j) = v(i, k);
392 <                    v(i, k) = tmp;
393 <                }
394 <            }
395 <        }
396 <        // insure eigenvector consistency (i.e., Jacobi can compute vectors that
397 <        // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
398 <        // reek havoc in hyperstreamline/other stuff. We will select the most
399 <        // positive eigenvector.
400 <        int ceil_half_n = (n >> 1) + (n & 1);
401 <        for (j=0; j<n; j++) {
402 <            for (numPos=0, i=0; i<n; i++) {
403 <                if ( v(i, j) >= 0.0 ) {
404 <                    numPos++;
405 <                }
406 <            }
407 <            //    if ( numPos < ceil(double(n)/double(2.0)) )
408 <            if ( numPos < ceil_half_n) {
409 <                for (i=0; i<n; i++) {
410 <                    v(i, j) *= -1.0;
411 <                }
412 <            }
413 <        }
376 >    // sort eigenfunctions                 these changes do not affect accuracy
377 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
378 >      k = j;
379 >      tmp = w[k];
380 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
381 >        if (w[i] >= tmp) {                   // why exchage if same?
382 >          k = i;
383 >          tmp = w[k];
384 >        }
385 >      }
386 >      if (k != j) {
387 >        w[k] = w[j];
388 >        w[j] = tmp;
389 >        for (i=0; i<n; i++) {
390 >          tmp = v(i, j);
391 >          v(i, j) = v(i, k);
392 >          v(i, k) = tmp;
393 >        }
394 >      }
395 >    }
396 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
397 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
398 >    // reek havoc in hyperstreamline/other stuff. We will select the most
399 >    // positive eigenvector.
400 >    int ceil_half_n = (n >> 1) + (n & 1);
401 >    for (j=0; j<n; j++) {
402 >      for (numPos=0, i=0; i<n; i++) {
403 >        if ( v(i, j) >= 0.0 ) {
404 >          numPos++;
405 >        }
406 >      }
407 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
408 >      if ( numPos < ceil_half_n) {
409 >        for (i=0; i<n; i++) {
410 >          v(i, j) *= -1.0;
411 >        }
412 >      }
413 >    }
414  
415 <        if (n > 4) {
416 <            delete [] b;
417 <            delete [] z;
349 <        }
350 <        return 1;
415 >    if (n > 4) {
416 >      delete [] b;
417 >      delete [] z;
418      }
419 +    return 1;
420 +  }
421  
422  
423 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
424   }
425   #endif //MATH_SQUAREMATRIX_HPP
426  

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 146 by tim, Fri Oct 22 23:09:57 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1787 by gezelter, Wed Aug 29 18:13:11 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines