ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 123 by tim, Wed Oct 20 18:07:08 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * \tparam Real the element type
61 >   * \tparam Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            for (unsigned int i = 0; i < Dim; i++)
90 <                for (unsigned int j = 0; j < Dim; j++)
91 <                    if (i == j)
92 <                        m(i, j) = 1.0;
93 <                    else
94 <                        m(i, j) = 0.0;
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <            return m;
98 <        }
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /**
108 <         * Retunrs  the inversion of this matrix.
83 <         * @todo need implementation
84 <         */
85 <         SquareMatrix<Real, Dim>  inverse() {
86 <             SquareMatrix<Real, Dim> result;
107 >      return m;
108 >    }
109  
110 <             return result;
111 <        }        
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /**
118 <         * Returns the determinant of this matrix.
93 <         * @todo need implementation
94 <         */
95 <        Real determinant() const {
96 <            Real det;
97 <            return det;
98 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Returns the trace of this matrix. */
121 <        Real trace() const {
122 <           Real tmp = 0;
123 <          
124 <            for (unsigned int i = 0; i < Dim ; i++)
125 <                tmp += data_[i][i];
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128 >    
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <            return tmp;
137 <        }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
110        /** Tests if this matrix is symmetrix. */            
111        bool isSymmetric() const {
112            for (unsigned int i = 0; i < Dim - 1; i++)
113                for (unsigned int j = i; j < Dim; j++)
114                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
115                        return false;
116                    
117            return true;
118        }
157  
158 <        /** Tests if this matrix is orthogonal. */            
159 <        bool isOrthogonal() {
160 <            SquareMatrix<Real, Dim> tmp;
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167  
168 <            tmp = *this * transpose();
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <            return tmp.isDiagonal();
127 <        }
172 >      tmp = *this * transpose();
173  
174 <        /** Tests if this matrix is diagonal. */
175 <        bool isDiagonal() const {
176 <            for (unsigned int i = 0; i < Dim ; i++)
177 <                for (unsigned int j = 0; j < Dim; j++)
178 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
179 <                        return false;
174 >      return tmp.isDiagonal();
175 >    }
176 >
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183 >                        
184 >      return true;
185 >    }
186 >
187 >    /**
188 >     * Returns a column vector that contains the elements from the
189 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
190 >     * on.
191 >     */
192 >    Vector<Real, Dim> diagonals() const {
193 >      Vector<Real, Dim> result;
194 >      for (unsigned int i = 0; i < Dim; i++) {
195 >        result(i) = this->data_[i][i];
196 >      }
197 >      return result;
198 >    }
199 >
200 >    /** Tests if this matrix is the unit matrix. */
201 >    bool isUnitMatrix() const {
202 >      if (!isDiagonal())
203 >        return false;
204 >                
205 >      for (unsigned int i = 0; i < Dim ; i++)
206 >        if (fabs(this->data_[i][i] - 1) > epsilon)
207 >          return false;
208                      
209 <            return true;
210 <        }
209 >      return true;
210 >    }        
211  
212 <        /** Tests if this matrix is the unit matrix. */
213 <        bool isUnitMatrix() const {
214 <            if (!isDiagonal())
142 <                return false;
143 <            
144 <            for (unsigned int i = 0; i < Dim ; i++)
145 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 <                    return false;
212 >    /** Return the transpose of this matrix */
213 >    SquareMatrix<Real,  Dim> transpose() const{
214 >      SquareMatrix<Real,  Dim> result;
215                  
216 <            return true;
217 <        }        
216 >      for (unsigned int i = 0; i < Dim; i++)
217 >        for (unsigned int j = 0; j < Dim; j++)              
218 >          result(j, i) = this->data_[i][j];
219  
220 <        /** @todo need implementation */
221 <        void diagonalize() {
222 <            //jacobi(m, eigenValues, ortMat);
223 <        }
220 >      return result;
221 >    }
222 >            
223 >    /** @todo need implementation */
224 >    void diagonalize() {
225 >      //jacobi(m, eigenValues, ortMat);
226 >    }
227  
228 <        /**
229 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230 <         * real symmetric matrix
231 <         *
232 <         * @return true if success, otherwise return false
233 <         * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234 <         *     overwritten
235 <         * @param w will contain the eigenvalues of the matrix On return of this function
236 <         * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237 <         *    normalized and mutually orthogonal.
238 <         */
239 <      
240 <        static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241 <                              SquareMatrix<Real, Dim>& v);
242 <    };//end SquareMatrix
228 >    /**
229 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230 >     * real symmetric matrix
231 >     *
232 >     * @return true if success, otherwise return false
233 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234 >     *     overwritten
235 >     * @param d will contain the eigenvalues of the matrix On return of this function
236 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237 >     *    normalized and mutually orthogonal.
238 >     */
239 >          
240 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241 >                      SquareMatrix<Real, Dim>& v);
242 >  };//end SquareMatrix
243  
244  
245 < /*=========================================================================
245 >  /*=========================================================================
246  
247    Program:   Visualization Toolkit
248    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 179 | Line 251 | namespace oopse {
251    All rights reserved.
252    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
253  
254 <     This software is distributed WITHOUT ANY WARRANTY; without even
255 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256 <     PURPOSE.  See the above copyright notice for more information.
254 >  This software is distributed WITHOUT ANY WARRANTY; without even
255 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256 >  PURPOSE.  See the above copyright notice for more information.
257  
258 < =========================================================================*/
258 >  =========================================================================*/
259  
260 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
261 <        a(k, l)=h+s*(g-h*tau)
260 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
261 >    a(k, l)=h+s*(g-h*tau)
262  
263   #define VTK_MAX_ROTATIONS 20
264  
265 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
268 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269 <    // normalized.
270 <    template<typename Real, int Dim>
271 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272 <                                  SquareMatrix<Real, Dim>& v) {
273 <      const int n = Dim;  
274 <      int i, j, k, iq, ip, numPos;
275 <      Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276 <      Real bspace[4], zspace[4];
277 <      Real *b = bspace;
278 <      Real *z = zspace;
265 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
268 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269 >  // normalized.
270 >  template<typename Real, int Dim>
271 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272 >                                      SquareMatrix<Real, Dim>& v) {
273 >    const int n = Dim;  
274 >    int i, j, k, iq, ip, numPos;
275 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276 >    Real bspace[4], zspace[4];
277 >    Real *b = bspace;
278 >    Real *z = zspace;
279  
280 <      // only allocate memory if the matrix is large
281 <      if (n > 4)
282 <        {
283 <        b = new Real[n];
284 <        z = new Real[n];
213 <        }
280 >    // only allocate memory if the matrix is large
281 >    if (n > 4) {
282 >      b = new Real[n];
283 >      z = new Real[n];
284 >    }
285  
286 <      // initialize
287 <      for (ip=0; ip<n; ip++)
288 <        {
289 <        for (iq=0; iq<n; iq++)
290 <          {
291 <          v(ip, iq) = 0.0;
292 <          }
293 <        v(ip, ip) = 1.0;
294 <        }
295 <      for (ip=0; ip<n; ip++)
296 <        {
226 <        b[ip] = w[ip] = a(ip, ip);
227 <        z[ip] = 0.0;
228 <        }
286 >    // initialize
287 >    for (ip=0; ip<n; ip++) {
288 >      for (iq=0; iq<n; iq++) {
289 >        v(ip, iq) = 0.0;
290 >      }
291 >      v(ip, ip) = 1.0;
292 >    }
293 >    for (ip=0; ip<n; ip++) {
294 >      b[ip] = w[ip] = a(ip, ip);
295 >      z[ip] = 0.0;
296 >    }
297  
298 <      // begin rotation sequence
299 <      for (i=0; i<VTK_MAX_ROTATIONS; i++)
300 <        {
301 <        sm = 0.0;
302 <        for (ip=0; ip<n-1; ip++)
303 <          {
304 <          for (iq=ip+1; iq<n; iq++)
305 <            {
306 <            sm += fabs(a(ip, iq));
307 <            }
308 <          }
241 <        if (sm == 0.0)
242 <          {
243 <          break;
244 <          }
298 >    // begin rotation sequence
299 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
300 >      sm = 0.0;
301 >      for (ip=0; ip<n-1; ip++) {
302 >        for (iq=ip+1; iq<n; iq++) {
303 >          sm += fabs(a(ip, iq));
304 >        }
305 >      }
306 >      if (sm == 0.0) {
307 >        break;
308 >      }
309  
310 <        if (i < 3)                                // first 3 sweeps
311 <          {
312 <          tresh = 0.2*sm/(n*n);
313 <          }
314 <        else
251 <          {
252 <          tresh = 0.0;
253 <          }
310 >      if (i < 3) {                                // first 3 sweeps
311 >        tresh = 0.2*sm/(n*n);
312 >      } else {
313 >        tresh = 0.0;
314 >      }
315  
316 <        for (ip=0; ip<n-1; ip++)
317 <          {
318 <          for (iq=ip+1; iq<n; iq++)
258 <            {
259 <            g = 100.0*fabs(a(ip, iq));
316 >      for (ip=0; ip<n-1; ip++) {
317 >        for (iq=ip+1; iq<n; iq++) {
318 >          g = 100.0*fabs(a(ip, iq));
319  
320 <            // after 4 sweeps
321 <            if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322 <            && (fabs(w[iq])+g) == fabs(w[iq]))
323 <              {
324 <              a(ip, iq) = 0.0;
325 <              }
326 <            else if (fabs(a(ip, iq)) > tresh)
327 <              {
328 <              h = w[iq] - w[ip];
329 <              if ( (fabs(h)+g) == fabs(h))
330 <                {
331 <                t = (a(ip, iq)) / h;
332 <                }
333 <              else
334 <                {
335 <                theta = 0.5*h / (a(ip, iq));
336 <                t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
337 <                if (theta < 0.0)
338 <                  {
339 <                  t = -t;
340 <                  }
341 <                }
342 <              c = 1.0 / sqrt(1+t*t);
343 <              s = t*c;
285 <              tau = s/(1.0+c);
286 <              h = t*a(ip, iq);
287 <              z[ip] -= h;
288 <              z[iq] += h;
289 <              w[ip] -= h;
290 <              w[iq] += h;
291 <              a(ip, iq)=0.0;
320 >          // after 4 sweeps
321 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
323 >            a(ip, iq) = 0.0;
324 >          } else if (fabs(a(ip, iq)) > tresh) {
325 >            h = w[iq] - w[ip];
326 >            if ( (fabs(h)+g) == fabs(h)) {
327 >              t = (a(ip, iq)) / h;
328 >            } else {
329 >              theta = 0.5*h / (a(ip, iq));
330 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
331 >              if (theta < 0.0) {
332 >                t = -t;
333 >              }
334 >            }
335 >            c = 1.0 / sqrt(1+t*t);
336 >            s = t*c;
337 >            tau = s/(1.0+c);
338 >            h = t*a(ip, iq);
339 >            z[ip] -= h;
340 >            z[iq] += h;
341 >            w[ip] -= h;
342 >            w[iq] += h;
343 >            a(ip, iq)=0.0;
344  
345 <              // ip already shifted left by 1 unit
346 <              for (j = 0;j <= ip-1;j++)
347 <                {
348 <                VTK_ROTATE(a,j,ip,j,iq);
349 <                }
350 <              // ip and iq already shifted left by 1 unit
351 <              for (j = ip+1;j <= iq-1;j++)
352 <                {
353 <                VTK_ROTATE(a,ip,j,j,iq);
354 <                }
355 <              // iq already shifted left by 1 unit
356 <              for (j=iq+1; j<n; j++)
357 <                {
358 <                VTK_ROTATE(a,ip,j,iq,j);
359 <                }
360 <              for (j=0; j<n; j++)
361 <                {
362 <                VTK_ROTATE(v,j,ip,j,iq);
311 <                }
312 <              }
313 <            }
314 <          }
345 >            // ip already shifted left by 1 unit
346 >            for (j = 0;j <= ip-1;j++) {
347 >              VTK_ROTATE(a,j,ip,j,iq);
348 >            }
349 >            // ip and iq already shifted left by 1 unit
350 >            for (j = ip+1;j <= iq-1;j++) {
351 >              VTK_ROTATE(a,ip,j,j,iq);
352 >            }
353 >            // iq already shifted left by 1 unit
354 >            for (j=iq+1; j<n; j++) {
355 >              VTK_ROTATE(a,ip,j,iq,j);
356 >            }
357 >            for (j=0; j<n; j++) {
358 >              VTK_ROTATE(v,j,ip,j,iq);
359 >            }
360 >          }
361 >        }
362 >      }
363  
364 <        for (ip=0; ip<n; ip++)
365 <          {
366 <          b[ip] += z[ip];
367 <          w[ip] = b[ip];
368 <          z[ip] = 0.0;
369 <          }
322 <        }
364 >      for (ip=0; ip<n; ip++) {
365 >        b[ip] += z[ip];
366 >        w[ip] = b[ip];
367 >        z[ip] = 0.0;
368 >      }
369 >    }
370  
371 <      //// this is NEVER called
372 <      if ( i >= VTK_MAX_ROTATIONS )
373 <        {
374 <           std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
375 <           return 0;
376 <        }
371 >    //// this is NEVER called
372 >    if ( i >= VTK_MAX_ROTATIONS ) {
373 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
374 >      if (n > 4) {
375 >        delete[] b;
376 >        delete[] z;
377 >      }      
378 >      return 0;
379 >    }
380  
381 <      // sort eigenfunctions                 these changes do not affect accuracy
382 <      for (j=0; j<n-1; j++)                  // boundary incorrect
383 <        {
384 <        k = j;
385 <        tmp = w[k];
386 <        for (i=j+1; i<n; i++)                // boundary incorrect, shifted already
387 <          {
388 <          if (w[i] >= tmp)                   // why exchage if same?
389 <            {
390 <            k = i;
391 <            tmp = w[k];
392 <            }
393 <          }
394 <        if (k != j)
395 <          {
396 <          w[k] = w[j];
397 <          w[j] = tmp;
398 <          for (i=0; i<n; i++)
399 <            {
400 <            tmp = v(i, j);
401 <            v(i, j) = v(i, k);
402 <            v(i, k) = tmp;
403 <            }
404 <          }
405 <        }
406 <      // insure eigenvector consistency (i.e., Jacobi can compute vectors that
407 <      // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
408 <      // reek havoc in hyperstreamline/other stuff. We will select the most
409 <      // positive eigenvector.
410 <      int ceil_half_n = (n >> 1) + (n & 1);
411 <      for (j=0; j<n; j++)
412 <        {
413 <        for (numPos=0, i=0; i<n; i++)
414 <          {
415 <          if ( v(i, j) >= 0.0 )
416 <            {
417 <            numPos++;
418 <            }
369 <          }
370 <    //    if ( numPos < ceil(double(n)/double(2.0)) )
371 <        if ( numPos < ceil_half_n)
372 <          {
373 <          for(i=0; i<n; i++)
374 <            {
375 <            v(i, j) *= -1.0;
376 <            }
377 <          }
378 <        }
381 >    // sort eigenfunctions                 these changes do not affect accuracy
382 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
383 >      k = j;
384 >      tmp = w[k];
385 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
386 >        if (w[i] >= tmp) {                   // why exchage if same?
387 >          k = i;
388 >          tmp = w[k];
389 >        }
390 >      }
391 >      if (k != j) {
392 >        w[k] = w[j];
393 >        w[j] = tmp;
394 >        for (i=0; i<n; i++) {
395 >          tmp = v(i, j);
396 >          v(i, j) = v(i, k);
397 >          v(i, k) = tmp;
398 >        }
399 >      }
400 >    }
401 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
402 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
403 >    // reek havoc in hyperstreamline/other stuff. We will select the most
404 >    // positive eigenvector.
405 >    int ceil_half_n = (n >> 1) + (n & 1);
406 >    for (j=0; j<n; j++) {
407 >      for (numPos=0, i=0; i<n; i++) {
408 >        if ( v(i, j) >= 0.0 ) {
409 >          numPos++;
410 >        }
411 >      }
412 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
413 >      if ( numPos < ceil_half_n) {
414 >        for (i=0; i<n; i++) {
415 >          v(i, j) *= -1.0;
416 >        }
417 >      }
418 >    }
419  
420 <      if (n > 4)
421 <        {
422 <        delete [] b;
383 <        delete [] z;
384 <        }
385 <      return 1;
420 >    if (n > 4) {
421 >      delete [] b;
422 >      delete [] z;
423      }
424 +    return 1;
425 +  }
426  
427  
428 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
429   }
430   #endif //MATH_SQUAREMATRIX_HPP
431  

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 123 by tim, Wed Oct 20 18:07:08 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines