ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 113 by tim, Tue Oct 19 23:01:03 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 33 | Line 50
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            for (unsigned int i = 0; i < Dim; i++)
90 <                for (unsigned int j = 0; j < Dim; j++)
91 <                    if (i == j)
92 <                        m(i, j) = 1.0;
93 <                    else
94 <                        m(i, j) = 0.0;
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <            return m;
98 <        }
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /**
108 <         * Retunrs  the inversion of this matrix.
83 <         * @todo need implementation
84 <         */
85 <         SquareMatrix<Real, Dim>  inverse() {
86 <             SquareMatrix<Real, Dim> result;
107 >      return m;
108 >    }
109  
110 <             return result;
111 <        }        
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /**
118 <         * Returns the determinant of this matrix.
93 <         * @todo need implementation
94 <         */
95 <        Real determinant() const {
96 <            Real det;
97 <            return det;
98 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Returns the trace of this matrix. */
121 <        Real trace() const {
122 <           Real tmp = 0;
123 <          
124 <            for (unsigned int i = 0; i < Dim ; i++)
125 <                tmp += data_[i][i];
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            return tmp;
130 <        }
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <        /** Tests if this matrix is symmetrix. */            
137 <        bool isSymmetric() const {
112 <            for (unsigned int i = 0; i < Dim - 1; i++)
113 <                for (unsigned int j = i; j < Dim; j++)
114 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
115 <                        return false;
116 <                    
117 <            return true;
118 <        }
136 >      return tmp;
137 >    }
138  
139 <        /** Tests if this matrix is orthogonal. */            
140 <        bool isOrthogonal() {
141 <            SquareMatrix<Real, Dim> tmp;
139 >    /** Tests if this matrix is symmetrix. */            
140 >    bool isSymmetric() const {
141 >      for (unsigned int i = 0; i < Dim - 1; i++)
142 >        for (unsigned int j = i; j < Dim; j++)
143 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
144 >            return false;
145 >                        
146 >      return true;
147 >    }
148  
149 <            tmp = *this * transpose();
149 >    /** Tests if this matrix is orthogonal. */            
150 >    bool isOrthogonal() {
151 >      SquareMatrix<Real, Dim> tmp;
152  
153 <            return tmp.isDiagonal();
127 <        }
153 >      tmp = *this * transpose();
154  
155 <        /** Tests if this matrix is diagonal. */
156 <        bool isDiagonal() const {
157 <            for (unsigned int i = 0; i < Dim ; i++)
158 <                for (unsigned int j = 0; j < Dim; j++)
159 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
160 <                        return false;
155 >      return tmp.isDiagonal();
156 >    }
157 >
158 >    /** Tests if this matrix is diagonal. */
159 >    bool isDiagonal() const {
160 >      for (unsigned int i = 0; i < Dim ; i++)
161 >        for (unsigned int j = 0; j < Dim; j++)
162 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167 >
168 >    /** Tests if this matrix is the unit matrix. */
169 >    bool isUnitMatrix() const {
170 >      if (!isDiagonal())
171 >        return false;
172 >                
173 >      for (unsigned int i = 0; i < Dim ; i++)
174 >        if (fabs(this->data_[i][i] - 1) > epsilon)
175 >          return false;
176                      
177 <            return true;
178 <        }
177 >      return true;
178 >    }        
179  
180 <        /** Tests if this matrix is the unit matrix. */
181 <        bool isUnitMatrix() const {
182 <            if (!isDiagonal())
142 <                return false;
143 <            
144 <            for (unsigned int i = 0; i < Dim ; i++)
145 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 <                    return false;
180 >    /** Return the transpose of this matrix */
181 >    SquareMatrix<Real,  Dim> transpose() const{
182 >      SquareMatrix<Real,  Dim> result;
183                  
184 <            return true;
185 <        }        
184 >      for (unsigned int i = 0; i < Dim; i++)
185 >        for (unsigned int j = 0; j < Dim; j++)              
186 >          result(j, i) = this->data_[i][j];
187  
188 <        /** @todo need implementation */
189 <        void diagonalize() {
153 <            //jacobi(m, eigenValues, ortMat);
154 <        }
155 <
156 <        /**
157 <         * Finds the eigenvalues and eigenvectors of a symmetric matrix
158 <         * @param eigenvals a reference to a vector3 where the
159 <         * eigenvalues will be stored. The eigenvalues are ordered so
160 <         * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
161 <         * @return an orthogonal matrix whose ith column is an
162 <         * eigenvector for the eigenvalue eigenvals[i]
163 <         */
164 <        SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) {
165 <            SquareMatrix<Real, Dim> ortMat;
188 >      return result;
189 >    }
190              
191 <            if ( !isSymmetric()){
192 <                //throw();
193 <            }
194 <            
171 <            SquareMatrix<Real, Dim> m(*this);
172 <            jacobi(m, eigenValues, ortMat);
191 >    /** @todo need implementation */
192 >    void diagonalize() {
193 >      //jacobi(m, eigenValues, ortMat);
194 >    }
195  
196 <            return ortMat;
197 <        }
198 <        /**
199 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
200 <         * real symmetric matrix
201 <         *
202 <         * @return true if success, otherwise return false
203 <         * @param a source matrix
204 <         * @param w output eigenvalues
205 <         * @param v output eigenvectors
206 <         */
207 <        bool jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
208 <                              SquareMatrix<Real, Dim>& v);
209 <    };//end SquareMatrix
196 >    /**
197 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
198 >     * real symmetric matrix
199 >     *
200 >     * @return true if success, otherwise return false
201 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
202 >     *     overwritten
203 >     * @param w will contain the eigenvalues of the matrix On return of this function
204 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
205 >     *    normalized and mutually orthogonal.
206 >     */
207 >          
208 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
209 >                      SquareMatrix<Real, Dim>& v);
210 >  };//end SquareMatrix
211  
212  
213 < #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
191 < #define MAX_ROTATIONS 60
213 >  /*=========================================================================
214  
215 < template<typename Real, int Dim>
216 < bool SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
195 <                              SquareMatrix<Real, Dim>& v) {
196 <    const int N = Dim;                                                                      
197 <    int i, j, k, iq, ip;
198 <    Real tresh, theta, tau, t, sm, s, h, g, c;
199 <    Real tmp;
200 <    Vector<Real, Dim> b, z;
215 >  Program:   Visualization Toolkit
216 >  Module:    $RCSfile: SquareMatrix.hpp,v $
217  
218 +  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
219 +  All rights reserved.
220 +  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
221 +
222 +  This software is distributed WITHOUT ANY WARRANTY; without even
223 +  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
224 +  PURPOSE.  See the above copyright notice for more information.
225 +
226 +  =========================================================================*/
227 +
228 + #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
229 +    a(k, l)=h+s*(g-h*tau)
230 +
231 + #define VTK_MAX_ROTATIONS 20
232 +
233 +  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
234 +  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
235 +  // output eigenvalues in w; and output eigenvectors in v. Resulting
236 +  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
237 +  // normalized.
238 +  template<typename Real, int Dim>
239 +  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
240 +                                      SquareMatrix<Real, Dim>& v) {
241 +    const int n = Dim;  
242 +    int i, j, k, iq, ip, numPos;
243 +    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
244 +    Real bspace[4], zspace[4];
245 +    Real *b = bspace;
246 +    Real *z = zspace;
247 +
248 +    // only allocate memory if the matrix is large
249 +    if (n > 4) {
250 +      b = new Real[n];
251 +      z = new Real[n];
252 +    }
253 +
254      // initialize
255 <    for (ip=0; ip<N; ip++) {
256 <        for (iq=0; iq<N; iq++)
257 <            v(ip, iq) = 0.0;
258 <        v(ip, ip) = 1.0;
255 >    for (ip=0; ip<n; ip++) {
256 >      for (iq=0; iq<n; iq++) {
257 >        v(ip, iq) = 0.0;
258 >      }
259 >      v(ip, ip) = 1.0;
260      }
261 <    
262 <    for (ip=0; ip<N; ip++) {
263 <        b(ip) = w(ip) = a(ip, ip);
211 <        z(ip) = 0.0;
261 >    for (ip=0; ip<n; ip++) {
262 >      b[ip] = w[ip] = a(ip, ip);
263 >      z[ip] = 0.0;
264      }
265  
266      // begin rotation sequence
267 <    for (i=0; i<MAX_ROTATIONS; i++) {
268 <        sm = 0.0;
269 <        for (ip=0; ip<2; ip++) {
270 <            for (iq=ip+1; iq<N; iq++)
271 <                sm += fabs(a(ip, iq));
272 <        }
273 <        
274 <        if (sm == 0.0)
275 <            break;
267 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
268 >      sm = 0.0;
269 >      for (ip=0; ip<n-1; ip++) {
270 >        for (iq=ip+1; iq<n; iq++) {
271 >          sm += fabs(a(ip, iq));
272 >        }
273 >      }
274 >      if (sm == 0.0) {
275 >        break;
276 >      }
277  
278 <        if (i < 4)
279 <            tresh = 0.2*sm/(9);
280 <        else
281 <            tresh = 0.0;
278 >      if (i < 3) {                                // first 3 sweeps
279 >        tresh = 0.2*sm/(n*n);
280 >      } else {
281 >        tresh = 0.0;
282 >      }
283  
284 <        for (ip=0; ip<2; ip++) {
285 <            for (iq=ip+1; iq<N; iq++) {
286 <                g = 100.0*fabs(a(ip, iq));
233 <                if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
234 <                    && (fabs(w(iq))+g) == fabs(w(iq))) {
235 <                    a(ip, iq) = 0.0;
236 <                } else if (fabs(a(ip, iq)) > tresh) {
237 <                    h = w(iq) - w(ip);
238 <                    if ( (fabs(h)+g) == fabs(h)) {
239 <                        t = (a(ip, iq)) / h;
240 <                    } else {
241 <                        theta = 0.5*h / (a(ip, iq));
242 <                        t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
284 >      for (ip=0; ip<n-1; ip++) {
285 >        for (iq=ip+1; iq<n; iq++) {
286 >          g = 100.0*fabs(a(ip, iq));
287  
288 <                        if (theta < 0.0)
289 <                            t = -t;
290 <                    }
288 >          // after 4 sweeps
289 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
290 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
291 >            a(ip, iq) = 0.0;
292 >          } else if (fabs(a(ip, iq)) > tresh) {
293 >            h = w[iq] - w[ip];
294 >            if ( (fabs(h)+g) == fabs(h)) {
295 >              t = (a(ip, iq)) / h;
296 >            } else {
297 >              theta = 0.5*h / (a(ip, iq));
298 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
299 >              if (theta < 0.0) {
300 >                t = -t;
301 >              }
302 >            }
303 >            c = 1.0 / sqrt(1+t*t);
304 >            s = t*c;
305 >            tau = s/(1.0+c);
306 >            h = t*a(ip, iq);
307 >            z[ip] -= h;
308 >            z[iq] += h;
309 >            w[ip] -= h;
310 >            w[iq] += h;
311 >            a(ip, iq)=0.0;
312  
313 <                    c = 1.0 / sqrt(1+t*t);
314 <                    s = t*c;
315 <                    tau = s/(1.0+c);
316 <                    h = t*a(ip, iq);
317 <                    z(ip) -= h;
318 <                    z(iq) += h;
319 <                    w(ip) -= h;
320 <                    w(iq) += h;
321 <                    a(ip, iq)=0.0;
322 <                    
323 <                    for (j=0;j<ip-1;j++)
324 <                        ROT(a,j,ip,j,iq);
313 >            // ip already shifted left by 1 unit
314 >            for (j = 0;j <= ip-1;j++) {
315 >              VTK_ROTATE(a,j,ip,j,iq);
316 >            }
317 >            // ip and iq already shifted left by 1 unit
318 >            for (j = ip+1;j <= iq-1;j++) {
319 >              VTK_ROTATE(a,ip,j,j,iq);
320 >            }
321 >            // iq already shifted left by 1 unit
322 >            for (j=iq+1; j<n; j++) {
323 >              VTK_ROTATE(a,ip,j,iq,j);
324 >            }
325 >            for (j=0; j<n; j++) {
326 >              VTK_ROTATE(v,j,ip,j,iq);
327 >            }
328 >          }
329 >        }
330 >      }
331  
332 <                    for (j=ip+1;j<iq-1;j++)
333 <                        ROT(a,ip,j,j,iq);
332 >      for (ip=0; ip<n; ip++) {
333 >        b[ip] += z[ip];
334 >        w[ip] = b[ip];
335 >        z[ip] = 0.0;
336 >      }
337 >    }
338  
339 <                    for (j=iq+1; j<N; j++)
340 <                        ROT(a,ip,j,iq,j);
341 <                    
342 <                    for (j=0; j<N; j++)
343 <                        ROT(v,j,ip,j,iq);
269 <                }
270 <            }
271 <        }//for (ip=0; ip<2; ip++)
339 >    //// this is NEVER called
340 >    if ( i >= VTK_MAX_ROTATIONS ) {
341 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
342 >      return 0;
343 >    }
344  
345 <        for (ip=0; ip<N; ip++) {
346 <            b(ip) += z(ip);
347 <            w(ip) = b(ip);
348 <            z(ip) = 0.0;
349 <        }
350 <        
351 <    } // end for (i=0; i<MAX_ROTATIONS; i++)
352 <
353 <    if ( i >= MAX_ROTATIONS )
354 <        return false;
355 <
356 <    // sort eigenfunctions
357 <    for (j=0; j<N; j++) {
358 <        k = j;
359 <        tmp = w(k);
360 <        for (i=j; i<N; i++) {
361 <            if (w(i) >= tmp) {
362 <            k = i;
363 <            tmp = w(k);
292 <            }
293 <        }
294 <    
295 <        if (k != j) {
296 <            w(k) = w(j);
297 <            w(j) = tmp;
298 <            for (i=0; i<N; i++)  {
299 <                tmp = v(i, j);
300 <                v(i, j) = v(i, k);
301 <                v(i, k) = tmp;
302 <            }
303 <        }
345 >    // sort eigenfunctions                 these changes do not affect accuracy
346 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
347 >      k = j;
348 >      tmp = w[k];
349 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
350 >        if (w[i] >= tmp) {                   // why exchage if same?
351 >          k = i;
352 >          tmp = w[k];
353 >        }
354 >      }
355 >      if (k != j) {
356 >        w[k] = w[j];
357 >        w[j] = tmp;
358 >        for (i=0; i<n; i++) {
359 >          tmp = v(i, j);
360 >          v(i, j) = v(i, k);
361 >          v(i, k) = tmp;
362 >        }
363 >      }
364      }
365 +    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
366 +    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
367 +    // reek havoc in hyperstreamline/other stuff. We will select the most
368 +    // positive eigenvector.
369 +    int ceil_half_n = (n >> 1) + (n & 1);
370 +    for (j=0; j<n; j++) {
371 +      for (numPos=0, i=0; i<n; i++) {
372 +        if ( v(i, j) >= 0.0 ) {
373 +          numPos++;
374 +        }
375 +      }
376 +      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
377 +      if ( numPos < ceil_half_n) {
378 +        for (i=0; i<n; i++) {
379 +          v(i, j) *= -1.0;
380 +        }
381 +      }
382 +    }
383  
384 <    //    insure eigenvector consistency (i.e., Jacobi can compute
385 <    //    vectors that are negative of one another (.707,.707,0) and
386 <    //    (-.707,-.707,0). This can reek havoc in
309 <    //    hyperstreamline/other stuff. We will select the most
310 <    //    positive eigenvector.
311 <    int numPos;
312 <    for (j=0; j<N; j++) {
313 <        for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
314 <        if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
384 >    if (n > 4) {
385 >      delete [] b;
386 >      delete [] z;
387      }
388 +    return 1;
389 +  }
390  
317    return true;
318 }
391  
392 < #undef ROT
321 < #undef MAX_ROTATIONS
322 <
392 >  typedef SquareMatrix<RealType, 6> Mat6x6d;
393   }
324
394   #endif //MATH_SQUAREMATRIX_HPP
395 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 113 by tim, Tue Oct 19 23:01:03 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines