ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 101 by tim, Mon Oct 18 23:13:23 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1787 by gezelter, Wed Aug 29 18:13:11 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
# Line 33 | Line 50
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
82 <            
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    if (i == j)
74 <                        m(i, j) = 1.0;
75 <                    else
76 <                        m(i, j) = 0.0;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83  
78            return m;
79        }
84  
85 <        /**
86 <         * Retunrs  the inversion of this matrix.
87 <         * @todo
88 <         */
89 <         SquareMatrix<Real, Dim>  inverse() {
90 <             SquareMatrix<Real, Dim> result;
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88 >            
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <             return result;
98 <        }        
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /**
108 <         * Returns the determinant of this matrix.
93 <         * @todo
94 <         */
95 <        double determinant() const {
96 <            double det;
97 <            return det;
98 <        }
107 >      return m;
108 >    }
109  
110 <        /** Returns the trace of this matrix. */
111 <        double trace() const {
112 <           double tmp = 0;
113 <          
114 <            for (unsigned int i = 0; i < Dim ; i++)
115 <                tmp += data_[i][i];
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <            return tmp;
118 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Tests if this matrix is symmetrix. */            
121 <        bool isSymmetric() const {
122 <            for (unsigned int i = 0; i < Dim - 1; i++)
123 <                for (unsigned int j = i; j < Dim; j++)
124 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
125 <                        return false;
126 <                    
127 <            return true;
118 <        }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <        /** Tests if this matrix is orthogonal. */            
130 <        bool isOrthogonal() {
131 <            SquareMatrix<Real, Dim> tmp;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <            tmp = *this * transpose();
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
157 <            return tmp.isDiagonal();
158 <        }
157 >    /** Tests if this matrix is symmetrix. */            
158 >    bool isSymmetric() const {
159 >      for (unsigned int i = 0; i < Dim - 1; i++)
160 >        for (unsigned int j = i; j < Dim; j++)
161 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
162 >            return false;
163 >                        
164 >      return true;
165 >    }
166  
167 <        /** Tests if this matrix is diagonal. */
168 <        bool isDiagonal() const {
169 <            for (unsigned int i = 0; i < Dim ; i++)
132 <                for (unsigned int j = 0; j < Dim; j++)
133 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
134 <                        return false;
135 <                    
136 <            return true;
137 <        }
167 >    /** Tests if this matrix is orthogonal. */            
168 >    bool isOrthogonal() {
169 >      SquareMatrix<Real, Dim> tmp;
170  
171 <        /** Tests if this matrix is the unit matrix. */
140 <        bool isUnitMatrix() const {
141 <            if (!isDiagonal())
142 <                return false;
143 <            
144 <            for (unsigned int i = 0; i < Dim ; i++)
145 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 <                    return false;
147 <                
148 <            return true;
149 <        }        
171 >      tmp = *this * transpose();
172  
173 <        /** @todo need implement */
174 <        void diagonalize() {
153 <            //jacobi(m, eigenValues, ortMat);
154 <        }
173 >      return tmp.isDiagonal();
174 >    }
175  
176 <        /**
177 <         * Finds the eigenvalues and eigenvectors of a symmetric matrix
178 <         * @param eigenvals a reference to a vector3 where the
179 <         * eigenvalues will be stored. The eigenvalues are ordered so
180 <         * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
181 <         * @return an orthogonal matrix whose ith column is an
182 <         * eigenvector for the eigenvalue eigenvals[i]
183 <         */
164 <        SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) {
165 <            SquareMatrix<Real, Dim> ortMat;
166 <            
167 <            if ( !isSymmetric()){
168 <                throw();
169 <            }
170 <            
171 <            SquareMatrix<Real, Dim> m(*this);
172 <            jacobi(m, eigenValues, ortMat);
173 <
174 <            return ortMat;
175 <        }
176 <        /**
177 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
178 <         * real symmetric matrix
179 <         *
180 <         * @return true if success, otherwise return false
181 <         * @param a source matrix
182 <         * @param w output eigenvalues
183 <         * @param v output eigenvectors
184 <         */
185 <        bool jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
186 <                              SquareMatrix<Real, Dim>& v);
187 <    };//end SquareMatrix
188 <
189 <
190 < #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
191 < #define MAX_ROTATIONS 60
192 <
193 < template<typename Real, int Dim>
194 < bool SquareMatrix<Real, Dim>::jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
195 <                              SquareMatrix<Real, Dim>& v) {
196 <    const int N = Dim;                                                                      
197 <    int i, j, k, iq, ip;
198 <    double tresh, theta, tau, t, sm, s, h, g, c;
199 <    double tmp;
200 <    Vector<Real, Dim> b, z;
201 <
202 <    // initialize
203 <    for (ip=0; ip<N; ip++) {
204 <        for (iq=0; iq<N; iq++)
205 <            v(ip, iq) = 0.0;
206 <        v(ip, ip) = 1.0;
176 >    /** Tests if this matrix is diagonal. */
177 >    bool isDiagonal() const {
178 >      for (unsigned int i = 0; i < Dim ; i++)
179 >        for (unsigned int j = 0; j < Dim; j++)
180 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
181 >            return false;
182 >                        
183 >      return true;
184      }
185 <    
186 <    for (ip=0; ip<N; ip++) {
187 <        b(ip) = w(ip) = a(ip, ip);
188 <        z(ip) = 0.0;
185 >
186 >    /**
187 >     * Returns a column vector that contains the elements from the
188 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
189 >     * on.
190 >     */
191 >    Vector<Real, Dim> diagonals() const {
192 >      Vector<Real, Dim> result;
193 >      for (unsigned int i = 0; i < Dim; i++) {
194 >        result(i) = this->data_[i][i];
195 >      }
196 >      return result;
197      }
198  
199 <    // begin rotation sequence
200 <    for (i=0; i<MAX_ROTATIONS; i++) {
201 <        sm = 0.0;
202 <        for (ip=0; ip<2; ip++) {
203 <            for (iq=ip+1; iq<N; iq++)
204 <                sm += fabs(a(ip, iq));
205 <        }
206 <        
207 <        if (sm == 0.0)
208 <            break;
199 >    /** Tests if this matrix is the unit matrix. */
200 >    bool isUnitMatrix() const {
201 >      if (!isDiagonal())
202 >        return false;
203 >                
204 >      for (unsigned int i = 0; i < Dim ; i++)
205 >        if (fabs(this->data_[i][i] - 1) > epsilon)
206 >          return false;
207 >                    
208 >      return true;
209 >    }        
210  
211 <        if (i < 4)
212 <            tresh = 0.2*sm/(9);
213 <        else
214 <            tresh = 0.0;
211 >    /** Return the transpose of this matrix */
212 >    SquareMatrix<Real,  Dim> transpose() const{
213 >      SquareMatrix<Real,  Dim> result;
214 >                
215 >      for (unsigned int i = 0; i < Dim; i++)
216 >        for (unsigned int j = 0; j < Dim; j++)              
217 >          result(j, i) = this->data_[i][j];
218  
219 <        for (ip=0; ip<2; ip++) {
220 <            for (iq=ip+1; iq<N; iq++) {
221 <                g = 100.0*fabs(a(ip, iq));
222 <                if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
223 <                    && (fabs(w(iq))+g) == fabs(w(iq))) {
224 <                    a(ip, iq) = 0.0;
225 <                } else if (fabs(a(ip, iq)) > tresh) {
237 <                    h = w(iq) - w(ip);
238 <                    if ( (fabs(h)+g) == fabs(h)) {
239 <                        t = (a(ip, iq)) / h;
240 <                    } else {
241 <                        theta = 0.5*h / (a(ip, iq));
242 <                        t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
219 >      return result;
220 >    }
221 >            
222 >    /** @todo need implementation */
223 >    void diagonalize() {
224 >      //jacobi(m, eigenValues, ortMat);
225 >    }
226  
227 <                        if (theta < 0.0)
228 <                            t = -t;
229 <                    }
227 >    /**
228 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
229 >     * real symmetric matrix
230 >     *
231 >     * @return true if success, otherwise return false
232 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
233 >     *     overwritten
234 >     * @param w will contain the eigenvalues of the matrix On return of this function
235 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
236 >     *    normalized and mutually orthogonal.
237 >     */
238 >          
239 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
240 >                      SquareMatrix<Real, Dim>& v);
241 >  };//end SquareMatrix
242  
248                    c = 1.0 / sqrt(1+t*t);
249                    s = t*c;
250                    tau = s/(1.0+c);
251                    h = t*a(ip, iq);
252                    z(ip) -= h;
253                    z(iq) += h;
254                    w(ip) -= h;
255                    w(iq) += h;
256                    a(ip, iq)=0.0;
257                    
258                    for (j=0;j<ip-1;j++)
259                        ROT(a,j,ip,j,iq);
243  
244 <                    for (j=ip+1;j<iq-1;j++)
262 <                        ROT(a,ip,j,j,iq);
244 >  /*=========================================================================
245  
246 <                    for (j=iq+1; j<N; j++)
247 <                        ROT(a,ip,j,iq,j);
266 <                    
267 <                    for (j=0; j<N; j++)
268 <                        ROT(v,j,ip,j,iq);
269 <                }
270 <            }
271 <        }//for (ip=0; ip<2; ip++)
246 >  Program:   Visualization Toolkit
247 >  Module:    $RCSfile: SquareMatrix.hpp,v $
248  
249 <        for (ip=0; ip<N; ip++) {
250 <            b(ip) += z(ip);
251 <            w(ip) = b(ip);
276 <            z(ip) = 0.0;
277 <        }
278 <        
279 <    } // end for (i=0; i<MAX_ROTATIONS; i++)
249 >  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
250 >  All rights reserved.
251 >  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
252  
253 <    if ( i >= MAX_ROTATIONS )
254 <        return false;
253 >  This software is distributed WITHOUT ANY WARRANTY; without even
254 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
255 >  PURPOSE.  See the above copyright notice for more information.
256  
257 <    // sort eigenfunctions
258 <    for (j=0; j<N; j++) {
259 <        k = j;
260 <        tmp = w(k);
261 <        for (i=j; i<N; i++) {
262 <            if (w(i) >= tmp) {
263 <            k = i;
264 <            tmp = w(k);
265 <            }
266 <        }
267 <    
268 <        if (k != j) {
269 <            w(k) = w(j);
270 <            w(j) = tmp;
271 <            for (i=0; i<N; i++)  {
272 <                tmp = v(i, j);
273 <                v(i, j) = v(i, k);
274 <                v(i, k) = tmp;
275 <            }
276 <        }
257 >  =========================================================================*/
258 >
259 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
260 >    a(k, l)=h+s*(g-h*tau)
261 >
262 > #define VTK_MAX_ROTATIONS 20
263 >
264 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
265 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
266 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
267 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
268 >  // normalized.
269 >  template<typename Real, int Dim>
270 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
271 >                                      SquareMatrix<Real, Dim>& v) {
272 >    const int n = Dim;  
273 >    int i, j, k, iq, ip, numPos;
274 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
275 >    Real bspace[4], zspace[4];
276 >    Real *b = bspace;
277 >    Real *z = zspace;
278 >
279 >    // only allocate memory if the matrix is large
280 >    if (n > 4) {
281 >      b = new Real[n];
282 >      z = new Real[n];
283      }
284  
285 <    //    insure eigenvector consistency (i.e., Jacobi can compute
286 <    //    vectors that are negative of one another (.707,.707,0) and
287 <    //    (-.707,-.707,0). This can reek havoc in
288 <    //    hyperstreamline/other stuff. We will select the most
289 <    //    positive eigenvector.
290 <    int numPos;
312 <    for (j=0; j<N; j++) {
313 <        for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
314 <        if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
285 >    // initialize
286 >    for (ip=0; ip<n; ip++) {
287 >      for (iq=0; iq<n; iq++) {
288 >        v(ip, iq) = 0.0;
289 >      }
290 >      v(ip, ip) = 1.0;
291      }
292 +    for (ip=0; ip<n; ip++) {
293 +      b[ip] = w[ip] = a(ip, ip);
294 +      z[ip] = 0.0;
295 +    }
296  
297 <    return true;
298 < }
297 >    // begin rotation sequence
298 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
299 >      sm = 0.0;
300 >      for (ip=0; ip<n-1; ip++) {
301 >        for (iq=ip+1; iq<n; iq++) {
302 >          sm += fabs(a(ip, iq));
303 >        }
304 >      }
305 >      if (sm == 0.0) {
306 >        break;
307 >      }
308  
309 < #undef ROT
310 < #undef MAX_ROTATIONS
309 >      if (i < 3) {                                // first 3 sweeps
310 >        tresh = 0.2*sm/(n*n);
311 >      } else {
312 >        tresh = 0.0;
313 >      }
314  
315 < }
315 >      for (ip=0; ip<n-1; ip++) {
316 >        for (iq=ip+1; iq<n; iq++) {
317 >          g = 100.0*fabs(a(ip, iq));
318  
319 +          // after 4 sweeps
320 +          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
321 +              && (fabs(w[iq])+g) == fabs(w[iq])) {
322 +            a(ip, iq) = 0.0;
323 +          } else if (fabs(a(ip, iq)) > tresh) {
324 +            h = w[iq] - w[ip];
325 +            if ( (fabs(h)+g) == fabs(h)) {
326 +              t = (a(ip, iq)) / h;
327 +            } else {
328 +              theta = 0.5*h / (a(ip, iq));
329 +              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
330 +              if (theta < 0.0) {
331 +                t = -t;
332 +              }
333 +            }
334 +            c = 1.0 / sqrt(1+t*t);
335 +            s = t*c;
336 +            tau = s/(1.0+c);
337 +            h = t*a(ip, iq);
338 +            z[ip] -= h;
339 +            z[iq] += h;
340 +            w[ip] -= h;
341 +            w[iq] += h;
342 +            a(ip, iq)=0.0;
343 +
344 +            // ip already shifted left by 1 unit
345 +            for (j = 0;j <= ip-1;j++) {
346 +              VTK_ROTATE(a,j,ip,j,iq);
347 +            }
348 +            // ip and iq already shifted left by 1 unit
349 +            for (j = ip+1;j <= iq-1;j++) {
350 +              VTK_ROTATE(a,ip,j,j,iq);
351 +            }
352 +            // iq already shifted left by 1 unit
353 +            for (j=iq+1; j<n; j++) {
354 +              VTK_ROTATE(a,ip,j,iq,j);
355 +            }
356 +            for (j=0; j<n; j++) {
357 +              VTK_ROTATE(v,j,ip,j,iq);
358 +            }
359 +          }
360 +        }
361 +      }
362 +
363 +      for (ip=0; ip<n; ip++) {
364 +        b[ip] += z[ip];
365 +        w[ip] = b[ip];
366 +        z[ip] = 0.0;
367 +      }
368 +    }
369 +
370 +    //// this is NEVER called
371 +    if ( i >= VTK_MAX_ROTATIONS ) {
372 +      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
373 +      return 0;
374 +    }
375 +
376 +    // sort eigenfunctions                 these changes do not affect accuracy
377 +    for (j=0; j<n-1; j++) {                  // boundary incorrect
378 +      k = j;
379 +      tmp = w[k];
380 +      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
381 +        if (w[i] >= tmp) {                   // why exchage if same?
382 +          k = i;
383 +          tmp = w[k];
384 +        }
385 +      }
386 +      if (k != j) {
387 +        w[k] = w[j];
388 +        w[j] = tmp;
389 +        for (i=0; i<n; i++) {
390 +          tmp = v(i, j);
391 +          v(i, j) = v(i, k);
392 +          v(i, k) = tmp;
393 +        }
394 +      }
395 +    }
396 +    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
397 +    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
398 +    // reek havoc in hyperstreamline/other stuff. We will select the most
399 +    // positive eigenvector.
400 +    int ceil_half_n = (n >> 1) + (n & 1);
401 +    for (j=0; j<n; j++) {
402 +      for (numPos=0, i=0; i<n; i++) {
403 +        if ( v(i, j) >= 0.0 ) {
404 +          numPos++;
405 +        }
406 +      }
407 +      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
408 +      if ( numPos < ceil_half_n) {
409 +        for (i=0; i<n; i++) {
410 +          v(i, j) *= -1.0;
411 +        }
412 +      }
413 +    }
414 +
415 +    if (n > 4) {
416 +      delete [] b;
417 +      delete [] z;
418 +    }
419 +    return 1;
420 +  }
421 +
422 +
423 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
424 + }
425   #endif //MATH_SQUAREMATRIX_HPP
426 +

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 101 by tim, Mon Oct 18 23:13:23 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1787 by gezelter, Wed Aug 29 18:13:11 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines