ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 385 by tim, Tue Mar 1 20:10:14 2005 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 45 | Line 46
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
66 <            typedef Real ElemType;
67 <            typedef Real* ElemPoinerType;
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <            /** default constructor */
70 <            SquareMatrix() {
71 <                for (unsigned int i = 0; i < Dim; i++)
72 <                    for (unsigned int j = 0; j < Dim; j++)
73 <                        this->data_[i][j] = 0.0;
74 <             }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <            /** Constructs and initializes every element of this matrix to a scalar */
77 <            SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 <            }
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <            /** Constructs and initializes from an array */
81 <            SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 <            }
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83  
84  
85 <            /** copy constructor */
86 <            SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 <            }
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            /** copy assignment operator */
90 <            SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 <                RectMatrix<Real, Dim, Dim>::operator=(m);
92 <                return *this;
93 <            }
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94                                    
95 <            /** Retunrs  an identity matrix*/
95 >    /** Retunrs  an identity matrix*/
96  
97 <           static SquareMatrix<Real, Dim> identity() {
98 <                SquareMatrix<Real, Dim> m;
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99                  
100 <                for (unsigned int i = 0; i < Dim; i++)
101 <                    for (unsigned int j = 0; j < Dim; j++)
102 <                        if (i == j)
103 <                            m(i, j) = 1.0;
104 <                        else
105 <                            m(i, j) = 0.0;
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <                return m;
108 <            }
107 >      return m;
108 >    }
109  
110 <            /**
111 <             * Retunrs  the inversion of this matrix.
112 <             * @todo need implementation
113 <             */
114 <             SquareMatrix<Real, Dim>  inverse() {
115 <                 SquareMatrix<Real, Dim> result;
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <                 return result;
118 <            }        
117 >      return result;
118 >    }        
119  
120 <            /**
121 <             * Returns the determinant of this matrix.
122 <             * @todo need implementation
123 <             */
124 <            Real determinant() const {
125 <                Real det;
126 <                return det;
127 <            }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            /** Returns the trace of this matrix. */
130 <            Real trace() const {
131 <               Real tmp = 0;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132                
133 <                for (unsigned int i = 0; i < Dim ; i++)
134 <                    tmp += this->data_[i][i];
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <                return tmp;
137 <            }
136 >      return tmp;
137 >    }
138 >    
139 >    /**
140 >     * Returns the tensor contraction (double dot product) of two rank 2
141 >     * tensors (or Matrices)
142 >     * @param t1 first tensor
143 >     * @param t2 second tensor
144 >     * @return the tensor contraction (double dot product) of t1 and t2
145 >     */
146 >    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 >      Real tmp;
148 >      tmp = 0;
149 >      
150 >      for (unsigned int i = 0; i < Dim; i++)
151 >        for (unsigned int j =0; j < Dim; j++)
152 >          tmp += t1[i][j] * t2[i][j];
153 >      
154 >      return tmp;
155 >    }
156  
157 <            /** Tests if this matrix is symmetrix. */            
158 <            bool isSymmetric() const {
159 <                for (unsigned int i = 0; i < Dim - 1; i++)
160 <                    for (unsigned int j = i; j < Dim; j++)
161 <                        if (fabs(this->data_[i][j] - this->data_[j][i]) > oopse::epsilon)
162 <                            return false;
157 >
158 >    /** Tests if this matrix is symmetrix. */            
159 >    bool isSymmetric() const {
160 >      for (unsigned int i = 0; i < Dim - 1; i++)
161 >        for (unsigned int j = i; j < Dim; j++)
162 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 >            return false;
164                          
165 <                return true;
166 <            }
165 >      return true;
166 >    }
167  
168 <            /** Tests if this matrix is orthogonal. */            
169 <            bool isOrthogonal() {
170 <                SquareMatrix<Real, Dim> tmp;
168 >    /** Tests if this matrix is orthogonal. */            
169 >    bool isOrthogonal() {
170 >      SquareMatrix<Real, Dim> tmp;
171  
172 <                tmp = *this * transpose();
172 >      tmp = *this * transpose();
173  
174 <                return tmp.isDiagonal();
175 <            }
174 >      return tmp.isDiagonal();
175 >    }
176  
177 <            /** Tests if this matrix is diagonal. */
178 <            bool isDiagonal() const {
179 <                for (unsigned int i = 0; i < Dim ; i++)
180 <                    for (unsigned int j = 0; j < Dim; j++)
181 <                        if (i !=j && fabs(this->data_[i][j]) > oopse::epsilon)
182 <                            return false;
177 >    /** Tests if this matrix is diagonal. */
178 >    bool isDiagonal() const {
179 >      for (unsigned int i = 0; i < Dim ; i++)
180 >        for (unsigned int j = 0; j < Dim; j++)
181 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 >            return false;
183                          
184 <                return true;
185 <            }
184 >      return true;
185 >    }
186  
187 <            /** Tests if this matrix is the unit matrix. */
188 <            bool isUnitMatrix() const {
189 <                if (!isDiagonal())
190 <                    return false;
187 >    /** Tests if this matrix is the unit matrix. */
188 >    bool isUnitMatrix() const {
189 >      if (!isDiagonal())
190 >        return false;
191                  
192 <                for (unsigned int i = 0; i < Dim ; i++)
193 <                    if (fabs(this->data_[i][i] - 1) > oopse::epsilon)
194 <                        return false;
192 >      for (unsigned int i = 0; i < Dim ; i++)
193 >        if (fabs(this->data_[i][i] - 1) > epsilon)
194 >          return false;
195                      
196 <                return true;
197 <            }        
196 >      return true;
197 >    }        
198  
199 <            /** Return the transpose of this matrix */
200 <            SquareMatrix<Real,  Dim> transpose() const{
201 <                SquareMatrix<Real,  Dim> result;
199 >    /** Return the transpose of this matrix */
200 >    SquareMatrix<Real,  Dim> transpose() const{
201 >      SquareMatrix<Real,  Dim> result;
202                  
203 <                for (unsigned int i = 0; i < Dim; i++)
204 <                    for (unsigned int j = 0; j < Dim; j++)              
205 <                        result(j, i) = this->data_[i][j];
203 >      for (unsigned int i = 0; i < Dim; i++)
204 >        for (unsigned int j = 0; j < Dim; j++)              
205 >          result(j, i) = this->data_[i][j];
206  
207 <                return result;
208 <            }
207 >      return result;
208 >    }
209              
210 <            /** @todo need implementation */
211 <            void diagonalize() {
212 <                //jacobi(m, eigenValues, ortMat);
213 <            }
210 >    /** @todo need implementation */
211 >    void diagonalize() {
212 >      //jacobi(m, eigenValues, ortMat);
213 >    }
214  
215 <            /**
216 <             * Jacobi iteration routines for computing eigenvalues/eigenvectors of
217 <             * real symmetric matrix
218 <             *
219 <             * @return true if success, otherwise return false
220 <             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
221 <             *     overwritten
222 <             * @param w will contain the eigenvalues of the matrix On return of this function
223 <             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
224 <             *    normalized and mutually orthogonal.
225 <             */
215 >    /**
216 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
217 >     * real symmetric matrix
218 >     *
219 >     * @return true if success, otherwise return false
220 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
221 >     *     overwritten
222 >     * @param w will contain the eigenvalues of the matrix On return of this function
223 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
224 >     *    normalized and mutually orthogonal.
225 >     */
226            
227 <            static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 <                                  SquareMatrix<Real, Dim>& v);
229 <    };//end SquareMatrix
227 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 >                      SquareMatrix<Real, Dim>& v);
229 >  };//end SquareMatrix
230  
231  
232 < /*=========================================================================
232 >  /*=========================================================================
233  
234    Program:   Visualization Toolkit
235    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 217 | Line 238 | namespace oopse {
238    All rights reserved.
239    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
240  
241 <     This software is distributed WITHOUT ANY WARRANTY; without even
242 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 <     PURPOSE.  See the above copyright notice for more information.
241 >  This software is distributed WITHOUT ANY WARRANTY; without even
242 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 >  PURPOSE.  See the above copyright notice for more information.
244  
245 < =========================================================================*/
245 >  =========================================================================*/
246  
247 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
248 <        a(k, l)=h+s*(g-h*tau)
247 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
248 >    a(k, l)=h+s*(g-h*tau)
249  
250   #define VTK_MAX_ROTATIONS 20
251  
252 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
255 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 <    // normalized.
257 <    template<typename Real, int Dim>
258 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 <                                        SquareMatrix<Real, Dim>& v) {
260 <        const int n = Dim;  
261 <        int i, j, k, iq, ip, numPos;
262 <        Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 <        Real bspace[4], zspace[4];
264 <        Real *b = bspace;
265 <        Real *z = zspace;
252 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
255 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 >  // normalized.
257 >  template<typename Real, int Dim>
258 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 >                                      SquareMatrix<Real, Dim>& v) {
260 >    const int n = Dim;  
261 >    int i, j, k, iq, ip, numPos;
262 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 >    Real bspace[4], zspace[4];
264 >    Real *b = bspace;
265 >    Real *z = zspace;
266  
267 <        // only allocate memory if the matrix is large
268 <        if (n > 4) {
269 <            b = new Real[n];
270 <            z = new Real[n];
271 <        }
267 >    // only allocate memory if the matrix is large
268 >    if (n > 4) {
269 >      b = new Real[n];
270 >      z = new Real[n];
271 >    }
272  
273 <        // initialize
274 <        for (ip=0; ip<n; ip++) {
275 <            for (iq=0; iq<n; iq++) {
276 <                v(ip, iq) = 0.0;
277 <            }
278 <            v(ip, ip) = 1.0;
279 <        }
280 <        for (ip=0; ip<n; ip++) {
281 <            b[ip] = w[ip] = a(ip, ip);
282 <            z[ip] = 0.0;
283 <        }
273 >    // initialize
274 >    for (ip=0; ip<n; ip++) {
275 >      for (iq=0; iq<n; iq++) {
276 >        v(ip, iq) = 0.0;
277 >      }
278 >      v(ip, ip) = 1.0;
279 >    }
280 >    for (ip=0; ip<n; ip++) {
281 >      b[ip] = w[ip] = a(ip, ip);
282 >      z[ip] = 0.0;
283 >    }
284  
285 <        // begin rotation sequence
286 <        for (i=0; i<VTK_MAX_ROTATIONS; i++) {
287 <            sm = 0.0;
288 <            for (ip=0; ip<n-1; ip++) {
289 <                for (iq=ip+1; iq<n; iq++) {
290 <                    sm += fabs(a(ip, iq));
291 <                }
292 <            }
293 <            if (sm == 0.0) {
294 <                break;
295 <            }
285 >    // begin rotation sequence
286 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
287 >      sm = 0.0;
288 >      for (ip=0; ip<n-1; ip++) {
289 >        for (iq=ip+1; iq<n; iq++) {
290 >          sm += fabs(a(ip, iq));
291 >        }
292 >      }
293 >      if (sm == 0.0) {
294 >        break;
295 >      }
296  
297 <            if (i < 3) {                                // first 3 sweeps
298 <                tresh = 0.2*sm/(n*n);
299 <            } else {
300 <                tresh = 0.0;
301 <            }
297 >      if (i < 3) {                                // first 3 sweeps
298 >        tresh = 0.2*sm/(n*n);
299 >      } else {
300 >        tresh = 0.0;
301 >      }
302  
303 <            for (ip=0; ip<n-1; ip++) {
304 <                for (iq=ip+1; iq<n; iq++) {
305 <                    g = 100.0*fabs(a(ip, iq));
303 >      for (ip=0; ip<n-1; ip++) {
304 >        for (iq=ip+1; iq<n; iq++) {
305 >          g = 100.0*fabs(a(ip, iq));
306  
307 <                    // after 4 sweeps
308 <                    if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 <                        && (fabs(w[iq])+g) == fabs(w[iq])) {
310 <                        a(ip, iq) = 0.0;
311 <                    } else if (fabs(a(ip, iq)) > tresh) {
312 <                        h = w[iq] - w[ip];
313 <                        if ( (fabs(h)+g) == fabs(h)) {
314 <                            t = (a(ip, iq)) / h;
315 <                        } else {
316 <                            theta = 0.5*h / (a(ip, iq));
317 <                            t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 <                            if (theta < 0.0) {
319 <                                t = -t;
320 <                            }
321 <                        }
322 <                        c = 1.0 / sqrt(1+t*t);
323 <                        s = t*c;
324 <                        tau = s/(1.0+c);
325 <                        h = t*a(ip, iq);
326 <                        z[ip] -= h;
327 <                        z[iq] += h;
328 <                        w[ip] -= h;
329 <                        w[iq] += h;
330 <                        a(ip, iq)=0.0;
307 >          // after 4 sweeps
308 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
310 >            a(ip, iq) = 0.0;
311 >          } else if (fabs(a(ip, iq)) > tresh) {
312 >            h = w[iq] - w[ip];
313 >            if ( (fabs(h)+g) == fabs(h)) {
314 >              t = (a(ip, iq)) / h;
315 >            } else {
316 >              theta = 0.5*h / (a(ip, iq));
317 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 >              if (theta < 0.0) {
319 >                t = -t;
320 >              }
321 >            }
322 >            c = 1.0 / sqrt(1+t*t);
323 >            s = t*c;
324 >            tau = s/(1.0+c);
325 >            h = t*a(ip, iq);
326 >            z[ip] -= h;
327 >            z[iq] += h;
328 >            w[ip] -= h;
329 >            w[iq] += h;
330 >            a(ip, iq)=0.0;
331  
332 <                        // ip already shifted left by 1 unit
333 <                        for (j = 0;j <= ip-1;j++) {
334 <                            VTK_ROTATE(a,j,ip,j,iq);
335 <                        }
336 <                        // ip and iq already shifted left by 1 unit
337 <                        for (j = ip+1;j <= iq-1;j++) {
338 <                            VTK_ROTATE(a,ip,j,j,iq);
339 <                        }
340 <                        // iq already shifted left by 1 unit
341 <                        for (j=iq+1; j<n; j++) {
342 <                            VTK_ROTATE(a,ip,j,iq,j);
343 <                        }
344 <                        for (j=0; j<n; j++) {
345 <                            VTK_ROTATE(v,j,ip,j,iq);
346 <                        }
347 <                    }
348 <                }
349 <            }
332 >            // ip already shifted left by 1 unit
333 >            for (j = 0;j <= ip-1;j++) {
334 >              VTK_ROTATE(a,j,ip,j,iq);
335 >            }
336 >            // ip and iq already shifted left by 1 unit
337 >            for (j = ip+1;j <= iq-1;j++) {
338 >              VTK_ROTATE(a,ip,j,j,iq);
339 >            }
340 >            // iq already shifted left by 1 unit
341 >            for (j=iq+1; j<n; j++) {
342 >              VTK_ROTATE(a,ip,j,iq,j);
343 >            }
344 >            for (j=0; j<n; j++) {
345 >              VTK_ROTATE(v,j,ip,j,iq);
346 >            }
347 >          }
348 >        }
349 >      }
350  
351 <            for (ip=0; ip<n; ip++) {
352 <                b[ip] += z[ip];
353 <                w[ip] = b[ip];
354 <                z[ip] = 0.0;
355 <            }
356 <        }
351 >      for (ip=0; ip<n; ip++) {
352 >        b[ip] += z[ip];
353 >        w[ip] = b[ip];
354 >        z[ip] = 0.0;
355 >      }
356 >    }
357  
358 <        //// this is NEVER called
359 <        if ( i >= VTK_MAX_ROTATIONS ) {
360 <            std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
361 <            return 0;
362 <        }
358 >    //// this is NEVER called
359 >    if ( i >= VTK_MAX_ROTATIONS ) {
360 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
361 >      return 0;
362 >    }
363  
364 <        // sort eigenfunctions                 these changes do not affect accuracy
365 <        for (j=0; j<n-1; j++) {                  // boundary incorrect
366 <            k = j;
367 <            tmp = w[k];
368 <            for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
369 <                if (w[i] >= tmp) {                   // why exchage if same?
370 <                    k = i;
371 <                    tmp = w[k];
372 <                }
373 <            }
374 <            if (k != j) {
375 <                w[k] = w[j];
376 <                w[j] = tmp;
377 <                for (i=0; i<n; i++) {
378 <                    tmp = v(i, j);
379 <                    v(i, j) = v(i, k);
380 <                    v(i, k) = tmp;
381 <                }
382 <            }
383 <        }
384 <        // insure eigenvector consistency (i.e., Jacobi can compute vectors that
385 <        // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
386 <        // reek havoc in hyperstreamline/other stuff. We will select the most
387 <        // positive eigenvector.
388 <        int ceil_half_n = (n >> 1) + (n & 1);
389 <        for (j=0; j<n; j++) {
390 <            for (numPos=0, i=0; i<n; i++) {
391 <                if ( v(i, j) >= 0.0 ) {
392 <                    numPos++;
393 <                }
394 <            }
395 <            //    if ( numPos < ceil(double(n)/double(2.0)) )
396 <            if ( numPos < ceil_half_n) {
397 <                for (i=0; i<n; i++) {
398 <                    v(i, j) *= -1.0;
399 <                }
400 <            }
401 <        }
364 >    // sort eigenfunctions                 these changes do not affect accuracy
365 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
366 >      k = j;
367 >      tmp = w[k];
368 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
369 >        if (w[i] >= tmp) {                   // why exchage if same?
370 >          k = i;
371 >          tmp = w[k];
372 >        }
373 >      }
374 >      if (k != j) {
375 >        w[k] = w[j];
376 >        w[j] = tmp;
377 >        for (i=0; i<n; i++) {
378 >          tmp = v(i, j);
379 >          v(i, j) = v(i, k);
380 >          v(i, k) = tmp;
381 >        }
382 >      }
383 >    }
384 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
385 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
386 >    // reek havoc in hyperstreamline/other stuff. We will select the most
387 >    // positive eigenvector.
388 >    int ceil_half_n = (n >> 1) + (n & 1);
389 >    for (j=0; j<n; j++) {
390 >      for (numPos=0, i=0; i<n; i++) {
391 >        if ( v(i, j) >= 0.0 ) {
392 >          numPos++;
393 >        }
394 >      }
395 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
396 >      if ( numPos < ceil_half_n) {
397 >        for (i=0; i<n; i++) {
398 >          v(i, j) *= -1.0;
399 >        }
400 >      }
401 >    }
402  
403 <        if (n > 4) {
404 <            delete [] b;
405 <            delete [] z;
385 <        }
386 <        return 1;
403 >    if (n > 4) {
404 >      delete [] b;
405 >      delete [] z;
406      }
407 +    return 1;
408 +  }
409  
410  
411 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
412   }
413   #endif //MATH_SQUAREMATRIX_HPP
414  

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 385 by tim, Tue Mar 1 20:10:14 2005 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1753 by gezelter, Tue Jun 12 13:20:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines